Correlated Electronic Structure of BaVS3 · PDF file Electronic structure of correlated...
date post
31-Jul-2020Category
Documents
view
1download
0
Embed Size (px)
Transcript of Correlated Electronic Structure of BaVS3 · PDF file Electronic structure of correlated...
Correlated Electronic Structure of BaVS3
Frank Lechermann I. Institut für Theoretische Physik, University of Hamburg, Germany
in collaboration with
Silke Biermann and Antoine Georges CPHT,École Polytechnique, Palaiseau, France
Workshop on
“Physics of the low dimensional strongly correlated electronic system : BaVS3”
Orsay, 06.12.07
. – p.1/21
Outline
introduction to BaVS3
dynamical mean-field theory in a realistic context:
the LDA+DMFT approach
electronic structure of metallic BaVS3
electronic structure of insulating BaVS3
conclusions
[FL, S. Biermann, and A. Georges, PRB76085101]
[FL, A. Georges, A. Poteryaev, S. Biermann, M. Posternak, A.Yamasaki, and O.K. Andersen,
PRB74, 125120 (2006)]
[FL, S. Biermann, and A. Georges, Progress of Theoretical Physics Supplement160233]
[FL, S. Biermann, and A. Georges, PRL94166402] . – p.2/21
Introduction to BaVS 3
the vanadium sulfide shows three continuous phase transitions:
T∼ 240 K : hexagonal to orthorhombic structural transition
T∼ 70 K : metal-to-insulator transition (MIT) from Curie-Weiss metal to paramagnetic insulator, structural transition to monoclinic phase
T∼ 30 K : incommensurate antiferromagnetic transition
[Sayetatet al.J. Phys. C151627]
orthorhombic (Cmc21) structure at T=100 K: [Ghediraet al., J. Phys. C19 6489]
- zigzag VS3 chains
- two formula units in primitive cell
- dinterVV ∼ 2d intra VV
[Fagotet al., PRL90196401]: large one-dimensional structural fluctuations alongc axis above MIT. – p.3/21
The intriguing physics of BaVS3
Hall coefficient: resistivity/mag. susceptibility: charge density wave below MIT:
[Boothet al., PRB60 14852] [Grafet al., PRB51 2037] [Inamiet al., PRB66 073108]
V(3d1) system
mutually hybridizingA1g orbitals alongc axis
narrowEg bands at
the Fermi level
MIT vanishes at critical
pressure
[Forróet al., PRL851938]
g
3d
e eg2
Eg2
Eg1
eg1
Eg
atomic hexagonal orthorhombic
1gA1gA
[Massenetet al., J. Phys. Chem. Solids.40573]
. – p.4/21
Electronic structure of correlated systems
In strongly correlated solids there are in principle two types of excitations:
low-energy (coherent)quasiparticles with well-defined wave vector
energy shift from the noninteracting eigenvalue
exist on a long but still finite timescale
spectral weightZ
band narrowing byZD ∼ ε⋆ F
will be destroyed at high temperature
high-energy (incoherent)atomic-like excitations
form Hubbard bands around atomic levels
spectral weight1− Z
exist on a short time scale
lower and upper Hubbard band are separated
by an energy scale∆
Mott insulating state for smallt/U
⇒ Theory has to describe the interplay of different energy scales !
ε
ρ
ε
ρ
2ZD
ε
ρ
ε
ρ
. – p.5/21
Dynamical Mean-Field Theory (DMFT)
Hubbard model
at half filling
empty
single
double
occupation
U ≪ t
ideal metal
→
U ∼ t
correlated metal
←
U ≫ t
Mott insulator
U U U U U U
U
U
U U U U U
U U U U U
U U U U U U
U U U U U U
U U U U U U
. – p.6/21
Dynamical Mean-Field Theory (DMFT)
Hubbard model
at half filling
empty
single
double
occupation
U ≪ t
ideal metal
→
U ∼ t
correlated metal
←
U ≫ t
Mott insulator
U U U U U U
U
U
U U U U U
U U U U U
U U U U U U
U U U U U U
U U U U U U
mIntroduce time-dependent “Weiss field” to map lattice problem onto impurity problem by integrating out the effect of all lattice sites but one:
Σimp ≡ G −1 0 −G
−1 imp → DMFT: Gloc = Gimp
⇒ Gloc(iωn) = X
k
1
iωn + µ− εk − Σimp(iωn)
The dynamical mean-fieldG0(τ−τ ′) allows to take care of all local quantum fluctuations within DMFT.
⇒ The theory is designed to treat both quasiparticles and states originating from atomic-like excitations.
[Georges and Kotliar, PRB45 (1992)] [Metzner and Vollhardt, PRL62 (1989)]
U
G0(τ−τ ′)
. – p.6/21
LDA+DMFT for real materials
so far only single-band, model-type hopping: Gloc(iωn) = X
k
1
iωn + µ− εk − Σ(iωn)
for real materials: εk → HLDA(k)
⇒ Gloc(iωn) = X
k
[(iωn + µ)1−HLDA(k)−HDC −Σ(iωn)] −1
HLDA(k) =
0
@
Hsp(k) Hsp,d(k)
Hd,sp(k) Hdd(k)
1
A , Σimp =
0
@
0 0
0 Σdd
1
A , HDC =
0
@
0 0
0 HDC dd
1
A
HamiltonianHLDA(k) to be written in Wannier(-like) basis{wn(r−T)}
Ĥ = X
T
X
nm
|w0n〉Hnm(T)〈w T m| , Hnm(k) ∼
X
T
eik·THnm(T)
Hamiltonian may include only strongly correlated orbitals, but also weakly correlated orbitals
double-counting correctionHDC has to take care of correlations already included in LDA
in most cases no charge-density update in the self-consistency cycle, i.e.,
DMFT works “post processing” to an LDA calculation
bottleneck: quantum impurity solver ! . – p.7/21
LDA+DMFT for real materials
DMFT loop
DMFT preludeDFT part
update
V̂KS = V̂ext + V̂H + V̂xc
[
−∇ 2
2 + V̂KS
]
|ψkν〉 = εkν |ψkν〉
from charge density ρ(r) construct update
{|χ Rm
〉} build ĜKS = [
iωn + µ+ ∇2
2 − V̂KS ]−1
construct initial Ĝ0
impurity solver
G imp mm′
(τ − τ ′) = −〈T̂ d̂mσ(τ)d̂ † m′σ′
(τ ′)〉Simp
self-consistency condition: construct Ĝloc
Ĝ−10 = Ĝ −1 loc + Σ̂imp
Ĝloc = P̂ (C) R
[
Ĝ−1KS − (
Σ̂imp − Σ̂dc )]−1
P̂ (C) R
Σ̂imp = Ĝ −1 0 − Ĝ
−1 imp
ρ
compute new chemical potential µ
ρ(r) = ρKS(r) + ∆ρ(r)
(Appendix A)
. – p.8/21
Back to BaVS3 ...
the vanadium sulfide shows three continuous phase transitions:
T∼ 240 K : hexagonal to orthorhombic structural transition
T∼ 70 K : metal-to-insulator transition (MIT) from Curie-Weiss metal to paramagnetic insulator, structural transition to monoclinic phase
T∼ 30 K : incommensurate antiferromagnetic transition
[Sayetatet al.J. Phys. C151627]
orthorhombic (Cmc21) structure at T=100 K: [Ghediraet al., J. Phys. C19 6489]
- zigzag VS3 chains
- two formula units in primitive cell
- dinterVV ∼ 2d intra VV
[Fagotet al., PRL90196401]: large one-dimensional structural fluctuations alongc axis above MIT. – p.9/21
LDA calculations for metallic BaVS3
previous calculations:
[ M. Nakamura, A. Sekiyama, H. Namatame, A. Fujimori, H. Yoshihara, T. Ohtani, A. Misu,
and M. Takano, PRB4916191 (1994)]
[L.F. Mattheiss, Solid State Commun.93791 (1995)]
[M.H. Whangbo, H.J. Koo, D. Dai, and A. Villesuzanne, J. Solid State Chem.165345 (2001)]
[X. Jiang and G. Y. Guo, PRB70 035110 (2004)]
[A. Sanna, C. Franchini, S. Massidda, and A. Gauzzi, PRB70235102 (2004)]
our calculations:
mixed-basis pseudopotential code
[B. Meyer, C. Elsässer, FL and M. Fähnle,FORTRAN 90 Program for Mixed-Basis-Pseudopotential
Calculations for Crystals, MPI für Metallforschung, Stuttgart]
. – p.10/21
LDA results for metallic BaVS3
T>240K: hexagonalP63/mmc
-6
-5
-4
-3
-2
-1
0
1
2
3
4
ε- ε F
(e V
)
Γ K M Γ A H L A
-1 0 1 2 E-E
F (eV)
0
1
2
3
4
5
6
D O
S (1
/e V
)
A 1g
E g
e g
S(3p) -6 -4 -2 0 2 4 0
2
4
6
. – p.11/21
LDA results for metallic BaVS3
T>240K: hexagonalP63/mmc
-6
-5
-4
-3
-2
-1
0
1
2
3
4
ε- ε F
(e V
)
Γ K M Γ A H L A
-1 0 1 2 E-E
F (eV)
0
1
2
3
4
5
6
D O
S (1
/e V
)
A 1g
E g
e g
S(3p) -6 -4 -2 0 2 4 0
2
4
6
70K
LDA results for metallic BaVS3
narrow (0.7 eV)Eg bands
at the Fermi level
broader (2.7 eV) foldedA1g band
2kF alongΓ-Z: 0.94c∗
experimental2kF: qCDWc =0.5c ∗
Fermi surface not flattened