Core Drilling of Drillholes ONK-PP115 ONK-PP120 in ONKALO ... · Core Drilling of Drillholes...

91
POSIVA OY FI-27160 OLKILUOTO, FINLAND Tel +358-2-8372 31 Fax +358-2-8372 3709 Esa Pohjolainen January 2008 Working Report 2007-106 Core Drilling of Drillholes ONK-PP115 ONK-PP120 in ONKALO at Olkiluoto 2007

Transcript of Core Drilling of Drillholes ONK-PP115 ONK-PP120 in ONKALO ... · Core Drilling of Drillholes...

P O S I V A O Y

FI -27160 OLKILUOTO, F INLAND

Tel +358-2-8372 31

Fax +358-2-8372 3709

Esa Poh jo la inen

January 2008

Work ing Repor t 2007 -106

Core Drilling of DrillholesONK-PP115 – ONK-PP120

in ONKALO at Olkiluoto 2007

January 2008

Working Reports contain information on work in progress

or pending completion.

The conclusions and viewpoints presented in the report

are those of author(s) and do not necessarily

coincide with those of Posiva.

Esa Poh jo la inen

Suomen Ma lm i Oy

Work ing Repor t 2007 -106

Core Drilling of DrillholesONK-PP115 – ONK-PP120

in ONKALO at Olkiluoto 2007

CORE DRILLING OF DRILLHOLES ONK-PP115 – ONK-PP120 IN ONKALO

AT OLKILUOTO 2007

ABSTRACT

Posiva Oy submitted an application to the Finnish Government in May 1999 for the

Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the

final disposal facility for spent nuclear fuel. A positive decision was made at the end of

2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The

decision makes it possible for Posiva to focus the confirming bedrock investigations at

Olkiluoto, where an underground rock characterisation facility, ONKALO, will be

constructed.

As a part of the investigations Suomen Malmi Oy (Smoy) core drilled six 24.87-40.35 m

long drillholes with a diameter of 56 mm in ONKALO in September-October 2007. The

identification numbers of the holes are ONK-PP115 – ONK-PP120.

The drillholes were drilled for installation of extensometers. The extensometers were

installed for long-term monitoring of rock mechanics, rock stress and elastic parameters

around the personal shaft at level -180. In addition to the drilling, Suomen Malmi Oy did

core logging, drillhole deviation surveys and reporting.

The deviation of the drillholes was measured with the deviation measuring instruments

EMS and Maxibor. The main rock types are diatexitic gneiss and pegmatitic granite.

Sections of veined gneiss, mica gneiss, quartz gneiss and mafic gneiss occur in some

places. The average fracture frequency is 0.2-2.3 pcs/m. The average RQD values are

96.6-99.8 %.

Keywords: core drilling, drillhole, diatexitic gneiss, pegmatitic granite, fracture, deviation

surveys

REIKIEN ONK-PP115 – ONK-PP120 KAIRAUS ONKALOSSA, EURAJOEN

OLKILUODOSSA 2007

TIIVISTELMÄ

Posiva Oy jätti valtioneuvostolle vuonna 1999 periaatepäätöshakemuksen, jolla se haki

lupaa valita Eurajoen Olkiluoto käytetyn ydinpolttoaineen loppusijoituslaitoksen

rakennuspaikaksi. Joulukuussa 2000 valtioneuvosto teki asiasta myönteisen päätöksen.

Toukokuussa 2001 eduskunta vahvisti valtioneuvoston päätöksen. Periaate-

päätöshakemuksen mukaisesti paikkatutkimukset keskitetään Olkiluotoon.

Paikkatutkimuksiin liittyen Suomen Malmi Oy (Smoy) kairasi syys-lokakuun 2007

välisenä aikana 24,87-40,35 m pituiset reiät ONK-PP115 – ONK-PP120 ONKALOssa.

Reikien halkaisija on 56 mm, taipumat mitattiin EMS ja Maxibor -laitteilla.

Kuusi reikää kairattiin ekstensometrien asentamiseksi. Niiden tarkoitus on

kalliomekaniikan, kallion jännitystilan ja muodonmuutosominaisuuksien

pitkäaikaisseuranta henkilökuilun profiilin kohdalla.

Pääkivilajit ovat diateksiittinen gneissi ja pegmatiittinen graniitti. Lisäksi tavataan paikoin

suonigneissiä, kiillegneissiä, kvartsigneissiä ja mafista gneissiä. Kallion keskimääräinen

rakoluku on 0,2-2,3 kpl/m, keskimääräinen RQD-luku on 96,6-99,8 %.

Avainsanat: kairaus, kairanreikä, diateksiittinen gneissi, pegmatiittinen graniitti, rako,

taipumamittaus

1

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

1. INTRODUCTION .................................................................................................... 3 1.1 Background....................................................................................................... 3 1.2 Scope of the work ............................................................................................. 3

2. DRILLING WORK ................................................................................................... 5 2.1 Diamond core drilling ........................................................................................ 5 2.2 Location and deviation surveys ........................................................................ 5

3. GEOLOGICAL LOGGING ...................................................................................... 7 3.1 General ............................................................................................................. 7 3.2 Lithology ........................................................................................................... 7 3.3 Foliation ............................................................................................................ 9 3.4 Fracturing........................................................................................................ 10 3.5 Fracture frequency and RQD.......................................................................... 13 3.6 Weathering ..................................................................................................... 13 3.7 Core orientation .............................................................................................. 14

4. ROCK MECHANICS............................................................................................. 17

5. SUMMARY ........................................................................................................... 19

REFERENCES ............................................................................................................ 21

APPENDICES

1.1 List of core boxes............................................................................................ 23 1.2 List of lifts........................................................................................................ 25 1.3 Deviation surveys, list, Maxibor ...................................................................... 27 1.4 Deviation surveys, list, EMS ........................................................................... 33 1.5 Petrographical description .............................................................................. 39 1.6 Degree of weathering .................................................................................... 41 1.7 Foliation .......................................................................................................... 43 1.8 List of fractures ............................................................................................... 45 1.9 Fracture frequency and RQD.......................................................................... 53 1.10 Core orientation ............................................................................................ 59 1.11 Q-classification ............................................................................................. 61

PHOTOS..................................................................................................................... 67

2

1. INTRODUCTION

1.1 Background

Posiva Oy submitted an application to the Finnish Government in May 1999 for the

Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the

final disposal facility for spent nuclear fuel. The Government made a positive decision at

the end of 2000. The Finnish Parliament ratified the decision in May 2001.

The policy decision makes it possible to concentrate the research activities at Olkiluoto in

Eurajoki. One part of the research is to build an underground rock characterisation facility

(called “ONKALO”). Construction of the access tunnel was started in autumn 2004.

Posiva Oy contracted (order number 9373-07) Suomen Malmi Oy (Smoy) to drill six

drillholes in ONKALO. In September-October 2007 drillholes ONK-PP115 (35.01 m),

ONK-PP116 (35.04 m), ONK-PP117 (40.35 m), ONK-PP118 (25.70 m), ONK-PP119

(24.87 m) and ONK-PP120 (25.00 m) were core drilled. The drillholes were drilled for

installation of extensometers.

The locations, azimuths and dips of the drillholes are presented in Appendices 7.3 and

7.4.

1.2 Scope of the work

The aim of the work was to drill six drillholes (Ø 56 mm, lengths between 24.87-40.35 m)

for installation of extensometers. The extensometers were installed for long-term

monitoring of rock mechanics, rock stress and elastic parameters around the personal

shaft (Figure 1). In addition to the drilling Suomen Malmi Oy did core logging, drillhole

deviation surveys and reporting. This report documents the performed work during

drilling of the drillholes. This report doesn’t include work done with extensometers.

3

Figure 1. The location of drillholes ONK-PP115–ONK-PP119 in ONKALO. Figure

dipping (35°) towards East.

4

2. DRILLING WORK

2.1 Diamond core drilling

The diamond core drilling was done in September-October 2007. The drillholes were

started from the tunnel wall. The drillholes were core drilled with a hydraulic Diamec U6

drill rig. Drillhole diameter is 56 mm and drill core diameter is 42 mm.

Drilling crew consisted of a driller and an assistant. Geologist Tauno Rautio was the

project manager. Geological logging and compilation of the final report was done by

geologist Esa Pohjolainen.

Drill core samples were placed in wooden core boxes immediately after emptying the

core barrel. Start and end depths of the core in each core box are presented in Appendix

7.1. Wooden blocks separating the different sample runs were placed to core boxes to

show the depth of each lift. Depths of lifts are presented in Appendix 7.2.

2.2 Location and deviation surveys

To trace the drillhole paths accurately the dip and the azimuth of drillholes were measured

with Reflex Maxibor and Reflex EMS downhole deviation survey tools. Drillhole ONK-

PP120 was not downhole surveyed.

EMS survey tool measures the drillhole dip with an electronic accelerometer and the

azimuth relative to the magnetic north with a three-component fluxgate magnetometer.

According to the manufacturer, provided there are no magnetic anomalies, the accuracy of

the azimuth is ± 0.5 degrees and the accuracy of the dip is ± 0.2 degrees.

Maxibor device has two reflector rings at three metres intervals in a six metres long tube.

In a straight hole the rings are concentric. When the tool is bent following the curved

drillhole, the rings are shifted correspondingly. By quantifying this shift, a measure of the

bend can be calculated. Maxibor measures the rotation angle and uses the information to

separate true bend from instrument rotation. Three carefully calibrated and

perpendicularly placed accelerometer units provide the dip values and the rotation of the

instrument. The diameter of the tube is adjusted for 46 mm size. When measuring larger

drillholes four centralizing rings of suitable size are installed directly around the reflector

rings, camera and top coupling. Based on the initial coordinates and the azimuth of the

5

hole and the deviation readings of the reflector rings a computer program calculates the

coordinates and direction of the hole at each survey station. The results are presented as a

table. According to the manufacturer typical accuracy in 800 metres deep drillhole with a

diameter of 46 mm is ± 1 m. The Maxibor survey was carried out at three metres

intervals.

The dips, azimuths and results of the Maxibor and EMS surveys of drillholes ONK-

PP115 – ONK-PP119 are presented in Appendices 7.3 and 7.4. The coordinates, depths,

initial dips and azimuths are presented in Tables 1-2.

Table 1. The coordinates and depths (starting points) of drillholes. Initial dips and

azimuths of drillholes. Measurements by Prismarit Oy.

Drillhole Northing Easting Depth (m) Dip (°) Azimuth (°)ONK-PP115 6792004.33 1525955.80 -175.64 15.73 252.54

ONK-PP116 6792023.34 1525940.01 -177.61 19.20 212.38

ONK-PP117 6792032.92 1525927.87 -179.51 20.48 189.00

ONK-PP118 6792015.44 1525910.98 -178.27 29.80 154.97

ONK-PP119 6792009.33 1525904.45 -178.46 30.76 133.13

ONK-PP120 6792009.27 1525904.46 -178.68 30.47 132.53

Table 2. The coordinates and depths in the end of drillholes. Data from Maxibor survey.

Drillhole Northing Easting Depth (m)ONK-PP115 6791994.93 1525925.53 -166.44

ONK-PP116 6792006.92 1525914.03 -165.59

ONK-PP117 6792001.08 1525917.37 -166.41

ONK-PP118 6791998.82 1525918.70 -168.01

ONK-PP119 6791997.36 1525917.24 -166.88

6

3. GEOLOGICAL LOGGING

3.1 General

Drill core samples were placed in to about one-metre long wooden core boxes

immediately after emptying the core barrel. Drill core was handled especially carefully

during and after the drilling. Core was placed in the boxes avoiding any unnecessary

breakage.

Geologist logged the core in the Posiva’s core logging facility. The core logging followed

the normal Posiva logging procedure. Following parameters were logged: lithology,

foliation, fracture parameters, fractured zones, weathering, core loss, artificial break,

fracture frequency, RQD, rock quality and core discing. In addition, core orientation, the

lifts and the core box numbers were documented.

All core boxes were photographed (colour) both dry and wet. Core photographs (wet) are

presented at the end of this report.

List of lift depths is given as it has been marked on the spacing wooden blocks separating

different sample runs in the core boxes. If the length of the core in the sample run

indicated that sampling depth was different from the depth measured during drilling, the

true sample depth has been corrected on the spacing block. Therefore, the sample run

depth means the sample depth. The drilling depth might be deeper than the sampling

depth if the core lifter slips and part of the core is left in the drillhole and is not retrieved

until with the next lift. The measured true sample depths are marked to the core sample

with short red lines perpendicular to the core direction in one metre’s interval. The mark’s

depth metre numbers are marked to the upper dividing wall of the core box row.

3.2 Lithology

The rocks of Olkiluoto fall into four main groups: 1) gneisses, 2) migmatitic gneisses, 3)

TGG-gneisses (TGG =tonalite-granodiorite-granite) and 4) pegmatitic granites (Kärki &

Paulamäki 2006). In addition, narrow diabase dykes occur sporadically. The gneisses

include homogeneous mica-bearing quartz gneisses, banded mica gneisses and

hornblende or pyroxene-bearing mafic gneisses. The migmatitic gneisses, which typically

comprise 20–40 % leucosome, can be divided into three subgroups in terms of their

migmatite structures: veined gneisses, stromatic gneisses and diatexitic gneisses. The

7

leucosomes of the veined gneisses show vein-like, more or less elongated traces with

some features similar to augen structures. Planar leucosome layers characterize the

stromatic gneisses, while the migmatite structure of the diatexitic gneisses is asymmetric

and irregular.

The TGG gneisses are medium-grained, relatively homogeneous rocks that can show a

blastomylonitic foliation, but they can also resemble plutonic, unfoliated rocks. The

pegmatitic granites are leucocratic, very coarse-grained rocks, which may contain large

garnet, tourmaline and cordierite phenocrysts. Mica gneiss enclaves are typical of the

larger pegmatitic bodies. Gneisses, which are not at all or only weakly migmatitic, make

ca. 9 % of the bedrock. Migmatitic gneisses make up over 64 % of the volume of the

Olkiluoto bedrock, with the veined gneisses accounting for 43 %, the stromatic gneisses

for 0.4 % and the diatexitic gneisses for 21 %, based on drill core logging. Of the

remaining lithologies, TGG gneisses constitute 8 % and pegmatitic granites almost 20 %

by volume (Kärki & Paulamäki 2006).

The lithological classification used in the mapping follows the classification by Mattila

(2006). In this classification, migmatitic metamorphic gneisses are divided into veined

gneisses (VGN), stromatic gneisses (SGN) and diatexitic gneisses (DGN). The percentage

of the leucosome proportion in gneisses was reported. The non-migmatitic metamorphic

gneisses are separated into mica gneisses (MGN), mafic gneisses (MFGN), quartz

gneisses (QGN) and tonalitic-granodioritic-granitic gneisses (TGG). The metamorphic

rocks form a compositional series that can be separated by rock texture and the proportion

of neosome. Igneous rock names used in the classification are coarse-grained pegmatitic

granite (PGR), K-feldspar porphyry (KFP) and diabase (DB).

The ONK-PP115 – ONK-PP120 drill cores consist mostly of diatexitic gneiss and

pegmatitic granite. Migmatite structure of diatexitic gneiss approaches veined gneiss in

some places. Diatexitic gneiss (DGN) is mostly weakly or irregularly banded and contains

usually 50-70 % leucosome.

Pegmatitic granite (PGR) occurs both as large and uniform sections and as short sections

and veins among diatexitic gneiss.

Diatexitic gneiss contains sections of mica gneiss (MGN), quartz gneiss (QGN) and mafic

gneiss (MFGN), which were logged usually as separated rock types when sections were

wider than about one meter. The lithologies recorded from the cores are presented in

Appendix 7.5.

8

3.3 Foliation

Measurements on foliation were carried out in variable intervals from the core sample,

mainly one measurement per core box. The classification of the foliation type and

intensity used in this study is based on the characterization procedure introduced by

Milnes et al. (2006). Foliation type was estimated macroscopically and classified into five

categories:

MAS = massive

GNE = gneissic

BAN = banded

SCH = schistose

IRR = irregular

The gneissic type of foliation (GNE) corresponds to a rock dominated by quartz and

feldspars, micas and amphiboles occur only as minor constituents. Banded type of

foliation (BAN) consists of intercalated gneissic and schistose layers, which are either

separated or discontinuous layers of micas or amphiboles. Schistose type of foliation

(SCH) is dominated by micas or amphiboles, which have a strong orientation. Massive

(MAS) corresponds to massive rock with no visible orientations and irregular (IRR) to

folded or chaotic rock.

The foliation type of veined gneiss and diatexitic gneiss is mainly banded. Diatexitic

gneiss is irregularly and asymmetrically banded in places. The foliation type of pegmatitic

granite is massive. Sections of mica gneiss, quartz gneiss and mafic gneiss are composed

mainly of gneissic type.

The intensity of the foliation is based on visual estimation and classified into the

following four categories:

0 = Massive or irregular

1 = Weakly foliated

2 = Moderately foliated

3 = Strongly foliated

9

3.4 Fracturing

The fractures were numbered sequentially from the top to the bottom of the drillhole.

Fracture depths were measured to the centre line of the core and were given with one

centimetre accuracy. Each fracture was described individually and attributes include

orientation, type, colour, fracture filling, surface shape and roughness. The Ja (joint

alteration) and Jr (joint roughness) parameters for the Q-classification were also

determined for each fracture. The abbreviations used to describe the fracture type are in

accordance with the classification used by Suomen Malmi Oy (Niinimäki 2004), Table 3.

Table 3. The abbreviations used to describe the fracture type (Niinimäki 2004).

Abbreviation Fracture type

op Open

ti Tight, no filling material

fi Filled

fisl Filled slickensided

grfi Grain filled

clfi Clay filled

The fractures, which had a fracture filling and a clear colour but the core was intact across

the fractures, were classified as filled. Filled fractures with intact surfaces were described

as closed or partly closed. In these cases in the remarks column has been written “closed”

or “partly closed”. The thickness of the filling was estimated with an accuracy of 0.1 mm.

The recognition of fracture fillings is qualitative and visually estimated. Where the

recognition of the specified mineral was not possible, the mineral was described with a

common mineral group name, such as clay mineral, in accordance with the fracture

mineral database, which Kivitieto Oy and Posiva Oy have developed (Table 4).

Abbreviations were used during the logging.

10

Table 4. The list of the mineral abbreviations.

Abbreviation Mineral Abbreviation MineralAN = Analcime NA = Nakrite KS = Kaolinite + other

clay minerals HB = Hydrobiotite

BT = Biotite PA = Palygorsgite LM = Laumontite HE = Hematite CC = Calcite PB = Galena MH = Molybdenite IL = Illite CU = Chalcopyrite SK = Pyrite MK = Pyrrhotite IS = Illite + other clay

minerals DO = Dolomite SM = Smectite MO = Montmorillonite KA = Kaolinite EP = Epidote SR = Sericite MP = Black pigment KI = Kaolinite + illite FG = Phlogopite SV = Clay mineral MS = Feldspar KL = Chlorite GR = Graphite VM = Vermikulite MU = Muscovite KM = K-feldspar GS = Gismondite ZN = Sphalerite

The fracture surface shapes and roughness are classified using modification of Barton’s

(Barton et al. 1974) Q-classification (Table 5). In addition to this, the fracture morphology

and fracture alteration were also classified according to the Q-system (Grimstad & Barton

1993). Fracture roughness was described with the joint roughness number, Jr (Table 6)

and the fracture alteration with the joint alteration number, Ja (Table 7).

Table 5. The fracture surface shapes and roughness (Barton et al. 1974).

Fracture shape Fracture roughness

Planar Rough

Stepped Smooth

Undulated Slickensided

11

Table 6. The concise description of joint roughness number Jr (Grimstad & Barton

1993).

Jr Profile i) Rock wall contact ii) Rock wall contact before 10 cm shear.

4 SRO Discontinuous joint or rough and stepped

3 SSM Stepped smooth

2 SSL Stepped slickensided

3 URO Rough and undulating

2 USM Smooth and undulating

1.5 USL Slickensided and undulating

1.5 PRO Rough or irregular, planar

1 PSM Smooth, planar

0.5 PSL Slickensided, planar

Note1. Descriptions refer to small-scale features and intermediate scale features, in that order.

Jr No rock-wall contact when sheared

1 Zone containing clay minerals thick enough to prevent rock-wall contact

1 Sandy, gravely or crushed zone thick enough to prevent rock-wall contact

Note1. Add 1 if the mean spacing of the relevant joint set is greater than 3. 2. Jr = 0.5 can be used for planar slickensided joints having lineation, provided the lineations are oriented for minimum strength.

Table 7. The concise description of joint alteration number Ja (Grimstad & Barton

1993).

Ja Rock wall contact (no mineral filling, only coatings).

0.75 Tightly healed, hard, non-softening impermeable filling, i.e. quartz, or epidote.

1 Unaltered joint walls, surface staining only.

2 Slightly altered joint walls. Non-softening mineral coatings, sandy particles, clay-free disintegrated rock, etc.

3 Silty or sandy clay coatings, small clay fraction (non-softening).

4 Softening or low-friction clay mineral coatings, i.e. kaolinite, mica, chlorite, talc, gypsum, and graphite, etc., and small quantities of swelling clays (discontinuous coatings, 1-2 mm or less in thickness.

Rock wall contact before 10 cm shear (thin mineral fillings).

4 Sandy particles, clay-free disintegrated rock, etc.

6 Strongly over-consolidated, non-softening clay mineral fillings (continuous, <5 mm in thickness).

8 Medium or low over-consolidation, softening, clay mineral filling (continuous <5 mm in thickness).

8-12 Swelling-clay fillings, i.e. montmorillonite (continuous, <5 mm in thickness). Value of Ja depends on percentage of swelling clay-sized particles, and access to water, etc.

No rock-wall contact when sheared (thick mineral fillings).

6-12 Zones or bands of disintegrated or crushed rock and clay.

5 Zones or bands of silty- or sandy-clay, small clay fraction (non-softening).

10-20 Thick, continuous zones or bands of clay.

12

During the fracture logging the surface colour was registered. The colour is often caused

by the dominating fracture filling mineral or minerals, e.g. chlorite (green) or kaolinite

(white). Existence of minor filling minerals usually causes some variation in the colour of

the fracture surface. These shades were described e.g. as dark or greenish. Tight fractures

had typically only a slightly different shade from the host rock colour.

The main fracture fillings are calcite, kaolinite, pyrite, chlorite, chalcopyrite, muscovite

and pyrrhotite. The most common fillings are calcite, pyrite and kaolinite. Muscovite

occurs mainly on fractures, which are in pegmatitic granite. The directions of fractures

have been corrected using the data measured by Prismarit Oy.

3.5 Fracture frequency and RQD

Natural fracture frequency, all fractures frequency and RQD were logged on full metre

depth intervals. All fractures frequency is the number of core breaks within one metre

interval, including breaks and natural fractures. Drilling, core handling, core discing and

natural fractures cause breaks. Natural fracture frequency is the number of natural

fractures within one metre interval. If fracture frequency including all fractures is higher

than the natural fracture frequency the core must have been broken during drilling. If the

core was broken during handling accidentally or by purpose, it was marked to the core

box with letter F. If the natural fracture frequency is higher than fracture frequency

including all fractures the fractures must be cohesive enough to keep the core together.

RQD gives the percentage of over 10 cm long core segments, which are separated by

natural fractures, within one metre interval.

The average fracture frequencies of the cores are 0.5 pcs/m (ONK-PP115), 0.2 pcs/m

(ONK-PP116), 1.0 pcs/m (ONK-PP117), 1.1 pcs/m (ONK-PP118), 1.8 pcs/m (ONK-

PP119) and 2.3 pcs/m (ONK-PP120). The average RQD values are 99.6 % (ONK-

PP115), 99.8 % (ONK-PP116), 98.6 % (ONK-PP117), 99.0 % (ONK-PP118), 97.6 %

(ONK-PP119) and 96.6 % (ONK-PP120). Fracture frequency and RQD are presented in

Appendix 7.9.

3.6 Weathering

The weathering degree of the drill core was classified according to the method developed

by Korhonen et al. (1974) and Gardemeister et al. (1976); the abbreviations are presented

in Table 8.

13

Table 8. The abbreviations of the weathering degree.

Abbreviation Description of weathering type

Rp0 Unweathered

Rp1 Slightly weathered

Rp2 Strongly weathered

Rp3 Completely weathered

Most of the drillholes are unweathered (Rp0), having only weak and mainly local

alteration. Unweathered (Rp0) and slightly weathered (Rp1) sections contain weak

epidotization and kaolinitization in some places. The alteration of unweathered rock is

mainly related to surroundings of fractures. Slight epidotization of plagioclase and

kaolinitization on foliation planes occur in places. Pinitization of cordierite occurs

generally. Weathering degree is presented in Appendix 7.6.

3.7 Core orientation

Core orientation was carried out by using spike tool, apart from the drillhole ONK-PP120,

which was not orientated. Orientation of samples was used to determine the direction of

fractures and other linear and planar features in the core. The depth of each run where the

core has been orientated has been recorded. Also the start and end depths and the length

of the orientated part of the sample have been marked. If the mark has been rejected (not

found, poor mark), there is a comment of this in the list. The deviation of orientation

marks from the drawn orientation line was also measured as degrees.

The aim was to orientate as much core as possible in order to measure geological features.

Orientation lines were drawn on basis of several marks, if possible. The results of core

orientation are shown in Appendix 7.10.

The line drawn to the drill core sample on basis of orientation marks acted as a ground for

the direction measurements from the sample. From the orientated drill core sections core

alpha and beta angles of every fracture were measured (Figure 2). Each alpha and beta

value was recalculated to real dip and dip directions (Appendix 7.8) using the data

measured by Prismarit Oy.

14

Figure 2. The fracture orientation measurements from orientated core. The core alpha

( ) angle measured relatively to core axis. The core beta ( ) angle measured clockwise

relatively to reference line looking downward core axis in direction of drilling. Figure

modified from Rocscience Inc. Drillhole orientation data pairs, Dips (v. 5.102) Help.

15

16

4. ROCK MECHANICS

The rock quality was classified using Barton’s Q-classification (Rock Tunneling Quality

Index, Barton, 1974 and Grimstad & Barton, 1993) during the core logging. The Q-

classification was used as basis for the rock mechanical logging. The core was visually

divided into sections based on the Q-value, the lengths of which can vary from less than a

metre to several meters. In each section the rock quality is as homogenous as possible.

The roughness and alteration numbers are estimated for each fracture surface, and for

each section the roughness and alteration numbers are calculated (average, median and

lower and higher quartiles) and the median value is used in the Q-quality calculations.

The roughness and alteration numbers are listed in the fracture table, Appendix 7.8. RQD

is defined as the cumulative length of core pieces longer than 10 cm in a run divided by

the total length of the core run.

Q-value is calculated by equation 1 (Barton, 1974 and Grimstad & Barton, 1993):

SRF

J

J

J

J

RQDQ w

a

r

n

** (1)

Some constant values have been used in calculations. All fractures, which are closed, are

classified in joint alteration (Ja) as number 0.75. These closed fractures are counted as

well in RQD value. If the fracture interval of the relevant joint set is over three meters, the

value of 1 is added to Jr and Jn is given the value 0.5 (Table 9). The rock sections without

any fractures, are given the value of 5 for Jr and the value of 0.75 for Ja. In calculations

joint water (Jw) and stress reduction factors (SRF) are assumed to be 1. The rock quality

of drillholes ONK-PP115–120 is mainly “extremely good” or “exceptionally good”, “very

good” in places. Results (Q) are presented in Appendix 7.11.

17

Table 9. Description of RQD and joint set number Jn (Grimstad & Barton 1993).

18

5. SUMMARY

Suomen Malmi Oy (Smoy) core drilled six 24.87-40.35 m long drillholes with a diameter

of 56 mm in ONKALO in September-October 2007. The drillholes were drilled for

installation of extensometers. The identification numbers of the drillholes are ONK-

PP115 – ONK-PP120.

The extensometers were installed for long-term monitoring of rock mechanics, rock stress

and elastic parameters around the personal shaft at level -180. In addition to the drilling

Suomen Malmi Oy did core logging, drillhole deviation surveys and reporting.

The deviation of the drillholes was measured with the deviation measuring instruments

EMS and Maxibor. The main rock types are diatexitic gneiss and pegmatitic granite.

Sections of veined gneiss, mica gneiss, quartz gneiss and mafic gneiss occur in places.

Rock samples are mostly unweathered or slightly weathered. The average fracture

frequency is 0.2-2.3 pcs/m. The average RQD values are 96.6-99.8 %.

19

20

REFERENCES

Barton, N., Lien, R. & Lunde, J. 1974. Engineering classification of rock masses for the

design of tunnel support. Rock Mechanics. December 1974. Vol. 6 No. 4. Springer

Verlag. Wien, New York. 189-236 pp.

Gardemeister, R., Johansson, S., Korhonen, P., Patrikainen, P., Tuisku, T. & Vähäsarja, P.

1976. Rakennusgeologisen kallioluokituksen soveltaminen. (The application of Finnish

engineering geological bedrock classification, in Finnish). Espoo: Technical Recearch

Centre of Finland, Geotechnical laboratory. 38 p. Research note 25.

Grimstad, E. & Barton, N. 1993. Updating of the Q-system for NMT. Proceedings of

Sprayed Concrete, 18-21 December 1993. Fagernäs. Norway

Korhonen, K-H., Gardemeister, R., Jääskeläinen, H., Niini, H. & Vähäsarja, P. 1974.

Rakennusalan kallioluokitus. (Engineering geological bedrock classification, in Finnish).

Espoo: Technical Research Centre of Finland, Geotechnical laboratory. 78 p. Research

note 12.

Kärki. A. & Paulamäki, S. 2006. Petrology of Olkiluoto. POSIVA 2006-02. Posiva Oy,

Eurajoki.

Mattila, J. 2006. A System of Nomenclature for Rocks in Olkiluoto. Eurajoki, Finland:

Posiva Oy. Posiva Working report 2006-32.

Milnes, A. G., Hudson, J., Wikström, L. & Aaltonen, I. 2006. Foliation: Geological

Background, Rock Mechanics Significance, and Preliminary Investigations at Olkiluoto.

Working Report 2006-03. Posiva Oy, Eurajoki.

Niinimäki, R. 2004. Core drilling of Pilot Hole OL-PH1 at Olkiluoto in Eurajoki 2003-

2004. Eurajoki, Finland: Posiva Oy. Posiva Working report 2004-05, 95 p.

21

22

ONK-PP115 ONK-PP118

BOX M FROM M TO BOX M FROM M TO

NUMBER m m NUMBER m m

1 0.00 5.44 1 0.00 5.38

2 5.44 10.85 2 5.38 10.75

3 10.85 16.33 3 10.75 16.35

4 16.33 21.74 4 16.35 22.01

5 21.74 27.29 5 22.01 25.70

6 27.29 32.83

7 32.83 35.01

ONK-PP116 ONK-PP119

BOX M FROM M TO BOX M FROM M TO

NUMBER m m NUMBER m m

1 0.00 5.67 1 0.00 5.42

2 5.67 11.24 2 5.42 10.71

3 11.24 16.66 3 10.71 16.18

4 16.66 22.29 4 16.18 21.59

5 22.29 27.70 5 21.59 24.87

6 27.70 33.16

7 33.16 35.04

ONK-PP117 ONK-PP120

BOX M FROM M TO BOX M FROM M TO

NUMBER m m NUMBER m m

1 0.00 5.58 1 0.00 5.02

2 5.58 10.84 2 5.02 10.54

3 10.84 16.42 3 10.54 16.19

4 16.42 21.87 4 16.19 21.56

5 21.87 27.39 5 21.56 25.00

6 27.39 32.99

7 32.99 38.33

8 38.33 40.35

23List of core boxes Appendix 1.1

24

ONK-PP115 ONK-PP118

LIFT NR LIFT DEPTH LENGTH REMARKS LIFT NR LIFT DEPTH LENGTH REMARKS

m m m m

0 0.00 Start of drilling 0 0.00 Start of drilling

1 1.84 1.84 1 1.49 1.49

2 4.83 2.99 2 4.50 3.01

3 7.84 3.01 3 7.50 3.00

4 10.85 3.01 4 10.50 3.00

5 12.09 1.24 5 13.49 2.99

6 15.10 3.01 6 16.46 2.97

7 18.09 2.99 7 19.48 3.02

8 21.10 3.01 8 22.50 3.02

9 24.10 3.00 9 25.28 2.78

10 27.10 3.00 10 25.70 0.42

11 30.63 3.53

12 33.70 3.07

13 35.01 1.31

ONK-PP116 ONK-PP119

LIFT NR LIFT DEPTH LENGTH REMARKS LIFT NR LIFT DEPTH LENGTH REMARKS

m m m m

0 0.00 Start of drilling 0 0.00 Start of drilling

1 1.15 1.15 1 1.66 1.66

2 2.17 1.02 2 4.63 2.97

3 4.73 2.56 3 5.61 0.98

4 7.70 2.97 4 7.45 1.84

5 10.68 2.98 5 10.40 2.95

6 13.70 3.02 6 13.25 2.85

7 16.66 2.96 7 16.26 3.01

8 19.58 2.92 8 19.27 3.01

9 22.58 3.00 9 20.84 1.57

10 25.60 3.02 10 22.75 1.91

11 28.61 3.01 11 24.87 2.12

12 31.64 3.03

13 34.60 2.96

14 35.04 0.44

ONK-PP117 ONK-PP120

LIFT NR LIFT DEPTH LENGTH REMARKS LIFT NR LIFT DEPTH LENGTH REMARKS

m m m m

0 0.00 Start of drilling 0 0.00 Start of drilling

1 1.55 1.55 1 1.45 1.45

2 4.08 2.53 2 3.10 1.65

3 6.50 2.42 3 4.85 1.75

4 8.97 2.47 4 5.90 1.05

5 10.48 1.51 5 7.85 1.95

6 13.50 3.02 6 10.45 2.60

7 16.49 2.99 7 12.45 2.00

8 19.50 3.01 8 13.95 1.50

9 22.50 3.00 9 17.00 3.05

10 25.50 3.00 10 20.00 3.00

11 27.90 2.40 11 22.00 2.00

12 30.90 3.00 12 25.00 3.00

13 33.89 2.99

14 36.90 3.01

15 39.68 2.78

16 40.35 0.67

25List of lifts Appendix 1.2

26

Suomen Malmi Oy

P.O.Box 10

FIN-02921 ESPOO

Client: Posiva Hole No: ONK-PP115 Lenght: 33

Site: ONKALO X: 6 792 004.33 Azimuth: 252.54

Y: 1 525 955.80 Dip: 15.90

Z: -175.64

Station Dip Azimuth

0 15.90 252.54

3 16.05 252.64

6 16.24 252.69

9 16.21 252.67

12 16.22 252.69

15 16.23 252.70

18 16.22 252.73

21 16.24 252.79

24 16.26 252.86

27 16.25 252.93

33 16.26 253.01

-168.96

-168.12

-166.44

-172.31

-171.47

-170.64

-169.80

-175.64

-174.82

-173.99

-173.15

1 525 939.30

1 525 936.55

1 525 955.80

1 525 953.05

1 525 950.30

1 525 947.55

1 525 933.79

1 525 931.04

1 525 925.53

Easting

6 791 998.32

6 791 997.47

6 791 996.62

6 791 994.93

6 792 001.75

6 792 000.89

Maxibor survey

6 792 000.03

6 791 999.18

Northing

6 792 004.33

6 792 003.46

6 792 002.60

Depth

1 525 944.80

1 525 942.05

27Deviation surveys, list, Maxibor,ONK-PP115

Appendix 1.3

Suomen Malmi Oy

P.O.Box 10

FIN-02921 ESPOO

Client: Posiva Hole No: ONK-PP116 Lenght: 33

Site: ONKALO X: 6 792 023.34 Azimuth: 212.38

Y: 1 525 940.01 Dip: 21.30

Z: -177.61

Station Dip Azimuth

0 21.30 212.38

3 21.33 212.35

6 21.37 212.31

9 21.38 212.26

12 21.39 212.24

15 21.41 212.23

18 21.39 212.25

21 21.39 212.26

24 21.38 212.26

27 21.37 212.29

33 21.35 212.37

-168.86

-167.77

-165.59

-173.24

-172.15

-171.05

-169.96

-177.61

-176.52

-175.43

-174.34

1 525 925.84

1 525 923.48

1 525 940.01

1 525 937.65

1 525 935.29

1 525 932.93

1 525 921.12

1 525 918.75

1 525 914.03

Easting

6 792 012.89

6 792 011.40

6 792 009.91

6 792 006.92

6 792 018.85

6 792 017.36

Maxibor survey

6 792 015.87

6 792 014.38

Northing

6 792 023.34

6 792 021.84

6 792 020.35

Depth

1 525 930.57

1 525 928.20

28Deviation surveys, list, Maxibor,ONK-PP116

Appendix 1.3

Suomen Malmi Oy

P.O.Box 10

FIN-02921 ESPOO

Client: Posiva Hole No: ONK-PP117 Lenght: 36

Site: ONKALO X: 6 792 032.92 Azimuth: 189.19

Y: 1 525 927.87 Dip: 21.30

Z: -179.51

Station Dip Azimuth

0 21.30 189.19

3 21.32 189.15

6 21.34 189.17

9 21.35 189.18

12 21.31 189.19

15 21.27 189.22

18 21.25 189.23

21 21.29 189.24

24 21.35 189.26

27 21.39 189.32

30 21.45 189.40

36 21.52 189.53

-170.79

-169.70

-168.60

-166.41

-175.15

-174.05

-172.97

-171.88

-179.51

-178.42

-177.33

-176.24

1 525 922.64

1 525 921.76

1 525 927.87

1 525 927.00

1 525 926.13

1 525 925.26

1 525 920.89

1 525 920.01

1 525 919.14

1 525 917.376 792 001.08

Easting

6 792 014.33

6 792 011.68

6 792 009.02

6 792 006.37

6 792 024.95

6 792 022.30

Maxibor survey

6 792 019.64

6 792 016.99

Northing

6 792 032.92

6 792 030.26

6 792 027.61

Depth

1 525 924.38

1 525 923.51

29Deviation surveys, list, Maxibor,ONK-PP117

Appendix 1.3

Suomen Malmi Oy

P.O.Box 10

FIN-02921 ESPOO

Client: Posiva Hole No: ONK-PP118 Lenght: 21

Site: ONKALO X: 6 792 015.44 Azimuth: 154.97

Y: 1 525 910.98 Dip: 28.80

Z: -178.27

Station Dip Azimuth

0 28.80 154.97

3 28.96 155.01

6 29.09 155.08

9 29.23 155.14

12 29.39 155.16

15 29.54 155.16

21 29.75 155.14

-172.45

-170.98

-168.01

-178.27

-176.82

-175.37

-173.91

1 525 918.70

1 525 910.98

1 525 912.09

1 525 913.20

1 525 914.31

Easting

6 792 008.30

6 792 005.93

Maxibor survey

6 792 003.55

6 791 998.82

Northing

6 792 015.44

6 792 013.06

6 792 010.68

Depth

1 525 915.41

1 525 916.50

30Deviation surveys, list, Maxibor,ONK-PP118

Appendix 1.3

Suomen Malmi Oy

P.O.Box 10

FIN-02921 ESPOO

Client: Posiva Hole No: ONK-PP119 Lenght: 21

Site: ONKALO X: 6 792 009.33 Azimuth: 133.13

Y: 1 525 904.45 Dip: 33.50

Z: -178.46

Station Dip Azimuth

0 33.50 133.13

3 33.50 133.12

6 33.48 133.11

9 33.45 133.10

12 33.43 133.06

15 33.43 133.04

21 33.47 133.06

-171.84

-170.19

-166.88

-178.46

-176.80

-175.15

-173.49

1 525 917.24

1 525 904.45

1 525 906.28

1 525 908.10

1 525 909.93

Easting

6 792 004.20

6 792 002.49

Maxibor survey

6 792 000.78

6 791 997.36

Northing

6 792 009.33

6 792 007.62

6 792 005.91

Depth

1 525 911.76

1 525 913.59

31Deviation surveys, list, Maxibor,ONK-PP119

Appendix 1.3

32

Suomen Malmi Oy

P.O.Box 10

FIN-02921 ESPOO

Client: Posiva Hole No: ONK-PP115 Lenght: 33

Site: ONKALO X: 6 792 004.33 Azimuth: 251.29

Y: 1 525 955.80 Dip: 15.76

Z: -175.64

Station Dip Azimuth

0 15.76 251.29

3 15.81 252.21

6 16.12 252.89

9 16.26 251.53

12 16.07 250.76

15 16.12 250.56

18 16.36 253.58

21 16.39 250.96

24 16.39 251.81

27 16.48 251.86

30 16.45 252.36

33 16.45 252.39

EMS-survey

6 791 999.83

6 791 998.94

Northing

6 792 004.33

6 792 003.46

6 792 002.59

Depth

1 525 944.83

1 525 942.11

6 791 994.49

Easting

6 791 998.06

6 791 997.14

6 791 996.25

6 791 995.36

6 792 001.71

6 792 000.78

1 525 933.90

1 525 931.17

1 525 928.43

1 525 925.69

1 525 939.37

1 525 936.63

1 525 955.80

1 525 953.05

1 525 950.30

1 525 947.56

-175.64

-174.82

-174.00

-173.16

-172.33

-171.49

-170.66

-169.81

-168.96

-168.11

-167.26

-166.41

33Deviation surveys, list, EMS,ONK-PP115

Appendix 1.4

Suomen Malmi Oy

P.O.Box 10

FIN-02921 ESPOO

Client: Posiva Hole No: ONK-PP116 Lenght: 33

Site: ONKALO X: 6 792 023.34 Azimuth: 186.98

Y: 1 525 940.01 Dip: 19.44

Z: -177.61

Station Dip Azimuth

0 19.44 186.98

3 19.45 203.05

6 19.61 206.01

9 19.62 208.69

12 19.57 209.69

15 19.51 209.61

18 19.59 209.90

21 19.57 210.02

24 19.67 209.84

27 19.66 209.80

30 19.53 209.69

33 19.57 209.89

-169.58

-168.57

-167.56

-166.56

-173.60

-172.60

-171.59

-170.59

-177.61

-176.62

-175.61

-174.61

1 525 930.92

1 525 929.41

1 525 940.01

1 525 938.49

1 525 936.98

1 525 935.47

1 525 927.90

1 525 926.39

1 525 924.87

1 525 923.366 791 997.08

Easting

6 792 006.63

6 792 004.24

6 792 001.86

6 791 999.47

6 792 016.18

6 792 013.79

EMS-survey

6 792 011.40

6 792 009.02

Northing

6 792 023.34

6 792 020.95

6 792 018.57

Depth

1 525 933.95

1 525 932.44

34Deviation surveys, list, EMS,ONK-PP116

Appendix 1.4

Suomen Malmi Oy

P.O.Box 10

FIN-02921 ESPOO

Client: Posiva Hole No: ONK-PP117 Lenght: 39

Site: ONKALO X: 6 792 032.92 Azimuth: 185.24

Y: 1 525 927.87 Dip: 20.71

Z: -179.51

Station Dip Azimuth

0 20.71 185.24

3 20.70 188.52

6 20.71 188.47

9 20.70 188.09

12 20.62 186.95

15 20.57 185.55

18 20.53 184.82

21 20.54 184.19

24 20.57 184.92

27 20.64 185.01

30 20.67 183.85

33 20.97 184.25

36 21.02 186.13

39 20.91 185.63

EMS-survey

6 792 019.59

6 792 016.92

Northing

6 792 032.92

6 792 030.26

6 792 027.59

Depth

1 525 924.37

1 525 923.49

6 792 000.92

6 792 003.59

6 791 998.26

Easting

6 792 014.25

6 792 011.58

6 792 008.92

6 792 006.25

6 792 024.92

6 792 022.26

1 525 920.86

1 525 919.98

1 525 919.11

1 525 918.23

1 525 917.36

1 525 916.48

1 525 922.62

1 525 921.74

1 525 927.87

1 525 927.00

1 525 926.12

1 525 925.24

-179.51

-178.45

-177.39

-176.33

-175.27

-174.21

-173.16

-172.11

-171.06

-170.00

-168.94

-167.88

-166.80

-165.73

35Deviation surveys, list, EMS,ONK-PP117

Appendix 1.4

Suomen Malmi Oy

P.O.Box 10

FIN-02921 ESPOO

Client: Posiva Hole No: ONK-PP118 Lenght: 24

Site: ONKALO X: 6 792 015.44 Azimuth: 149.19

Y: 1 525 910.98 Dip: 29.24

Z: -178.27

Station Dip Azimuth

0 29.24 149.19

3 29.13 150.42

6 28.95 149.65

9 29.11 151.08

12 28.76 151.37

15 29.11 151.00

18 29.03 149.94

21 28.86 152.20

24 28.99 152.13

EMS-survey

6 792 003.55

6 792 001.18

Northing

6 792 015.44

6 792 013.07

6 792 010.69

Depth

1 525 915.42

1 525 916.53

Easting

6 791 998.80

6 791 996.42

6 792 008.31

6 792 005.93

1 525 919.86

1 525 917.64

1 525 918.75

1 525 910.98

1 525 912.09

1 525 913.20

1 525 914.31

-178.27

-176.81

-175.35

-173.89

-172.44

-170.99

-169.53

-168.08

-166.63

36Deviation surveys, list, EMS,ONK-PP118

Appendix 1.4

Suomen Malmi Oy

P.O.Box 10

FIN-02921 ESPOO

Client: Posiva Hole No: ONK-PP119 Lenght: 21

Site: ONKALO X: 6 792 009.33 Azimuth: 129.40

Y: 1 525 904.45 Dip: 30.33

Z: -178.46

Station Dip Azimuth

0 30.33 129.40

3 30.42 129.21

6 30.34 129.92

9 30.03 130.16

12 30.32 128.70

15 30.41 128.87

18 30.23 130.42

21 30.09 129.66

-172.40

-170.89

-169.37

-167.87

-178.46

-176.94

-175.42

-173.91

1 525 915.79

1 525 917.68

1 525 904.45

1 525 906.33

1 525 908.22

1 525 910.12

Easting

6 791 996.93

6 792 004.02

6 792 002.25

EMS-survey

6 792 000.48

6 791 998.71

Northing

6 792 009.33

6 792 007.56

6 792 005.79

Depth

1 525 912.01

1 525 913.90

37Deviation surveys, list, EMS,ONK-PP119

Appendix 1.4

38

ONK-PP115

M FROM M TO ROCK TYPE LEUCOSOME % DESCRIPTION

0.00 10.70 DGN 60 Weakly and irregularly banded diatexitic gneiss containing ca. 50-80 % leucosome. Sections of MGN

and PGR occur between 5.00-10.00 m.

10.70 12.15 MGN 5 Rather strongly foliated mica gneiss. Section of mafic gneiss containing lots of hornblende and biotite

occurs between 11.00-11.50 m. MGN contains garnet porphyroblasts.

12.15 19.00 DGN 55 Weakly and irregularly banded DGN containing ca. 50-75 % leucosome. Biotite-rich parts contain lots

of fibrous sillimanite.

19.00 20.50 QGN 10 QGN section containing coarse-grained quartz in places. Skarn lenses with orange grossular and

green diopside occur all along the section.

20.50 27.50 DGN 60 Weakly banded DGN containing ca. 50-70 % leucosome. Section of QGN in the end of the section.

27.50 28.55 PGR Short PGR section containing quite a lot of apatite crystals.

28.55 31.50 DGN 60 Weakly banded DGN containing ca. 50-70 % leucosome. Quite a lot of muscovite.

31.50 33.05 QGN 0 Homogeneous QGN containing lots of small garnet crystals.

33.05 35.01 DGN 60 Irregularly banded DGN containing ca. 50-70 % leucosome. Green apatite crystals in many places.

ONK-PP116

M FROM M TO ROCK TYPE LEUCOSOME % DESCRIPTION

0.00 35.04 DGN 50 Weakly and locally irregularly banded diatexitic gneiss containing ca. 40-70 % leucosome. PGR

sections in many places, e.g. between 10.30-11.80 m. Fresh and unaltered cordierite in many places.

DGN contains quite a lot of pyrrhotite between 17.00-20.00 m. The rock approaches VGN in some

places. Also short sections of MGN.

ONK-PP117

M FROM M TO ROCK TYPE LEUCOSOME % DESCRIPTION

0.00 2.10 PGR Pegmatitic granite containing K-feldspar with graphic texture, formed by intergrowth of K-feldspar and

quartz.

2.10 5.95 DGN 50 Weakly and irregularly banded DGN. Mesosome-rich parts contain lots of cordierite, also fibrous

sillimanite. The rock approaches VGN in the end of the section.

5.95 14.00 PGR PGR contains lots of muscovite, especially in the end of the section. Pinitized cordierite grains occur

as clusters.

14.00 16.85 MGN 5 Mica gneiss section containing sparsely leucosome veins.

16.85 18.45 MFGN 5 Mafic gneiss, which is mainly composed of biotite, plagioclase and hornblende.

18.45 20.90 MGN 5 MGN containing sparsely leucosome veins. The rock approaches VGN in places.

20.90 39.00 DGN 70 Mostly irregularly banded DGN containing ca. 50-80 % leucosome. Cordierite grains occur as clusters

with quartz. QGN section between 22.28-22.77 m.

39.00 40.35 VGN 35 Strongly banded veined gneiss containing quite a lot of fibrous and whitish sillimanite.

ONK-PP118

M FROM M TO ROCK TYPE LEUCOSOME % DESCRIPTION

0.00 25.70 DGN 55 Weakly and irregularly banded diatexitic gneiss containing ca. 40-75 % leucosome. Section of VGN

occurs between 3.00-4.00 m. DGN contains lots of fibrous sillimanite between 6.00-10.00 m. PGR

section between 18.30-19.00 m.

ONK-PP119

M FROM M TO ROCK TYPE LEUCOSOME % DESCRIPTION

0.00 16.12 PGR Pegmatitic granite containing pinitized cordierite as clusters with quartz. Perthitic K-feldspar with

graphic texture in many places. Quartz vein between 11.73-11.91 m.

16.12 16.56 MGN 5 Strongly foliated and sheared MGN section, which is very rich in biotite. Biotite- and plagioclase-rich

narrow stripes occur alternately.

16.56 24.87 DGN 55 Heterogeneous and weakly or irregularly banded DGN. Some parts are dominated by mesosome,

some parts by leucosome. Leucosomes contain lots of apatite crystals in some places.

ONK-PP120

M FROM M TO ROCK TYPE LEUCOSOME % DESCRIPTION

0.00 1.00 DGN 60 Weakly banded diatexitic gneiss.

1.00 16.20 PGR PGR section containing lots of pinitized cordierite as clusters with quartz. Green apatite crystals in

some places.

16.20 25.00 DGN 50 Weakly or irregularly banded diatexitic gneiss containing ca. 30-70 % leucosome. DGN gradually

changes into VGN in the end of the section. Between 16.20-16.50 m weakly sheared section, which is

rich in biotite.

39Petrographical description Appendix 1.5

40

ONK-PP115

M FROM M TO WEATHERING Remarks

DEGREE

0.00 35.01 Rp0 No significant alteration.

ONK-PP116

M FROM M TO WEATHERING Remarks

DEGREE

0.00 35.04 Rp0 Only some weak kaolinitization of feldspars and on foliation planes, e.g.

between 3.00-4.00 m and 23.00-24.00 m.

ONK-PP117

M FROM M TO WEATHERING Remarks

DEGREE

0.00 2.10 Rp1 Slight epidotization of feldspars.

2.10 40.35 Rp0 Only some weak epidotization of plagioclase in places.

ONK-PP118

M FROM M TO WEATHERING Remarks

DEGREE

0.00 25.70 Rp0 Pinitization of cordierite.

ONK-PP119

M FROM M TO WEATHERING Remarks

DEGREE

0.00 24.87 Rp0 Some epidotization of plagioclase and pinitization of cordierite, otherwise

weakly altered rock section.

ONK-PP120

M FROM M TO WEATHERING Remarks

DEGREE

0.00 5.00 Rp1 Epidotization of plagioclase.

5.00 25.00 Rp0 Some epidotization of plagioclase and kaolinitization of feldspars.

41Degree of weathering Appendix 1.6

42

ONK-PP115

M FROM M TO ELEMENT DEPTH M DIP DIR DIP ALPHA BETA FOLIATION FOLIATION METHOD ROCK TYPE REMARKS

(°) (°) TYPE INTENSITY

0.00 10.70 BAN 1 DGN

FOL 4.30 323 16 10 195 BAN 1 Sample DGN

FOL 10.50 8 10 20 190 BAN 2 Sample DGN

10.70 12.15 GNE 2 MGN

FOL 11.10 335 5 15 185 GNE 2 Sample MFGN MFGN section in MGN

12.15 19.00 BAN 1 DGN

FOL 18.60 24 23 30 200 BAN 1 Sample DGN

19.00 20.50 GNE 1 QGN

20.50 27.50 BAN 1 DGN

FOL 24.50 5 75 25 260 BAN 1 Sample DGN

27.50 28.55 MAS 0 PGR

28.55 31.50 BAN 1 DGN

FOL 31.35 90 15 30 175 BAN 1 Sample DGN

31.50 33.05 GNE 1 QGN

33.05 35.01 IRR 0 DGN

ONK-PP116

M FROM M TO ELEMENT DEPTH M DIP DIR DIP ALPHA BETA FOLIATION FOLIATION METHOD ROCK TYPE REMARKS

(°) (°) TYPE INTENSITY

0.00 35.04 BAN 1 DGN

FOL 3.10 174 49 20 330 BAN 2 Sample DGN

FOL 6.70 180 84 50 305 BAN 1 Sample DGN

FOL 14.10 126 29 15 150 BAN 1 Sample DGN

FOL 21.90 98 38 30 140 BAN 1 Sample DGN

FOL 26.20 70 7 25 175 BAN 2 Sample DGN

FOL 29.90 101 19 25 160 BAN 1 Sample DGN

FOL 34.00 175 42 15 335 BAN 1 Sample DGN

ONK-PP117

M FROM M TO ELEMENT DEPTH M DIP DIR DIP ALPHA BETA FOLIATION FOLIATION METHOD ROCK TYPE REMARKS

(°) (°) TYPE INTENSITY

0.00 2.10 MAS 0 PGR

2.10 5.95 BAN 1 DGN

FOL 3.95 320 58 45 245 BAN 2 Sample DGN

FOL 5.75 130 71 20 300 BAN 2 Sample DGN

5.95 14.00 MAS 0 PGR

14.00 16.85 GNE 2 MGN

FOL 14.90 280 14 20 195 GNE 2 Sample MGN

16.85 18.45 GNE 2 MFGN

FOL 16.95 260 15 15 195 GNE 2 Sample MFGN

18.45 20.90 GNE 2 MGN

FOL 20.25 9 20 40 180 GNE 2 Sample MGN

20.90 39.00 IRR 0 DGN

39.00 40.35 BAN 3 VGN

FOL 39.90 168 43 20 345 BAN 3 Sample VGN

ONK-PP118

M FROM M TO ELEMENT DEPTH M DIP DIR DIP ALPHA BETA FOLIATION FOLIATION METHOD ROCK TYPE REMARKS

(°) (°) TYPE INTENSITY

0.00 4.10 BAN 1 DGN

FOL 3.80 136 63 30 340 BAN 2 Sample VGN VGN section in DGN

4.10 15.50 IRR 0 DGN

15.50 25.70 BAN 1 DGN

FOL 15.80 100 90 30 290 BAN 1 Sample DGN

FOL 16.80 285 66 45 265 BAN 1 Sample DGN

FOL 24.45 105 76 25 305 BAN 1 Sample DGN

ONK-PP119

M FROM M TO ELEMENT DEPTH M DIP DIR DIP ALPHA BETA FOLIATION FOLIATION METHOD ROCK TYPE REMARKS

(°) (°) TYPE INTENSITY

0.00 16.12 MAS 0 PGR

16.12 16.56 SCH 3 MGN

FOL 16.30 303 77 70 330 SCH 3 Sample MGN Strongly foliated and she

16.56 24.87 BAN 1 DGN

FOL 18.45 110 76 40 330 BAN 1 Sample DGN

FOL 24.80 126 76 45 350 BAN 2 Sample DGN

ONK-PP120

M FROM M TO ELEMENT DEPTH M DIP DIR DIP ALPHA BETA FOLIATION FOLIATION METHOD ROCK TYPE REMARKS

(°) (°) TYPE INTENSITY

0.00 1.00 BAN 1 DGN No core orientation

1.00 16.20 MAS 0 PGR No core orientation

16.20 25.00 BAN 1 DGN No core orientation

43Foliation Appendix 1.7

44

FR

AC

TU

RE

DE

PT

HC

OR

E A

LP

HA

CO

RE

BE

TA

CO

RE

DIR

CO

RE

DIP

CO

LO

UR

OF

FR

AC

TU

RE

TH

ICK

NE

SS

OF

T

YP

EF

RA

CT

UR

EF

RA

CT

UR

E

Jr

Ja

RE

MA

RK

S

NU

MB

ER

m(°

)(°

)(°

)(°

)F

RA

CT

UR

E S

UR

FA

CE

FIL

LIN

GF

ILL

ING

(m

m)

SH

AP

ER

OU

GH

NE

SS

31

10

.03

75

11

08

87

0ti

un

du

late

dro

ug

h3

0.7

5clo

se

d

22

.51

30

11

01

36

65

tiu

nd

ula

ted

rou

gh

31

33

.59

10

16

51

82

16

wh

ite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

pa

rtly

clo

se

d

45

.11

15

36

02

53

31

ligh

t g

rey

CC

, K

A0

.3fi

un

du

late

dro

ug

h3

2

55

.95

60

13

59

85

5ti

un

du

late

dro

ug

h3

1

68

.16

15

36

02

53

31

ligh

t b

row

nS

K,

CC

0.4

fiu

nd

ula

ted

rou

gh

32

ca

lcite

cry

sta

ls

79

.20

15

36

02

53

31

wh

ite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

pa

rtly

clo

se

d

89

.26

10

36

02

53

26

wh

ite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

91

1.4

71

51

75

17

05

ligh

t g

rey

CC

, K

L,

SK

0.5

fip

lan

ar

sm

oo

th1

4

10

11

.64

30

20

27

55

0lig

ht

gre

yC

C0

.2fi

un

du

late

dro

ug

h3

1p

art

ly c

lose

d

11

12

.09

15

16

51

63

14

ligh

t g

rey

CC

, K

L0

.4fi

pla

na

rsm

oo

th1

4

12

13

.74

45

65

29

38

4lig

ht

gre

yC

C0

.1fi

un

du

late

dro

ug

h3

1

13

19

.87

65

28

54

88

2ti

un

du

late

dro

ug

h3

1p

art

ly c

lose

d

14

20

.54

25

21

54

34

tiu

nd

ula

ted

rou

gh

30

.75

clo

se

d

15

32

.29

50

40

27

87

5ti

un

du

late

dro

ug

h3

1

16

32

.54

70

29

05

48

2ti

pla

na

rro

ug

h1

.51

17

32

.75

65

27

54

77

8lig

ht

gre

yC

C0

.1fi

un

du

late

dro

ug

h3

1

18

32

.83

60

10

25

87

6ti

un

du

late

dro

ug

h3

1

45List of fractures, ONK-PP115 Appendix 1.8

FR

AC

TU

RE

DE

PT

HC

OR

E A

LP

HA

CO

RE

BE

TA

CO

RE

DIR

CO

RE

DIP

CO

LO

UR

OF

FR

AC

TU

RE

TH

ICK

NE

SS

OF

T

YP

EF

RA

CT

UR

EF

RA

CT

UR

E

Jr

Ja

RE

MA

RK

S

NU

MB

ER

m(°

)(°

)(°

)(°

)F

RA

CT

UR

E S

UR

FA

CE

FIL

LIN

GF

ILL

ING

(m

m)

SH

AP

ER

OU

GH

NE

SS

31

13

.89

30

35

02

01

50

ligh

t g

rey

CC

, K

A0

.1fi

un

du

late

dro

ug

h3

1

22

2.2

94

53

30

19

07

0ti

un

du

late

dro

ug

h3

1

32

6.6

52

53

30

17

85

3w

hite

KA

0.2

fiu

nd

ula

ted

rou

gh

32

42

6.7

12

53

30

17

85

3w

hite

KA

0.1

fiu

nd

ula

ted

rou

gh

30

.75

clo

se

d

52

7.2

63

03

60

21

24

9w

hite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

63

1.5

31

53

40

18

13

9w

hite

KA

0.1

fiu

nd

ula

ted

rou

gh

30

.75

clo

se

d

46List of fractures, ONK-PP116 Appendix 1.8

FR

AC

TU

RE

DE

PT

HC

OR

E A

LP

HA

CO

RE

BE

TA

CO

RE

DIR

CO

RE

DIP

CO

LO

UR

OF

FR

AC

TU

RE

TH

ICK

NE

SS

OF

T

YP

EF

RA

CT

UR

EF

RA

CT

UR

E

Jr

Ja

RE

MA

RK

S

NU

MB

ER

m(°

)(°

)(°

)(°

)F

RA

CT

UR

E S

UR

FA

CE

FIL

LIN

GF

ILLIN

G (

mm

)S

HA

PE

RO

UG

HN

ES

S3

1.5

10.6

525

tiundula

ted

rough

31

20.7

570

tiundula

ted

rough

31

30.7

940

light gre

yC

C0.1

fiundula

ted

rough

31

40.8

530

tipla

nar

rough

1.5

1part

ly c

losed

50.8

925

tiundula

ted

rough

30.7

5clo

sed

61.1

425

350

176

47

light gre

yC

C, M

U0.3

fiundula

ted

rough

32

71.3

110

90

90

87

light gre

yC

C0.1

fiundula

ted

rough

31

81.3

240

355

185

61

light gre

yC

C, S

K, C

U0.2

fiundula

ted

rough

32

91.4

040

130

63

47

light bro

wn

MU

, C

U0.1

fiundula

ted

rough

31

10

1.8

325

80

72

90

light bro

wn

MU

5fi

undula

ted

rough

32

11

6.2

230

335

163

56

tiundula

ted

rough

30.7

5clo

sed

12

6.3

990

light bro

wn

MU

10

fiundula

ted

rough

32

13

8.4

030

light bro

wn

MU

0.2

fiundula

ted

rough

30.7

5clo

sed

14

9.1

840

light gre

yC

C, M

U0.5

fiundula

ted

rough

32

15

10.0

130

light gre

yC

C0.1

fiundula

ted

rough

31

16

10.0

945

light gre

yC

C, M

U0.3

fiundula

ted

rough

32

17

10.2

545

tipla

nar

rough

1.5

1

18

10.4

445

tiundula

ted

rough

30.7

5clo

sed

19

12.0

735

70

239

86

light bro

wn

MU

0.2

fiundula

ted

rough

31

20

12.5

540

25

210

65

light bro

wn

MU

0.5

fiundula

ted

rough

32

21

12.6

955

345

180

77

light bro

wn

MU

0.2

fiundula

ted

rough

31

22

12.9

340

25

210

65

light bro

wn

SK

0.1

fiundula

ted

rough

31

23

13.7

245

350

181

66

tiundula

ted

rough

31

24

16.3

235

20

208

59

light gre

yC

C0.1

fipla

nar

rough

1.5

1

25

17.1

035

20

208

59

tiundula

ted

rough

31

26

17.8

213

95

88

81

light gre

yC

C, M

K0.2

fipla

nar

sm

ooth

12

27

18.1

920

45

239

60

tiundula

ted

rough

30.7

5clo

sed

28

18.2

630

70

244

84

tiundula

ted

rough

31

29

18.4

630

205

307

24

bla

ck

KL

0.2

fiundula

ted

sm

ooth

23

30

18.5

440

10

198

61

light gre

yC

C0.1

fiundula

ted

rough

31

31

18.9

840

25

210

65

light gre

yC

C0.1

fiundula

ted

sm

ooth

21

32

19.1

145

30

211

71

tiundula

ted

rough

30.7

5clo

sed

33

19.4

450

335

173

74

tiundula

ted

rough

31

34

20.0

435

35

220

65

light gre

yC

C0.1

fiundula

ted

rough

31

part

ly c

losed

35

20.7

235

5194

56

tiundula

ted

rough

30.7

5clo

sed

36

23.2

840

300

147

82

white

KA

0.1

fiundula

ted

rough

32

37

24.1

255

330

172

80

light gre

yC

C, K

A0.1

fiundula

ted

rough

31

38

24.2

440

350

180

61

light bro

wn

SK

0.1

fiundula

ted

rough

31

39

36.3

130

310

144

70

white

KA

0.1

fiundula

ted

rough

31

para

llel to

folia

tion, m

ostly c

losed

47List of fractures, ONK-PP117 Appendix 1.8

FR

AC

TU

RE

DE

PT

HC

OR

E A

LP

HA

CO

RE

BE

TA

CO

RE

DIR

CO

RE

DIP

CO

LO

UR

OF

FR

AC

TU

RE

TH

ICK

NE

SS

OF

T

YP

EF

RA

CT

UR

EF

RA

CT

UR

E

Jr

Ja

RE

MA

RK

S

NU

MB

ER

m(°

)(°

)(°

)(°

)F

RA

CT

UR

E S

UR

FA

CE

FIL

LIN

GF

ILL

ING

(m

m)

SH

AP

ER

OU

GH

NE

SS

31

10

.14

75

ligh

t b

row

nS

K0

.1fi

un

du

late

dro

ug

h3

1

20

.23

65

ligh

t b

row

nS

K0

.1fi

un

du

late

dro

ug

h3

1

31

.14

60

ligh

t b

row

nS

K0

.1fi

un

du

late

dro

ug

h3

1

41

.16

55

ligh

t b

row

nS

K0

.1fi

un

du

late

dro

ug

h3

1

51

.19

45

ligh

t b

row

nM

U0

.1fi

pla

na

rro

ug

h1

.51

61

.24

50

ligh

t b

row

nM

U0

.5fi

un

du

late

dro

ug

h3

2

72

.24

50

33

01

36

84

wh

ite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

82

.67

75

16

53

40

46

tiu

nd

ula

ted

rou

gh

31

94

.37

25

34

51

39

57

wh

ite

KA

, S

K0

.3fi

un

du

late

dro

ug

h3

2

10

4.5

04

51

55

20

25

wh

ite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

11

9.0

33

04

01

91

71

tip

lan

ar

rou

gh

1.5

1m

ostly c

lose

d

12

9.0

41

52

45

24

66

1ti

un

du

late

dro

ug

h3

1m

ostly c

lose

d

13

14

.88

75

26

53

18

60

ligh

t b

row

nS

K,

KA

0.1

fiu

nd

ula

ted

rou

gh

31

14

16

.94

40

27

02

81

71

ligh

t b

row

nS

K,

MU

0.1

fiu

nd

ula

ted

rou

gh

31

15

18

.22

40

32

51

28

77

ligh

t b

row

nS

K,

KA

0.1

fiu

nd

ula

ted

rou

gh

31

16

18

.79

50

40

17

98

7lig

ht

bro

wn

MU

0.2

fiu

nd

ula

ted

rou

gh

32

17

20

.62

40

30

17

87

5lig

ht

gre

yC

C0

.1fi

un

du

late

dro

ug

h3

1

18

21

.10

55

25

16

98

7ti

pla

na

rro

ug

h1

.51

19

23

.44

15

20

18

14

9ti

un

du

late

dro

ug

h3

0.7

5clo

se

d

20

23

.54

30

25

17

96

4w

hite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

21

23

.76

25

20

17

65

8ti

un

du

late

dro

ug

h3

1

22

24

.63

60

13

08

45

tip

lan

ar

rou

gh

1.5

1

23

24

.85

30

36

01

55

60

ligh

t g

rey

CC

, K

A0

.3fi

un

du

late

dro

ug

h3

2

24

25

.13

70

33

03

25

78

wh

ite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

25

25

.18

60

30

53

10

80

wh

ite

KA

0.1

fiu

nd

ula

ted

rou

gh

30

.75

clo

se

d

26

25

.50

45

51

59

75

wh

ite

KA

0.2

fip

lan

ar

rou

gh

1.5

2

27

25

.52

60

32

03

16

84

wh

ite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

48List of fractures, ONK-PP118 Appendix 1.8

FR

AC

TU

RE

DE

PT

HC

OR

E A

LP

HA

CO

RE

BE

TA

CO

RE

DIR

CO

RE

DIP

CO

LO

UR

OF

FR

AC

TU

RE

TH

ICK

NE

SS

OF

T

YP

EF

RA

CT

UR

EF

RA

CT

UR

E

Jr

Ja

RE

MA

RK

S

NU

MB

ER

m(°

)(°

)(°

)(°

)F

RA

CT

UR

E S

UR

FA

CE

FIL

LIN

GF

ILL

ING

(m

m)

SH

AP

ER

OU

GH

NE

SS

31

10

.08

55

tiu

nd

ula

ted

rou

gh

31

20

.22

55

tiu

nd

ula

ted

rou

gh

31

30

.40

60

tiu

nd

ula

ted

rou

gh

31

40

.58

50

tiu

nd

ula

ted

rou

gh

31

50

.59

65

tiu

nd

ula

ted

rou

gh

31

60

.61

60

tiu

nd

ula

ted

rou

gh

31

70

.69

65

tiu

nd

ula

ted

rou

gh

31

80

.79

45

tiu

nd

ula

ted

rou

gh

31

91

.05

50

tiu

nd

ula

ted

rou

gh

31

10

1.4

74

0lig

ht

bro

wn

MU

0.5

fiu

nd

ula

ted

rou

gh

32

11

1.6

27

5lig

ht

gre

yC

C0

.1fi

un

du

late

dro

ug

h3

0.7

5clo

se

d

12

2.9

58

0w

hite

KA

, S

K0

.1fi

un

du

late

dro

ug

h3

1

13

3.5

88

5lig

ht

bro

wn

SK

0.1

fiu

nd

ula

ted

rou

gh

31

14

3.6

56

0w

hite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

15

4.5

86

5lig

ht

bro

wn

SK

0.1

fiu

nd

ula

ted

rou

gh

31

16

4.9

28

0w

hite

KA

, S

K0

.1fi

un

du

late

dro

ug

h3

1

17

5.2

54

5lig

ht

bro

wn

SK

0.1

fip

lan

ar

rou

gh

1.5

1

18

5.4

24

5lig

ht

bro

wn

SK

0.1

fiu

nd

ula

ted

rou

gh

31

19

5.7

68

0w

hite

KA

, C

C0

.1fi

un

du

late

dro

ug

h3

1

20

6.4

73

0lig

ht

bro

wn

MU

0.3

fip

lan

ar

rou

gh

1.5

2

21

7.6

96

0ti

un

du

late

dro

ug

h3

1

22

7.9

97

5w

hite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

23

8.2

45

5ti

pla

na

rro

ug

h1

.51

24

8.8

34

0lig

ht

bro

wn

MU

0.2

fip

lan

ar

sm

oo

th1

2

25

8.8

84

0lig

ht

bro

wn

MU

0.1

fiu

nd

ula

ted

sm

oo

th2

1

26

8.9

64

52

50

25

95

5ti

un

du

late

dro

ug

h3

1

27

9.4

16

51

10

34

35

4lig

ht

gre

yC

C,

KA

0.1

fiu

nd

ula

ted

rou

gh

31

28

9.5

49

03

13

59

wh

ite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

29

10

.42

75

13

53

27

49

wh

ite

CC

, K

A0

.1fi

un

du

late

dro

ug

h3

1

30

11

.17

40

30

09

29

0ti

un

du

late

dro

ug

h3

1

31

11

.33

40

22

52

50

37

ligh

t b

row

nM

U0

.5fi

un

du

late

dro

ug

h3

2

32

11

.38

25

22

52

26

40

ligh

t b

row

nM

U0

.5fi

un

du

late

dro

ug

h3

2

33

11

.53

10

20

01

79

28

tiu

nd

ula

ted

rou

gh

31

34

11

.59

35

45

16

97

8ti

un

du

late

dro

ug

h3

1

35

11

.82

35

95

14

69

ligh

t g

rey

CC

0.1

fiu

nd

ula

ted

rou

gh

31

36

11

.89

35

15

14

66

7ti

un

du

late

dro

ug

h3

1

37

12

.03

55

15

03

46

32

ligh

t b

row

nM

U0

.5fi

un

du

late

dro

ug

h3

2

49List of fractures, ONK-PP119 Appendix 1.8

FR

AC

TU

RE

DE

PT

HC

OR

E A

LP

HA

CO

RE

BE

TA

CO

RE

DIR

CO

RE

DIP

CO

LO

UR

OF

FR

AC

TU

RE

TH

ICK

NE

SS

OF

T

YP

EF

RA

CT

UR

EF

RA

CT

UR

E

Jr

Ja

RE

MA

RK

S

NU

MB

ER

m(°

)(°

)(°

)(°

)F

RA

CT

UR

E S

UR

FA

CE

FIL

LIN

GF

ILL

ING

(m

m)

SH

AP

ER

OU

GH

NE

SS

31

38

12

.18

90

31

35

9lig

ht

bro

wn

MU

0.6

fiu

nd

ula

ted

sm

oo

th2

2

39

12

.36

40

20

52

54

22

tiu

nd

ula

ted

rou

gh

31

40

16

.18

55

30

02

83

80

ligh

t g

rey

CC

0.1

fiu

nd

ula

ted

sm

oo

th2

1

41

16

.53

35

35

16

27

4lig

ht

gre

yC

C,

SK

0.2

fiu

nd

ula

ted

rou

gh

32

42

19

.02

45

15

14

47

7w

hite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

43

21

.42

65

20

32

28

3ti

un

du

late

dro

ug

h3

1

44

21

.59

50

20

14

68

3w

hite

KA

0.2

fiu

nd

ula

ted

rou

gh

32

45

22

.34

75

26

52

96

59

tiu

nd

ula

ted

rou

gh

31

46

23

.22

35

15

14

66

7ti

un

du

late

dro

ug

h3

1

50List of fractures, ONK-PP119 Appendix 1.8

FR

AC

TU

RE

DE

PT

HC

OR

E A

LP

HA

CO

RE

BE

TA

CO

RE

DIR

CO

RE

DIP

CO

LO

UR

OF

FR

AC

TU

RE

TH

ICK

NE

SS

OF

T

YP

EF

RA

CT

UR

EF

RA

CT

UR

E

Jr

Ja

RE

MA

RK

S

NU

MB

ER

m(°

)(°

)(°

)(°

)F

RA

CT

UR

E S

UR

FA

CE

FIL

LIN

GF

ILL

ING

(m

m)

SH

AP

ER

OU

GH

NE

SS

31

10

.04

60

tip

lan

ar

rou

gh

1.5

1

20

.28

60

tiu

nd

ula

ted

rou

gh

31

30

.87

60

ligh

t b

row

nS

K0

.1fi

un

du

late

dro

ug

h1

.51

40

.91

15

tiu

nd

ula

ted

rou

gh

31

51

.06

50

tiu

nd

ula

ted

rou

gh

31

61

.62

40

tiu

nd

ula

ted

rou

gh

31

71

.70

30

ligh

t b

row

nM

U2

fiu

nd

ula

ted

rou

gh

32

81

.84

60

tiu

nd

ula

ted

rou

gh

31

92

.61

90

ligh

t b

row

nS

K,

KA

0.1

fiu

nd

ula

ted

rou

gh

31

10

3.6

86

5lig

ht

bro

wn

SK

, K

A0

.1fi

un

du

late

dro

ug

h3

1

11

3.7

38

0lig

ht

gre

yC

C,

SK

0.1

fiu

nd

ula

ted

rou

gh

31

12

3.7

75

5ti

un

du

late

dro

ug

h3

0.7

5clo

se

d

13

4.3

88

5lig

ht

bro

wn

SK

, K

A0

.1fi

un

du

late

dro

ug

h3

1

14

4.6

16

0lig

ht

bro

wn

SK

0.1

fip

lan

ar

rou

gh

1.5

1

15

4.7

65

5lig

ht

bro

wn

SK

, K

A0

.1fi

un

du

late

dro

ug

h3

1

16

5.0

27

0lig

ht

bro

wn

SK

0.1

fiu

nd

ula

ted

rou

gh

31

17

6.1

08

5lig

ht

gre

yC

C

0.1

fiu

nd

ula

ted

rou

gh

31

18

6.3

67

0lig

ht

gre

yC

C

0.1

fiu

nd

ula

ted

rou

gh

31

19

6.4

77

5w

hite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

20

6.9

57

0lig

ht

bro

wn

SK

0.1

fiu

nd

ula

ted

rou

gh

31

21

7.5

87

0ti

pla

na

rro

ug

h1

.51

22

7.6

55

5ti

un

du

late

dro

ug

h3

0.7

5clo

se

d

23

7.7

45

5ti

un

du

late

dro

ug

h3

1

24

7.9

73

0lig

ht

bro

wn

MU

1fi

un

du

late

dro

ug

h3

0.7

5clo

se

d

25

7.9

77

0w

hite

KA

0.2

fiu

nd

ula

ted

rou

gh

32

26

8.1

85

0ti

un

du

late

dro

ug

h3

1

27

8.2

93

5lig

ht

bro

wn

MU

0.3

fiu

nd

ula

ted

sm

oo

th2

2

28

8.3

12

5ti

un

du

late

dro

ug

h3

1

29

8.8

43

5ti

un

du

late

dro

ug

h3

1

30

9.2

63

5lig

ht

bro

wn

MU

0.1

fiu

nd

ula

ted

rou

gh

31

31

9.4

88

0lig

ht

gre

yC

C0

.1fi

un

du

late

dro

ug

h3

1

32

9.6

54

5lig

ht

gre

yC

C0

.1fi

un

du

late

dro

ug

h3

1

33

9.8

65

0lig

ht

gre

yC

C0

.1fi

un

du

late

dro

ug

h3

1

34

10

.42

40

tiu

nd

ula

ted

rou

gh

30

.75

clo

se

d

35

10

.46

40

tiu

nd

ula

ted

rou

gh

30

.75

clo

se

d

36

10

.86

50

tiu

nd

ula

ted

rou

gh

31

37

11

.04

60

tiu

nd

ula

ted

rou

gh

31

51List of fractures, ONK-PP120 Appendix 1.8

FR

AC

TU

RE

DE

PT

HC

OR

E A

LP

HA

CO

RE

BE

TA

CO

RE

DIR

CO

RE

DIP

CO

LO

UR

OF

FR

AC

TU

RE

TH

ICK

NE

SS

OF

T

YP

EF

RA

CT

UR

EF

RA

CT

UR

E

Jr

Ja

RE

MA

RK

S

NU

MB

ER

m(°

)(°

)(°

)(°

)F

RA

CT

UR

E S

UR

FA

CE

FIL

LIN

GF

ILL

ING

(m

m)

SH

AP

ER

OU

GH

NE

SS

31

38

11

.18

50

tiu

nd

ula

ted

rou

gh

31

39

11

.26

50

ligh

t b

row

nM

U0

.2fi

un

du

late

dro

ug

h3

2

40

11

.59

60

tiu

nd

ula

ted

rou

gh

31

41

11

.72

30

ligh

t b

row

nM

U1

fiu

nd

ula

ted

rou

gh

32

42

11

.88

50

ligh

t g

rey

CC

0.1

fiu

nd

ula

ted

rou

gh

31

43

11

.99

50

tiu

nd

ula

ted

rou

gh

31

44

12

.08

50

tiu

nd

ula

ted

rou

gh

31

45

12

.14

25

ligh

t b

row

nS

K0

.1fi

un

du

late

dro

ug

h3

1

46

12

.23

70

ligh

t b

row

nM

U0

.2fi

un

du

late

dro

ug

h3

0.7

5clo

se

d

47

12

.32

0lig

ht

bro

wn

MU

0.2

fiu

nd

ula

ted

rou

gh

30

.75

clo

se

d

48

13

.06

70

ligh

t b

row

nM

U0

.1fi

un

du

late

dro

ug

h3

1

49

13

.42

75

tip

lan

ar

rou

gh

1.5

1

50

14

.60

55

tiu

nd

ula

ted

rou

gh

31

51

15

.42

60

ligh

t b

row

nS

K0

.1fi

un

du

late

dro

ug

h3

1

52

21

.26

75

tiu

nd

ula

ted

rou

gh

31

53

22

.92

40

wh

ite

KA

0.1

fiu

nd

ula

ted

rou

gh

30

.75

clo

se

d

54

23

.16

15

tiu

nd

ula

ted

rou

gh

30

.75

clo

se

d

55

23

.52

55

ligh

t b

row

nS

K0

.1fi

un

du

late

dro

ug

h3

1

56

23

.64

30

tiu

nd

ula

ted

rou

gh

31

57

24

.39

50

wh

ite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

58

24

.68

65

wh

ite

KA

0.1

fiu

nd

ula

ted

rou

gh

31

52List of fractures, ONK-PP120 Appendix 1.8

M FROM M TO ALL FRACTURES NAT FRACTURES RQD Remarks

pieces/m pieces/m %

0 1 6 1 100 One closed fracture

1 2 0 0 100

2 3 2 1 100

3 4 2 1 100

4 5 2 0 100

5 6 3 2 100

6 7 4 0 100

7 8 4 0 100

8 9 3 1 100

9 10 5 2 94

10 11 3 0 100

11 12 4 2 100

12 13 4 1 100

13 14 2 1 100

14 15 2 0 100

15 16 2 0 100

16 17 3 0 100

17 18 2 0 100

18 19 1 0 100

19 20 3 1 100

20 21 5 1 100 One closed fracture

21 22 5 0 100

22 23 4 0 100

23 24 4 0 100

24 25 2 0 100

25 26 2 0 100

26 27 3 0 100

27 28 3 0 100

28 29 3 0 100

29 30 3 0 100

30 31 4 0 100

31 32 1 0 100

32 33 4 4 92

33 34 2 0 100

34 35 2 0 100

53Fracture frequency and RQD, ONK-PP115 Appendix 1.9

M FROM M TO ALL FRACTURES NAT FRACTURES RQD Remarks

pieces/m pieces/m %

0 1 3 0 100

1 2 2 0 100

2 3 2 0 100

3 4 3 1 100

4 5 2 0 100

5 6 2 0 100

6 7 2 0 100

7 8 1 0 100

8 9 2 0 100

9 10 2 0 100

10 11 2 0 100

11 12 2 0 100

12 13 2 0 100

13 14 3 0 100

14 15 3 0 100

15 16 4 0 100

16 17 2 0 100

17 18 3 0 100

18 19 1 0 100

19 20 5 0 100

20 21 2 0 100

21 22 1 0 100

22 23 2 1 100

23 24 2 0 100

24 25 3 0 100

25 26 2 0 100

26 27 3 2 94 One closed fracture

27 28 2 1 100

28 29 2 0 100

29 30 2 0 100

30 31 1 0 100

31 32 2 1 100 One closed fracture

32 33 1 0 100

33 34 3 0 100

34 35 2 0 100

54Fracture frequency and RQD, ONK-PP116 Appendix 1.9

M FROM M TO ALL FRACTURES NAT FRACTURES RQD Remarks

pieces/m pieces/m %

0 1 11 5 76 One closed fracture

1 2 9 5 91

2 3 2 0 100

3 4 5 0 100

4 5 4 0 100

5 6 3 0 100

6 7 3 2 100 One closed fracture

7 8 3 0 100

8 9 3 1 100 One closed fracture

9 10 5 1 100

10 11 5 4 92 One closed fracture

11 12 2 0 100

12 13 7 4 100

13 14 4 1 100

14 15 5 0 100

15 16 4 0 100

16 17 2 1 100

17 18 3 2 100

18 19 7 5 85 One closed fracture

19 20 3 2 100 One closed fracture

20 21 3 2 100 One closed fracture

21 22 3 0 100

22 23 2 0 100

23 24 2 1 100

24 25 5 2 100

25 26 3 0 100

26 27 4 0 100

27 28 3 0 100

28 29 1 0 100

29 30 3 0 100

30 31 3 0 100

31 32 2 0 100

32 33 3 0 100

33 34 3 0 100

34 35 2 0 100

35 36 2 0 100

36 37 4 1 100

37 38 3 0 100

38 39 3 0 100

39 40 2 0 100

40 40.35 0 0 100

55Fracture frequency and RQD, ONK-PP117 Appendix 1.9

M FROM M TO ALL FRACTURES NAT FRACTURES RQD Remarks

pieces/m pieces/m %

0 1 9 2 91

1 2 6 4 90

2 3 2 2 100

3 4 1 0 100

4 5 2 2 100

5 6 2 0 100

6 7 3 0 100

7 8 4 0 100

8 9 1 0 100

9 10 6 2 99

10 11 2 0 100

11 12 2 0 100

12 13 3 0 100

13 14 1 0 100

14 15 2 1 100

15 16 1 0 100

16 17 2 1 100

17 18 1 0 100

18 19 2 2 100

19 20 2 0 100

20 21 4 1 100

21 22 2 1 100

22 23 3 0 100

23 24 2 3 100 One closed fracture

24 25 2 2 100

25 25.70 3 4 93 One closed fracture

56Fracture frequency and RQD, ONK-PP118 Appendix 1.9

M FROM M TO ALL FRACTURES NAT FRACTURES RQD Remarks

pieces/m pieces/m %

0 1 14 8 79

1 2 6 3 100 One closed fracture

2 3 5 1 100

3 4 5 2 93

4 5 5 2 100

5 6 4 3 100

6 7 7 1 100

7 8 5 2 100

8 9 6 4 87

9 10 4 2 100

10 11 4 1 100

11 12 10 7 82

12 13 7 3 100

13 14 3 0 100

14 15 2 0 100

15 16 4 0 100

16 17 4 2 100

17 18 4 0 100

18 19 2 0 100

19 20 2 1 100

20 21 4 0 100

21 22 5 2 100

22 23 3 1 100

23 24 1 1 100

24 24.87 3 0 100

57Fracture frequency and RQD, ONK-PP119 Appendix 1.9

M FROM M TO ALL FRACTURES NAT FRACTURES RQD Remarks

pieces/m pieces/m %

0 1 10 4 96

1 2 6 4 92

2 3 6 1 100

3 4 8 3 91 One closed fracture

4 5 7 3 100

5 6 3 1 100

6 7 5 4 100

7 8 8 5 84 Two closed fractures

8 9 7 4 98

9 10 8 4 100

10 11 6 3 96 Two closed fractures

11 12 9 7 91

12 13 6 4 68 Two closed fractures

13 14 3 2 100

14 15 2 1 100

15 16 4 1 100

16 17 2 0 100

17 18 2 0 100

18 19 4 0 100

19 20 2 0 100

20 21 3 0 100

21 22 3 1 100

22 23 3 1 100 One closed fracture

23 24 4 3 100 One closed fracture

24 25 4 2 100

58Fracture frequency and RQD, ONK-PP120 Appendix 1.9

ONK-PP115

MARK NR MARK DEPTH M FROM M TO LENGTH REMARKS

35.011 1.84 0.00 -15°

2 4.83 -5°

3 10.85 Base mark

4 15.10 +40°

5 21.10 +10°

6 30.63 35.01 35.01 0°

ONK-PP116

MARK NR MARK DEPTH M FROM M TO LENGTH REMARKS

35.041 7.70 0.00 Base mark

2 13.70 15.43 15.43 No mark

3 19.58 15.43 Mark rejected

4 25.60 Base mark

5 31.64 35.04 19.61 +5°

ONK-PP117

MARK NR MARK DEPTH M FROM M TO LENGTH REMARKS

33.741 4.08 0.93 6.39 5.46 Base mark

2 13.50 12.07 Base mark

3 19.50 +35°

4 25.50 +25°

5 33.89 40.35 28.28 0°

ONK-PP118

MARK NR MARK DEPTH M FROM M TO LENGTH REMARKS

24.351 7.50 1.35 -55°

2 16.46 -15°

3 22.50 25.70 24.35 Base mark

ONK-PP119

MARK NR MARK DEPTH M FROM M TO LENGTH REMARKS

15.931 16.26 8.94 24.87 15.93

59Core orientation Appendix 1.10

60

M F

RO

MM

TO

LE

NG

TH

OF

> 1

0 c

mN

um

be

r o

fR

QD

RQ

DJn

Q P

RIM

EQ

PR

IME

CL

AS

S O

F T

HE

C

OR

EQ

PR

IME

RE

MA

RK

S

SE

CT

ION

cm

fra

ctu

res

%>

10

pro

file

me

dia

nm

ed

ian

NU

MB

ER

CL

AS

SF

RA

CT

UR

ED

ZO

NE

LO

SS

(m

)

0.0

01

1.6

41

1.6

41

15

81

09

9.5

99

.52

UR

O3

.01

.00

14

9.2

Extr

em

ely

Go

od

On

e c

lose

d f

ractu

re

11

.64

20

.54

8.9

08

90

41

00

.01

00

.01

UR

O3

.01

.00

30

0.0

Extr

em

ely

Go

od

On

e c

lose

d f

ractu

re

20

.54

32

.29

11

.75

11

75

01

00

.01

00

.00

.55

.00

.75

13

33

.3E

xce

ptio

na

lly G

oo

dN

o f

ractu

res

32

.29

32

.83

0.5

44

64

85

.28

5.2

3U

RO

3.0

1.0

08

5.2

Ve

ry G

oo

d

32

.83

35

.01

2.1

82

18

01

00

.01

00

.00

.55

.00

.75

13

33

.3E

xce

ptio

na

lly G

oo

dN

o f

ractu

res

Jr

Ja

61Q-classification, ONK-PP115 Appendix 1.11

M F

RO

MM

TO

LE

NG

TH

OF

> 1

0 c

mN

um

be

r o

fR

QD

RQ

DJn

Q P

RIM

EQ

PR

IME

CL

AS

S O

F T

HE

C

OR

EQ

PR

IME

RE

MA

RK

S

SE

CT

ION

cm

fra

ctu

res

%>

10

pro

file

me

dia

nm

ed

ian

NU

MB

ER

CL

AS

SF

RA

CT

UR

ED

ZO

NE

LO

SS

(m

)

0.0

03

.89

3.8

93

89

11

00

.01

00

.00

.54

.01

.00

80

0.0

Exce

ptio

na

lly G

oo

dO

ne

fra

ctu

re

3.8

92

2.2

91

8.4

01

84

00

10

0.0

10

0.0

0.5

5.0

0.7

51

33

3.3

Exce

ptio

na

lly G

oo

dN

o f

ractu

res

22

.29

35

.04

12

.75

12

69

59

9.5

99

.51

UR

O3

.01

.00

29

8.6

Extr

em

ely

Go

od

Tw

o c

lose

d f

ractu

res

Jr

Ja

62Q-classification, ONK-PP116 Appendix 1.11

M F

RO

MM

TO

LE

NG

TH

OF

> 1

0 c

mN

um

be

r o

fR

QD

RQ

DJn

Q P

RIM

EQ

PR

IME

CL

AS

S O

F T

HE

C

OR

EQ

PR

IME

RE

MA

RK

S

SE

CT

ION

cm

fra

ctu

res

%>

10

pro

file

me

dia

nm

ed

ian

NU

MB

ER

CL

AS

SF

RA

CT

UR

ED

ZO

NE

LO

SS

(m

)

0.0

01

.83

1.8

31

50

10

82

.08

2.0

3U

RO

3.0

1.0

08

2.0

Ve

ry G

oo

d

On

e c

lose

d f

ractu

re

1.8

31

0.0

18

.18

81

84

10

0.0

10

0.0

1U

RO

3.0

1.3

82

18

.2E

xtr

em

ely

Go

od

Tw

o c

lose

d f

ractu

res

10

.01

12

.93

2.9

22

84

89

7.3

97

.32

UR

O3

.01

.00

14

5.9

Extr

em

ely

Go

od

On

e c

lose

d f

ractu

re

12

.93

17

.10

4.1

74

17

21

00

.01

00

.01

2.3

1.0

02

25

.0E

xtr

em

ely

Go

od

17

.10

20

.72

3.6

23

47

11

95

.99

5.9

2U

RO

3.0

1.0

01

43

.8E

xtr

em

ely

Go

od

Th

ree

clo

se

d f

ractu

res

20

.72

24

.24

3.5

23

52

31

00

.01

00

.01

UR

O3

.01

.00

30

0.0

Extr

em

ely

Go

od

24

.24

36

.31

12

.07

12

07

01

00

.01

00

.00

.55

.00

.75

13

33

.3E

xce

ptio

na

lly G

oo

dN

o f

ractu

res

36

.31

40

.35

4.0

44

04

11

00

.01

00

.00

.54

.01

.00

80

0.0

Exce

ptio

na

lly G

oo

dO

nly

on

e f

ractu

re

Jr

Ja

63Q-classification, ONK-PP117 Appendix 1.11

M F

RO

MM

TO

LE

NG

TH

OF

> 1

0 c

mN

um

be

r o

fR

QD

RQ

DJn

Q P

RIM

EQ

PR

IME

CL

AS

S O

F T

HE

C

OR

EQ

PR

IME

RE

MA

RK

S

SE

CT

ION

cm

fra

ctu

res

%>

10

pro

file

me

dia

nm

ed

ian

NU

MB

ER

CL

AS

SF

RA

CT

UR

ED

ZO

NE

LO

SS

(m

)

0.0

01

.24

1.2

41

05

68

4.7

84

.72

UR

O3

.01

.00

12

7.0

Extr

em

ely

Go

od

1.2

42

3.4

42

2.2

02

21

91

21

00

.01

00

.01

UR

O3

.01

.00

29

9.9

Extr

em

ely

Go

od

23

.44

25

.70

2.2

62

19

99

6.9

96

.94

UR

O3

.01

.00

72

.7V

ery

Go

od

T

wo

clo

se

d f

ractu

res

Jr

Ja

64Q-classification, ONK-PP118 Appendix 1.11

M F

RO

MM

TO

LE

NG

TH

OF

> 1

0 c

mN

um

be

r o

fR

QD

RQ

DJn

Q P

RIM

EQ

PR

IME

CL

AS

S O

F T

HE

C

OR

EQ

PR

IME

RE

MA

RK

S

SE

CT

ION

cm

fra

ctu

res

%>

10

pro

file

me

dia

nm

ed

ian

NU

MB

ER

CL

AS

SF

RA

CT

UR

ED

ZO

NE

LO

SS

(m

)

0.0

01

.62

1.6

21

41

11

87

.08

7.0

4U

RO

3.0

1.0

06

5.3

Ve

ry G

oo

d

Mo

stly t

igh

t fr

actu

res

1.6

21

1.1

79

.55

93

51

89

7.9

97

.93

UR

O3

.01

.00

97

.9V

ery

Go

od

11

.17

12

.36

1.1

91

01

10

84

.98

4.9

3U

RO

3.0

1.0

08

4.9

Ve

ry G

oo

d

12

.36

24

.87

12

.51

12

51

71

00

.01

00

.01

UR

O3

.01

.00

30

0.0

Extr

em

ely

Go

od

Jr

Ja

65Q-classification, ONK-PP119 Appendix 1.11

M F

RO

MM

TO

LE

NG

TH

OF

> 1

0 c

mN

um

be

r o

fR

QD

RQ

DJn

Q P

RIM

EQ

PR

IME

CL

AS

S O

F T

HE

C

OR

EQ

PR

IME

RE

MA

RK

S

SE

CT

ION

cm

fra

ctu

res

%>

10

pro

file

me

dia

nm

ed

ian

NU

MB

ER

CL

AS

SF

RA

CT

UR

ED

ZO

NE

LO

SS

(m

)

0.0

07

.58

7.5

87

37

20

97

.29

7.2

3U

RO

3.0

1.0

09

7.2

Ve

ry G

oo

d

On

e c

lose

d f

ractu

re

7.5

81

2.3

24

.74

41

12

78

6.7

86

.74

UR

O3

.01

.00

65

.0V

ery

Go

od

S

ix c

lose

d f

ractu

res

12

.32

15

.42

3.1

03

10

41

00

.01

00

.01

UR

O3

.01

.00

30

0.0

Extr

em

ely

Go

od

15

.42

21

.26

5.8

45

84

01

00

.01

00

.00

.55

.00

.75

13

33

.3E

xce

ptio

na

lly G

oo

dN

o f

ractu

res

21

.26

25

.00

3.7

43

74

71

00

.01

00

.02

UR

O3

.01

.00

15

0.0

Extr

em

ely

Go

od

Tw

o c

lose

d f

ractu

res

Jr

Ja

66Q-classification, ONK-PP120 Appendix 1.11

67ONK-PP115, L1-2 PHOTOS

68ONK-PP115, L3-4

69ONK-PP115, L5-6

70ONK-PP115, L7

71ONK-PP116, L1-2

72ONK-PP116, L3-4

73ONK-PP116, L5-6

74ONK-PP116, L7

75ONK-PP117, L1-2

76ONK-PP117, L3-4

77ONK-PP117, L5-6

78ONK-PP117, L7-8

79ONK-PP118, L1-2

80ONK-PP118, L3-4

81ONK-PP118, L5

82ONK-PP119, L1-2

83ONK-PP119, L3-4

84ONK-PP119, L5

85ONK-PP120, L1-2

ONK-PP120, L3-4 86

ONK-PP120, L5 87