correlations to practiceborehole heat exchangers, from .../Jeff Spitler - Design and... ·...

15
2016-09-19 1 Design and optimization of groundwater-filled and grouted borehole heat exchangers, from correlations to practice Jeffrey D. Spitler Oklahoma State University Saqib Javed Chalmers University of Technology Lund University

Transcript of correlations to practiceborehole heat exchangers, from .../Jeff Spitler - Design and... ·...

20

16

-09

-191

De

sign

an

d o

ptim

izatio

n o

f g

rou

nd

wa

ter-fille

d a

nd

gro

ute

d

bo

reh

ole

he

at e

xcha

ng

ers, fro

m

corre

latio

ns to

pra

ctice

Jeffre

y D

. Sp

itler

Ok

lah

om

a S

tate

Un

iversity

Sa

qib

Jave

d

Ch

alm

ers U

nive

rsity o

f Tech

no

log

y

Lun

d U

nive

rsity

20

16

-09

-192

No

rth A

me

rica

•G

rou

ted

•N

o ca

sing

•S

ha

llow

er

•B

ore

ho

le re

sistan

ce

ap

pro

xima

tely

co

nsta

nt.

Sca

nd

ina

via

•G

rou

nd

-wa

ter fille

d

•C

ase

d fro

m su

rface

to

be

dro

ck.

•“U

sua

lly” sh

ort d

istan

ce

to b

ed

rock

.

•D

ee

pe

r

•B

ore

ho

le re

sistan

ce

varie

s with

an

nu

lus

tem

pe

ratu

re a

nd

he

at

extra

ction

rate

.

0

20

40

60

80

10

0

12

0

14

0

16

0

18

0

20

019

80

19

85

19

90

19

95

20

00

20

05

20

10

20

15

Borehole Depth (m)

Av

era

ge

Bo

reh

ole

De

pth

Sw

ed

en

USA

All b

ore

ho

les

Pu

blicly

-bid

pro

jects

(Ave

rag

e #

BH

~1

00

)

Swe

dish

da

ta: F

rom

SG

U, v

ia S

ign

hild

Ge

hlin

of Sve

nsk

t Ge

on

erg

icen

trum

USA

da

ta: F

rom

an

alysis o

f com

me

rcial p

roje

ct da

tab

ase

s, Rya

n C

ard

ao

f Ge

oP

ro,

Inc., S

ou

th D

ako

ta

20

16

-09

-193

Ba

ckg

rou

nd

–G

W-fille

d b

ore

ho

les

•Lu

nd

Un

iversity

-C

lae

sson

& H

ellströ

m(1

98

8)

sho

we

d e

ffects o

f na

tura

l con

vectio

n in

bo

reh

ole

s.

•Lu

nd

–K

jellsso

n&

He

llström

(19

97

) –la

bo

rato

ry m

ea

sure

me

nts

•Lu

leå

Un

iv. Tech

no

log

y –

Ge

hlin

, et a

l. (20

03

) –th

erm

osip

ho

n e

ffect

•Lu

leå

–G

usta

fsson

, et a

l. (20

08

-20

10

) –n

atu

ral

con

vectio

n in

bo

reh

ole

s –sim

ula

tion

an

d

exp

erim

en

t

•S

till no

wa

y to

qu

an

tify e

ffects fo

r de

sign

pu

rpo

ses.

Exp

erim

en

tal fa

cility a

t Ch

alm

ers

-10 -5 0 5

10

15

20

04

89

61

44

19

22

40

28

83

36

38

4

Temperature Change [K]

Tim

e [h

ou

rs]

Te

st 4

Te

st 1

Te

st 5

Te

st 2

Te

st 3

-75

-50

-25 0

25

50

75

10

0

04

89

61

44

19

22

40

28

83

36

38

4

Heat Transfer Rate (W/m)

Tim

e [h

ou

rs]

Te

st 4T

est 1

Te

st 5

Te

st 2

Te

st 3

Se

ries o

f inje

ction

an

d

extra

ction

TR

Ts ove

r 27

mo

nth

s.

20

16

-09

-194

Re

sults

0

0.0

2

0.0

4

0.0

6

0.0

8

0.1

0.1

2

02

04

06

08

0

Effective Borehole Resistance

(K/(W/m))

Ab

solu

te h

ea

t flux (W

/m)

1°C

-3°C

12

°C-1

4°C

16

°C-2

0°C

20

°C-2

4°C

Co

mp

ariso

n to

Gro

ute

d B

ore

ho

les

0.0

0

0.0

2

0.0

4

0.0

6

0.0

8

0.1

0

0.1

2

0.1

4

0.0

00

.02

0.0

40

.06

0.0

80

.10

0.1

20

.14

Eff. BH Resistance - Grouted (K/(W/m))

Eff. B

H R

esistan

ce -

GW

-filled

(K/(W

/m))

Std. B

en

ton

ite G

rou

tT

EG

, k=1

.73

TE

G,k=

2.7

7

20

16

-09

-195

Co

rrela

tion

s

()

25

.0

*1

4.

0ann

ann

Ra

Nu

=

()

25

.0

*30

.0

po

po

Ra

Nu

=

()

25

.0

*20

.0

BH

WB

HW

Ra

Nu

=

6E

3.1

7E

0.4

*>

>a

nn

Ra

6E

8.1

7E1

.4

*>

>p

oR

a

5E

4.5

7.9

E2

*>

>B

HW

Ra

For th

e re

sistan

ce a

cross th

e a

nn

ulu

s:

For re

sistan

ce a

t the

ou

ter p

ipe

wa

ll:

For re

sistan

ce a

t the

bo

reh

ole

wa

ll:

An

nu

lus co

rrela

tion

0 5 10 15 20 25 30 350.0E+01.0E+7

2.0E+73.0E+7

4.0E+75.0E+7

Nusselt number

Rayleigh Num

ber

20

16

-09

-196

Oth

er B

ore

ho

les a

t Ch

alm

ers

0.0

0

0.0

1

0.0

2

0.0

3

0.0

4

0.0

5

0.0

6

0.0

7

0.0

8

0.0

9

0.1

0

0.1

1

0.1

2

0.1

3

0.1

4

0.1

5

0.0

00

.01

0.0

20

.03

0.0

40

.05

0.0

60

.07

0.0

80

.09

0.1

00

.11

0.1

20

.13

0.1

40

.15

Rb* (model), K/(W/m)

Rb

* (e

xpe

rime

nta

l), K/(W

/m)

UT

UH

F

Lab

ora

tory

me

asu

rem

en

ts (3

m h

igh

test b

ore

ho

le)

0.0

0

0.0

2

0.0

4

0.0

6

0.0

8

0.1

0

0.1

2

0.1

4

01

02

03

04

05

0

Borehole resistance (K/(W/m))

Me

an

Flu

id T

em

pe

ratu

re (°C

)

50

W/m

75

W/m

10

0 W

/m

K&

H 5

0 W

/m

K&

H 7

5 W

/m

K&

H 1

00

W/m

20

16

-09

-197

No

rwe

gia

n B

ore

ho

les

0.0

0

0.0

1

0.0

2

0.0

3

0.0

4

0.0

5

0.0

6

0.0

7

0.0

8

0.0

9

0.1

0

0.1

1

0.1

2

0.1

3

0.1

4

0.1

5

0.0

00

.01

0.0

20

.03

0.0

40

.05

0.0

60

.07

0.0

80

.09

0.1

00

.11

0.1

20

.13

0.1

40

.15

Rb* (model), K/(W/m)

Rb

* (e

xpe

rime

nta

l), K/(W

/m)

UT

UH

F

Sw

ed

ish B

ore

ho

les

0.0

0

0.0

5

0.1

0

0.1

5

0.2

0

0.2

5

0.3

0

0.3

5

0.0

00

.05

0.1

00

.15

0.2

00

.25

0.3

00

.35

Rb* (model), K/(W/m)

Rb

* (e

xpe

rime

nta

l), K/(W

/m)

UT

UH

F

20

16

-09

-198

Ap

plica

tion

: Se

nsitiv

ity to

An

nu

lus Te

mp

era

ture

0.0

0

0.0

2

0.0

4

0.0

6

0.0

8

0.1

0

0.1

2

05

10

15

20

25

Rb, Rb* (K/(W/m))

An

nu

lus T

em

pe

ratu

re (°C

)

Rb

Rb

*

He

at re

jectio

n ra

te ke

pt a

t 35

W/m

Ap

plica

tion

: Se

nsitiv

ity to

He

at R

eje

ction

Ra

te

0.0

0

0.0

2

0.0

4

0.0

6

0.0

8

0.1

0

0.1

2

01

02

03

04

05

06

07

08

0

Rb, Rb* (K/(W/m))

He

at re

jectio

n ra

te (W

/m)

Rb

Rb

*

An

nu

lus te

mp

era

ture

kep

t at 8

.9°C

20

16

-09

-199

Co

nclu

sion

s –G

W-fille

d B

ore

ho

les

•C

orre

latio

ns fo

r na

tura

l con

vectio

n in

bo

reh

ole

s w

ith sin

gle

U-tu

be

s give

rea

son

ab

le p

erfo

rma

nce

.

•G

ives “co

nse

rvative

” pre

dictio

n o

f resista

nce

for d

esig

n

pu

rpo

ses.

•Im

ple

me

nte

d in

GLH

EP

RO

.

•E

ffect o

f he

igh

t on

scalin

g?

•A

vera

ge

un

certa

inty, a

nn

ulu

s Nu

sselt

#: ±

29

%

•B

ette

r con

trolle

d e

xpe

rime

nts: n

ice, b

ut e

xpe

nsive

.

•C

orre

latio

ns fo

r do

ub

le U

-tub

es, co

-axia

l he

at

exch

an

ge

rs are

ne

ed

ed

.

Gro

ute

d B

ore

ho

les

•M

an

y sim

plifie

d m

eth

od

s for p

red

icting

bo

reh

ole

th

erm

al re

sistan

ce. (Fe

w fo

r inte

rna

l the

rma

l re

sistan

ce.)

•M

ultip

ole

alg

orith

m –

Lun

d U

nive

rsity (1

98

7); la

ter

refin

em

en

t Cla

esso

na

nd

He

llström

(20

11

)•

2-d

ime

nsio

na

l con

du

ction

he

at tra

nsfe

r calcu

latio

n

•V

aria

ble

-ord

er: 1

0th

ord

er g

ives a

ccura

cy to

8 sig

nifica

nt

dig

its

•V

erifie

d a

ga

inst d

eta

iled

nu

me

rical m

od

els

•D

ifficult to

imp

lem

en

t

•H

en

ce, sim

ple

r me

tho

ds a

re d

esira

ble

20

16

-09

-19

10

Pa

ram

etric S

tud

y: 2

16

Ca

ses

Pa

ram

ete

rLe

ve

lsN

um

be

r of

lev

els

θθθ θ2

–T

he

ratio

of

the

bo

reh

ole

rad

ius

too

ute

rp

ipe

rad

ius.

Sin

cep

ipe

ou

ter

dia

me

ter

isa

lwa

ys

fixed

at

32

mm

,b

ore

ho

led

iam

ete

rsa

re9

6m

m,

19

2m

m,

an

d2

88

mm

.

3, 6

, 93

Sh

an

ksp

acin

gco

nfig

ura

tion

;co

rresp

on

ds

toP

au

l’s

(19

96

)A

,B

,C

con

figu

ratio

ns

Clo

se, M

od

era

te, W

ide

For θ

2=

3, θ

1 =

0.3

33

, 0.5

55

, 0.6

67

For θ

2 =

6, θ

1 =

0.1

67

, 0.3

89

, 0.8

33

For θ

2 =

9, θ

1 =

0.1

11

,0.3

70

,0.8

89

3

λλλ λ–

the

gro

un

dth

erm

al

con

du

ctivity

(W/m

-K)

1, 2

, 3, 4

4

λλλ λg

–th

eg

rou

nd

the

rma

lco

nd

uctiv

ity(W

/m-K

)0

.6, 1

.2, 1

.8, 2

.4, 3

.0, 3

.66

Sa

mp

le R

esu

lts (λ=

3)

0.0

0

0.1

0

0.2

0

0.3

0

0.4

0

0.5

0

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

Rg [m-K/W]

λg

[W/m

-K] S

ho

nd

er &

Be

ck (20

00

)K

av

an

au

gh

(19

85

)G

u &

O'N

ea

l (19

98

)P

au

l (19

96

)S

ha

rqa

wy

et a

l. (20

09

)B

au

er e

t al. (2

01

1)

Liao

et a

l. (20

12

)A

bd

Ela

tty et a

l. (20

12

)0

th-o

rde

r Mu

ltipo

le1

st-ord

er M

ultip

ole

Mu

ltipo

le (2

01

1)

20

16

-09

-19

11

Sa

mp

le R

esu

lts (λ=

3)

0.0

0

0.1

0

0.2

0

0.3

0

0.4

0

0.5

0

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

Rg [m-K/W]

λg

[W/m

-K]

Sho

nd

er &

Be

ck (20

00

)K

avanau

gh (1

98

5)

Gu

& O

'Ne

al (19

98

)P

aul (1

99

6)

Sha

rqa

wy e

t al. (2

00

9)

Bau

er e

t al. (20

11

)Lia

o e

t al. (2

01

2)

Ab

d E

latty et a

l. (20

12

)0

th-o

rde

r Mu

ltipo

le1

st-ord

er M

ultip

ole

Mu

ltipo

le (2

01

1)

Sa

mp

le R

esu

lts (λ=

3)

0.0

0

0.1

0

0.2

0

0.3

0

0.4

0

0.5

0

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

Rg [m-K/W]

λg

[W/m

-K]

Sh

on

de

r & B

eck (2

00

0)

Ka

va

na

ug

h (1

98

5)

Gu

& O

'Ne

al (1

99

8)

Pa

ul (1

99

6)

Sh

arq

aw

y e

t al. (2

00

9)

Ba

ue

r et a

l. (20

11

)Lia

o e

t al. (2

01

2)

Ab

d E

latty

et a

l. (20

12

)0

th-o

rde

r Mu

ltipo

le1

st-ord

er M

ultip

ole

Mu

ltipo

le (2

01

1)

20

16

-09

-19

12

Be

st me

tho

ds

Gro

ut T

herm

al

Co

nd

uctiv

ity (λ

g )

Lo

w

(0.6

– 1

.2 W

/m-K

)

− S

harq

awy et al. (2

009

)

− F

irst-ord

er M

ultip

ole

− F

irst-ord

er M

ultip

ole

− F

irst-ord

er Mu

ltipo

le

Med

ium

(1.2

– 2

.4 W

/m-K

)

− S

ho

nd

er & B

eck (2

00

0)

− K

avan

aug

h. (1

98

5)

− G

u &

O'N

eal (199

8)

− L

iao et al. (2

012

)

− Z

eroth

-ord

er Multip

ole

− F

irst-ord

er M

ultip

ole

− Z

eroth

-ord

er Mu

ltipo

le

− F

irst-ord

er M

ultip

ole

− L

iao et al. (2

012

)

− F

irst-ord

er M

ultip

ole

Hig

h

(2.4

– 3

.6 W

/m-K

)

− S

ho

nd

er & B

eck (200

0)

− K

ava

na

ugh

(198

5)

− G

u &

O'N

eal (1

998

)

− L

iao

et al. (2

01

2)

− Z

eroth

-ord

er Mu

ltipo

le

− F

irst-ord

er Mu

ltipo

le

− Z

eroth

-ord

er Multip

ole

− F

irst-ord

er M

ultip

ole

− L

iao

et al. (2

012

)

− F

irst-ord

er M

ultip

ole

•M

etho

ds

here

have

mea

nab

solu

tep

ercen

tage

error

low

erth

an

3%

and

maxim

um

ab

solu

te

percen

tage

error

lessth

an1

0%

.

•Italics

ind

icatem

axim

um

abso

lute

percen

tage

error

low

erth

an5

%.

•Italics

+B

old

ind

icatem

axim

um

abso

lute

error

smaller

than

1%

.

Imp

licatio

ns fo

r De

sign

•1

st-ord

er m

ultip

ole

exp

ressio

ns g

ive e

xcelle

nt

accu

racy

ove

r en

tire ra

ng

e.

(MA

PE

=0

.2%

, Ma

x. AP

E=

2%

)

•N

oth

ing

else

com

es clo

se.

•E

asy

to im

ple

me

nt, e

.g.:

�� =�2�� ,

� = ����� ,� = ���� =

12�� � ,�= �� −�

�� +� ,�=2��� ��

�� = 14��� �+ln�

2�� 1−�� �� −� 1− 4��� �

1−�� �

1+�1−� +� 1+

16��� �1−�� �

20

16

-09

-19

13

Imp

licatio

ns fo

r De

sign

•S

imila

r stud

y fo

r inte

rna

l the

rma

l resista

nce

.

•M

AP

E=

0.2

%, M

ax. A

PE

< 6

%

•S

till ea

sy to

imp

lem

en

t.

�� =1��� �+ln

1+�� �� 1−�� � −

� 1−�� �+4��� 1+�1−� (1−�� �� −� 1−�� �+8��� � (1+�� �!

Gro

ut R

esista

nce

•A

ffecte

d b

y:

•P

ipe

resista

nce

•G

rou

nd

the

rma

l con

du

ctivity

0.0

0

0.0

5

0.1

0

0.1

5

0.2

0

0th-order

Multipole

1st-order

Multipole

Multipole

method

0th-order

Multipole

1st-order

Multipole

Multipole

method

Tu

rbu

len

t (Rp

=0

.05

)Lam

inar (R

p=

0.1

85

)

Rg [m-K/W]

-1 0 1 2 3 4 5 6

-18

0-9

00

90

18

0

Temperature Rise [K]

ψ

ψ ψ

ψ [D

eg

ree

s]

Bo

reh

ole

wa

ll − Tu

rbu

len

t B

ore

ho

le w

all −

Lam

ina

r P

ipe

1 −

Turb

ule

nt

Pip

e 1

− La

min

ar

20

16

-09

-19

14

Se

nsitiv

ity to

Gro

un

d C

on

du

ctivity

0.0

0

0.0

5

0.1

0

0.1

5

0.2

0

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

Rg [(m-K)/W]

λg

[W/(m

-K)]

λ = 1

W/(m

-K)

λ = 4

W/(m

-K)

θ₂ =

9

θ₂ =

3

Qu

estio

ns?

20

16

-09

-19

15

Re

fere

nce

sS

pitler, J.D

. and

S. Jav

ed. 2

01

6. C

alcu

latio

n o

f bo

reho

le therm

al resista

nce. In

S.J.

Rees A

dvan

ces in g

rou

nd

-sou

rce heat p

um

p sy

stems. L

on

do

n: W

oo

dh

eadP

ub

lishin

g.

Sp

itler, J.D., S

. Javed

and

R. K

alskin

Ram

stad. 2

01

6. N

atu

ral co

nvectio

n in

gro

un

dw

ater-filled

bo

reho

les used

as g

rou

nd

hea

t excha

ng

ers.Ap

plied

En

ergy.

16

4:3

52

-36

5.

Sp

itler, J.D., R

. Gru

nd

man

nan

d S

. Javed

. 20

16

. Ca

lcula

tion

To

ol fo

r Effective

Bo

reho

le Th

erma

l Resista

nce. 1

2th

RE

HV

A W

orld

Co

ngress –

Clim

a2

01

6. A

albo

rg,

Den

mark

. May

22

-25

.

Javed

, S. an

d J.D

. Sp

itler. 20

16

. Accu

racy o

f Bo

reho

le Th

erma

l Resista

nce

Ca

lcula

tion

Meth

od

s for G

rou

ted S

ing

le U-tu

be G

rou

nd

Hea

t Exch

an

gers. S

ub

mitted

for P

ub

lication

.