COP-GPC184-UK-5 - grifo

82
Via dell' Artigiano, 8/6 40016 San Giorgio di Piano (Bologna) ITALY E-mail: [email protected] http://www.grifo.it http://www.grifo.com Tel. +39 051 892.052 (a. r.) FAX: +39 051 893.661 , GPC ® , grifo ® , are trade marks of grifo ® grifo ® ITALIAN TECHNOLOGY TECHNICAL MANUAL GPC ® 184 General Purpose Controller Z180 GPC ® 184 Edition 5.10 Rel. 29 September 1999

Transcript of COP-GPC184-UK-5 - grifo

Via dell' Artigiano, 8/640016 San Giorgio di Piano(Bologna) ITALYE-mail: [email protected]

http://www.grifo.it http://www.grifo.comTel. +39 051 892.052 (a. r.) FAX: +39 051 893.661

, GPC®, grifo ®, are trade marks of grifo ®

grifo ®

ITALIAN TECHNOLOGY

TECHNICAL MANUAL

GPC® 184General Purpose Controller Z180

GPC® 184 Edition 5.10 Rel. 29 September 1999

Via dell' Artigiano, 8/640016 San Giorgio di Piano(Bologna) ITALYE-mail: [email protected]

http://www.grifo.it http://www.grifo.comTel. +39 051 892.052 (a. r.) FAX: +39 051 893.661

, GPC®, grifo ®, are trade marks of grifo ®

grifo ®

ITALIAN TECHNOLOGY

TECHNICAL MANUAL

GPC® 184General Purpose Controller Z180

GPC® 184 Edition 5.10 Rel. 29 September 1999

Intelligent Module Abaco® BLOCK , Serie 4, size 100x50 mm; Optionalcontainer, format DIN 46277-1 and 3 rails compliant; CPU Z180, with18,432 MHz quartz; Configuration Jumper used to select RUN/DEBUGmode; Up to 512K of EPROM or FLASH and up to 512K of RAM ; RealTime Clock capable to generate INT errupts; Back Up circuitry for RAMand RTC, through on-board LITHIUM battery or external battery; ClockedSerial I/O interface, available to the User, on the I/O connetor; 2 internal16 bits wide Programmable Reload Timer channels; 2 RS232 serial lines,one of which settable as RS422, RS485 or Current Loop ; double BaudRate generator, software programmable; Watch Dog circuitery, hardwaremanageable; Abaco® I/O BUS da 26 pins expansion connector; 4 differentpower saving modes: Halt ,STOP, Sleep and System Stop; Power Failurecircuitry capable to generate interrupts; Consumption extermy reduced:only as low as 60 mA on 5Vdc; on-board logic protected against transientsby TransZorb™; Wide range of development software available such asRemote Symbolic Debugger; Macro Assembler; GET 80; C compilers(HI TECH C 80, DDS MICRO C 85); PASCAL compilers (PASCAL80, EMBEDDED PASCAL ); FGDOS184; etc.

DOCUMENTATION COPYRIGHT BY grifo ® , ALL RIGHTS RESERVED

No part of this document may be reproduced, transmitted, transcribed, stored in aretrieval system, or translated into any language or computer language, in any form orby any means, either electronic, mechanical, magnetic, optical, chemical, manual, orotherwise, without the prior written consent of grifo ®.

IMPORTANT

Although all the information contained herein have been carefully verified, grifo ®

assumes no responsability for errors that might appear in this document, or for damageto things or persons resulting from technical errors, omission and improper use of thismanual and of the related software and hardware.grifo ® reserves the right to change the contents and form of this document, as well as thefeatures and specification of its products at any time, without prior notice, to obtainalways the best product.For specific informations on the components mounted on the card, please refer to theData Book of the builder or second sources.

SYMBOLS DESCRIPTION

In the manual could appear the following symbols:

Attention: Generic danger

Attention: High voltage

Trade Marks

, GPC®, grifo ® : are trade marks of grifo ®.Other Product and Company names listed, are trade marks of their respective companies.

ITALIAN TECHNOLOGY grifo ®

Page I GPC® 184 Rel. 5.10

GENERAL INDEXINTRODUCTION ........................................................................................................................ 1

CARD VERSION.......................................................................................................................... 1

GENERAL FEATURES .............................................................................................................. 2 CPU ............................................................................................................................................. 3 MEMORY DEVICES ............................................................................................................... 3 SERIAL COMMUNICATION ................................................................................................. 4 CLOCK ...................................................................................................................................... 4 POWER SUPPLY ...................................................................................................................... 4 BOARD CONFIGURATION ................................................................................................... 4 ABACO® I/O BUS ...................................................................................................................... 6 REAL TIME CLOCK ............................................................................................................... 6 WATCH DOG ............................................................................................................................ 6 RESET CONTACT.................................................................................................................... 6 CONTROL LOGIC ................................................................................................................... 6

TECHNICAL FEATURES .......................................................................................................... 7 GENERAL FEATURES ........................................................................................................... 7 PHYSICAL FEATURES...........................................................................................................7 ELECTRIC FEATURES .......................................................................................................... 8

INSTALLATION .......................................................................................................................... 9 CONNECTIONS ....................................................................................................................... 9 CN2 - BACK UP EXTERNAL BATTERY CONNECTOR ................................................ 9 CN1 - ABACO® I/O BUS CONNECTOR ........................................................................... 10 CN3A - SERIAL LINE A CONNECTOR .......................................................................... 12 CN3B - SERIAL LINE B CONNECTOR .......................................................................... 14 CN5 - AUXILIARY SIGNALS CONNECTOR ................................................................. 20 I/O CONNECTION ................................................................................................................. 21 VISUAL SIGNALATIONS ..................................................................................................... 21 JUMPERS ................................................................................................................................ 22 2 PINS JUMPERS ................................................................................................................ 24 3 PINS JUMPERS ................................................................................................................ 25 5 PINS JUMPERS ................................................................................................................ 25 BACK UP ................................................................................................................................. 26 MEMORY SELECTION ........................................................................................................ 26 INTERRUPTS.......................................................................................................................... 27 CONFIGURATION INPUTS ................................................................................................. 27 SOLDER JUMPERS ............................................................................................................... 27 SERIAL COMMUNICATION SELECTION ...................................................................... 28 RESET AND WATCH DOG ................................................................................................... 30 POWER FAILURE.................................................................................................................. 31

SOFTWARE ................................................................................................................................ 32

grifo ® ITALIAN TECHNOLOGY

Page II GPC® 184 Rel. 5.10

DEVICES MAP AND ADDRESSES ........................................................................................ 35 INTRODUCTION ................................................................................................................... 35 ON BOARD DEVICES ADDRESSES ................................................................................... 35 ABACO® I/O BUS ADDRESSES............................................................................................ 35 MEMORY ADDRESSES ........................................................................................................ 36 I/O ADDRESSES ..................................................................................................................... 37

PERIPHERAL DEVICES SOFTWARE DESCRIPTION ..................................................... 39 REAL TIME CLOCK .............................................................................................................39 WATCH DOG .......................................................................................................................... 41 CONFIGURATION JUMPER ............................................................................................... 41 CPU INTERNAL PERIPHERALS ....................................................................................... 41

EXTERNAL CARDS .................................................................................................................42

BIBLIOGRAPHY....................................................................................................................... 44

APPENDIX A: CARD MECHANICAL MOUNTING ......................................................... A-1

APPENDIX B: ON BOARD DEVICES DESCRIPTION..................................................... B-1

APPENDIX C: ELECTRIC DIAGRAMS ............................................................................. C-1

APPENDICE D: ALPHABETICAL INDEX ......................................................................... D-1

ITALIAN TECHNOLOGY grifo ®

Page III GPC® 184 Rel. 5.10

FIGURES INDEXFIGURE 1: BLOCK DIAGRAM ............................................................................................................. 5FIGURE 2: CN2 - EXTERNAL BACK UP BATTERY CONNECTOR ............................................................. 9FIGURE 3 CN1 - ABACO® I/O BUS CONNECTOR ......................................................................... 10FIGURE 4: CARD PHOTO ................................................................................................................. 11FIGURE 5:COMPONENTS MAPS (SOLDERING SIDE AND COMPONENTS SIDE) ....................................... 11FIGURE 6: CN3A- SERIAL LINE A CONNECTOR .............................................................................. 12FIGURE 7: SERIAL COMMUNICATION DIAGRAM ................................................................................. 13FIGURE 8: CN3B- SERIAL LINE B CONNECTOR .............................................................................. 14FIGURE 9: LEDS, CONNECTORS, MEMORIES , ETC. LOCATION ........................................................... 15FIGURE 10: RS 232 PIN OUT AND CONNECTION EXAMPLE .............................................................. 16FIGURE 11: RS 422 PIN OUT AND POINT TO POINT CONNECTION EXAMPLE ...................................... 16FIGURE 12: RS 485 PIN OUT AND POINT TO POINT CONNECTION EXAMPLE ...................................... 16FIGURE 13: RS 485 PIN OUT AND NETWORK CONNECTION EXAMPLE .............................................. 17FIGURE 14: 4 WIRES CURRENT LOOP POINT TO POINT CONNECTION EXAMPLE .................................. 18FIGURE 15: 2 WIRES CURRENT LOOP POINT TO POINT CONNECTION EXAMPLE .................................. 18FIGURE 16: CN5 SIGNALS CONNECTION DIAGRAM .......................................................................... 19FIGURE 17: CN5 - AUXILIARY SIGNALS CONNECTOR ....................................................................... 20FIGURE 18: VISUAL SIGNALATIONS TABLE ........................................................................................ 21FIGURE 19: JUMPERS SUMMARIZING TABLE ..................................................................................... 22FIGURE 20: JUMPERS LOCATION (COMPONENT SIDE) ........................................................................ 23FIGURE 21: JUMPERS LOCATION (SOLDERING SIDE) ......................................................................... 23FIGURE 22: 2 PINS JUMPERS TABLE ................................................................................................. 24FIGURE 23: 3 PINS JUMPERS TABLE ................................................................................................. 25FIGURE 24: 5 PINS JUMPERS TABLE ................................................................................................. 25FIGURE 25: MEMORY SELECTION TABLE ......................................................................................... 26FIGURE 26: SERIAL COMMUNICATION DRIVER LOCATION .................................................................. 29FIGURE 27: MEMORY ALLOCATION ................................................................................................. 37FIGURE 28: I/O ADDRESSES TABLE .................................................................................................. 38FIGURE 29: AVAILABLE CONNECTIONS DIAGRAM .............................................................................. 43FIGURE A1: MODULE DIMENSION FOR PIGGY BACK MOUNTING ...................................................... A-1FIGURE A2: PIGGY BACK MOUNTING ............................................................................................ A-2FIGURE A3: WEIDMULLER RAIL MOUNTING .................................................................................. A-2FIGURE C1: PPI EXPANSION ELECTRIC DIAGRAM .......................................................................... C-1FIGURE C2: SPA 03 ELECTRIC DIAGRAM ...................................................................................... C-2FIGURE C3: QTP 16P ELECTRIC DIAGRAM .................................................................................. C-3FIGURE C4: QTP 24P ELECTRIC DIAGRAM (1 OF 2) ..................................................................... C-4FIGURE C5: QTP 24P ELECTRIC DIAGRAM (2 OF 2) ..................................................................... C-5FIGURE C6: ABACO® I/O BUS INPUT OUTPUT ELECTRIC DIAGRAM ............................................ C-6FIGURE C7: BUS INTERFACE ELECTRIC DIAGRAM ......................................................................... C-7FIGURE C8: IAC 01 ELECTRIC DIAGRAM ...................................................................................... C-8

grifo ® ITALIAN TECHNOLOGY

Page IV GPC® 184 Rel. 5.10

ITALIAN TECHNOLOGY grifo ®

Page 1 GPC® 184 Rel. 5.10

INTRODUCTIONINTRODUCTION

The use of these devices has turned - IN EXCLUSIVE WAY - to specialized personnel.

The purpose of this handbook is to give the necessary information to the cognizant and sure use ofthe products. They are the result of a continual and systematic elaboration of data and technical testssaved and validated from the manufacturer, related to the inside modes of certainty and quality ofthe information.

The reported data are destined- IN EXCLUSIVE WAY- to specialized users, that can interact withthe devices in safety conditions for the persons, for the machine and for the enviroment, impersonatingan elementary diagnostic of breakdowns and of malfunction conditions by performing simplefunctional verify operations , in the height respect of the actual safety and health norms.

The informations for the installation, the assemblage, the dismantlement, the handling, the adjustment,the reparation and the contingent accessories, devices etc. installation are destined - and thenexecutable - always and in exclusive way from specialized warned and educated personnel, ordirectly from the TECHNICAL AUTHORIZED ASSISTANCE, in the height respect of themanufacturer recommendations and the actual safety and health norms.

The devices can't be used outside a box. The user must always insert the cards in a container thatrispect the actual safety normative. The protection of this container is not threshold to the onlyatmospheric agents, but specially to mechanic, electric, magnetic, etc. ones.

To be on good terms with the products, is necessary guarantee legibility and conservation of themanual, also for future references. In case of deterioration or more easily for technical updates,consult the AUTHORIZED TECHNICAL ASSISTANCE directly.

To prevent problems during card utilization, it is a good practice to read carefully all the informationsof this manual. After this reading, the user can use the general index and the alphabetical index,respectly at the begining and at the end of the manual, to find information in a faster and more easyway.

CARD VERSIONCARD VERSION

The present handbook is reported to the GPC® 184 card release 100997 and later. The validity of thebring informations is subordinate to the number of the card release. The user must always verify thecorrect correspondence among the two denotations. On the card the release number is present in morepoints both board printed diagram (serigraph) and printed circuit (for example between the CPU anthe memoriey devices on the component side).

grifo ® ITALIAN TECHNOLOGY

Page 2 GPC® 184 Rel. 5.10

GENERAL FEATURESGENERAL FEATURES

GPC® 184 board is a powerful control low cost module capable of operating in stand alone modeor as an intelligent peripheral, and/or remoted, in a wider telecontrol or aquisition network. It is partof the CPU Serie 4, in BLOCK format, as low as 100x50 mm size.The GPC® 114 module can be secured in a plastic mount for connection to Omega railsDIN 46277-1 and DIN 46277-3, thereby dispensing with the need of a rack and allowing a less costlymounting direct to the electrical control panel. Thanks to this small size, the GPC® 184 put into thesame plastic rails that contains the peripheral I/O, i.e ZBx xxx , forms an unique BLOCK element.The GPC® 184 can also be mounted as a macro CPU module on a peripheral card of the end user,in Piggy Back (stack through) mode. The powerfull rom-based FGDOS operating system makeseasy to take advantage of the on-board resources and allows reduced development time thanks to itssupport to high level languages like C, PASCAL, etc. FGDOS also lets the User see as RAM/ROMdisks the memory devices, making possible to use them immediatly and easily by the high levellanguages disk access instructions. Adding an 82C55, external to the board, FGDOS can managea MCI 64 board that drives PCMCIA RAM cards, LCD or fluorescent displays, a matrix keyboardand a parallel printer. FGDOS is also capable to program a FLASH memory directly on the board.Boars of serie KDx xxx exist to be able to access these features immediatly, or, for who needs a well-developed device, operator panels QTP 24P and QTP 16P exist. These panels have the same lookas QTP 24 and QTP 16 but don't have on-board intelligence, so they must be driven directly by theGPC® 184 board, performing a cost reduction.For getting a quick prototype, cards such as SPA 03 and SPA 04 on which it is possible to mount theGPC® 184 in Piggy Back mode, are used. The presence on board of the ABACO® I/O BUSconnector, allows to drive directly I/O cards as: ZBR 84, ZBR 168, ZBR 246, ZBR 324, ZBT 84,ZBT 168, ZBT 246, ZBT 324 and so on, and through ABB 03, ABB 05 it is possible to manage allthe peripheral cards available on Abaco® BUS.

- Intelligent Module Abaco® BLOCK , Serie 4, size 100x50 mm- Optional container, format DIN 46277-1 and 3 rails compliant- CPU Z180, with 18,432 MHz quartz- Up to 512K of EPROM or FLASH and up to 512K of RAM . FGDOS uses memory exceeding 64K as RAM/ROM Disk. The User can reprogram the on-board FLASH memory with his/her program.- Real Time Clock capable to generate INT errupts- Back Up for RAM and RTC, through on-board LITHIUM battery or external battery- Clocked Serial I/O interface, available to the User, on the I/O connetor- 2 internal 16 bits wide Programmable Reload Timer channels- 2 RS232 serial lines, one of which settable as RS422, RS485 or Current Loop- Double Baud Rate generator, software programmable- Watch Dog circuitery, hardware manageable- Abaco® I/O BUS da 26 pins expansion connector- 4 different power saving modes: Halt ,STOP, Sleep and System Stop- Power Failure circuitry capable to generate interrupts- Consumption extermy reduced: only as low as 60 mA on 5Vdc- On-board logic protected against transients by TransZorb™- Wide range of development software available such as Remote Symbolic Debugger; Macro Assembler; GET 80; C compilers (HI TECH C 80 , DDS MICRO C 85); PASCAL compilers (PASCAL 80, EMBEDDED PASCAL ); FGDOS184 etc.

ITALIAN TECHNOLOGY grifo ®

Page 3 GPC® 184 Rel. 5.10

Here follows a description of the board's functional blocks, with an indication of the operationsperformed by each one. To easily locate these blocks and verify their connections pleare refer tofigure 1.

CPU

GPC® 184 board is designed to employ the Z180 CPU manifactured by ZILOG . This 8 bits CPUis code compatible with Z80 so it features an extended instructions set (170), high speed of executionand data manipulation and efficent vectored interrupts management. Remarkable is the presence ofthese peripherals inside the CPU:

- Two 16 bits timers, provided with programmable prescaler (PRT);- Two asynchronous serial lines capable to manage handshake signals (ASCI);- Two DMA channels for high speed data transfers (DMAC);- Memory management unit (MMU);- One synchronous serial line (CSI/O);- Interrupt controller;- Wait states generator to access external devices;- Idle and Stop modes, to reduce power consumption;

For further informations about this component please refer to the manifacturer documentation, or seeAppendix B of this manual.

MEMORY DEVICES

On the card can be monted 1024K bytes of memory divided with a maximum of 512K EPROM orFLASH EPROM, 512K static RAM. The GPC® 184 memory configuration must be chosenconsidering the application to realize or the specific requirements of the user. Normally the card isequipped with 128K byte of static RAM and all different configurations must be specified from theuser, at the moment of the order.With the on board back up circuit there is the possibility to keep data , also when power supply isfailed; in this way the card is always able to maintain parameters, logged data, system status andconfiguration, etc. without using expensive external UPS. The back up circuit is supplied by a onboard lithium battery or an external battery to be connected to a specific connector.The addressing of memory devices is controlled by a specific control logic, that provides to allocatethe devices in the microprocessor address space, this control logic automatically manages thedifferent addressing mode and it satisfies the requests of each GPC® 184 software tools.For further information about memory configuration, sockets description and jumpers connection,please refer to "ADDRESSES AND MAPS" and "PERIPHERAL DEVICES SOFTWAREDESCRIPTION" chapters and to "MEMORY SELECTION" paragraph for detailed informationsabout sockets to use and jumpers configuration.

grifo ® ITALIAN TECHNOLOGY

Page 4 GPC® 184 Rel. 5.10

SERIAL COMMUNICATION

Serial communication is completely software settable both for protocol and for speed (which rangesfrom 75 to as high as 57,6KBaud with standard clock frequency). These settings are performedprogramming the ASCI inside the microprocessor and the baude rate generator, for furtherinformations please refer to the manifacturer documentation or to Appendix B of this manual. Byhardware it is possible to select, through some on board jumpers,the electric communicationprotocol. In detail, one line is always buffered as RS 232, while the other line can be buffered in fourdifferent electrical protocols: RS 232, current loop, RS 485 or RS 422; in this last cases alsodirectionality and line activation is programmable.

CLOCK

GPC® 184 is provided with a circuitery that generates the CPU clock frequence (18,432 MHz); thisfrequence is used also to generate the frequencies needed to the other sections of the board (Timer,serial lines, etc.). If the User needs to run very fast applications the clock frequence can be evendoubled by interventing on the proper circuitry (for more informations please contact grifo ®). Wewould remark that the CPU clock frequence is always half of the crystal oscillation frequence.

POWER SUPPLY

The card must be powered only with +5 Vdc through the pin 25 (GND) and pin 26 (+5Vdc) of theCN1 connector. The power supply circuit generates all the necessary voltages for the card and it isdesigned for reducing the consumption (the microprocessor power down and idle mode areavailable) and for increasing the electrical noise immunity. In fact, as low as 60 mA of consumptionfor the normal working mode, allow the User to supply the board by batteries, solarr panels, smallpower supplies, etc. An intersting power failure circuitry capable to detect the imminent power blackout is installed on the board, so it can start a software intervent by generating an interrupt. Pleaseremember that on board there is a protection circuit aganist voltage peaks by TransZorb™.

BOARD CONFIGURATION

Jumper J4 has been introduced expressely to make the board and in particualr the application programconfugrable. The possibility to read by software the status of this jumper gives the User the abilityto manage many different conditions by an unique program, without having to employ other inputsingnals (typical applications are: language choice, program parameters definition, operationalmode selection, etc.). Some software tools developed for the GPC® 184 board use jumper J4 to selectbetween the operation modalities RUN and DEBUG, as described in the manuals of the toolsthemselves.

ITALIAN TECHNOLOGY grifo ®

Page 5 GPC® 184 Rel. 5.10

FIGURE 1: BLOCK DIAGRAM

CN5Clocked Serial I/O

DRIVERS RS 232RS 422RS 485

CURRENT LOOPRS 232

ABACO® I/O BUS

CN1

CN3ASERIAL LINE A

CN3BSERIAL LINE B

CN2BACK UP

CPUZ180

ASCI

CSI/O

CONTROLLOGIC

RTC

IC 2EPROM

FLASH EPROM

IC5

RAM

WATCHDOG

POWERFAILURE

JUMPERRUN/DEBUG

+

-

3VLITHIUMBATTERY

grifo ® ITALIAN TECHNOLOGY

Page 6 GPC® 184 Rel. 5.10

ABACO® I/O BUS

One of the most important features of GPC® 184 is its possibility to be interfaced to industrialABACO® I/O BUS .Thanks to its standard ABACO® I/O BUS connector, the card can be connectedto some of the numerous grifo ® boards,both intelligent and not. For example the user can directlyuse cards for analog signals acquisition (A/D like ABC 04 or ABB 08), cards for analog signalsgeneration (D/A), cards for digital I/O signals management, cards with timers and counters, cardsfor temperature controls, etc. also custom boards designed to satisfy specific needs of the end user.Using ABB 03 or ABB 05 mother boards it is possible manage all the BUS ABACO® single EUROcards. So GPC® 184 becomes the right component for each industrial automation system, in factABACO® I/O BUS makes the card easily expandable with the best price/performance ratio.

REAL TIME CLOCK

GPC® 184 board is provided with a complete Real Time Clock device capable to manage hours,minutes, seconds, day of month, month, year and day of week in stand alone mode. The componentis supplied by the back up circuitry to warrant data integrity in every working condition and iscompletely software programmable acting on 16 registers addressable in the CPU I/O addressingspace by a specific memory management circuitry.The RTC section can generate interrupts at asoftware programmable rate, for diverting the CPU from its normal tasks or awakening it from oneof its low consumption working modes.

WATCH DOG

GPC® 184 board is provided with a Watch Dog circuitery that, if used, allows to exit from infiniteloop or abnormal conditions not managed by the application program. This circuitery is made by anastable section with 1.5 sec of intervent time, is completely software managed (by accessing a registeraddressed in the CPU addressing space) and gives the board an exterme degree of safety.

RESET CONTACT

P1 reset contact of the GPC® 184 board allows the user to reset the board and restarting it in a generalclearing condition. The main purpose of this contact is to come out of infinite loop conditions, usefulespecially during debug or to grant a particular initial stat. Please see figure 9 for an easy localizationof this contact.

CONTROL LOGIC

A specific control logic is responsable of mapping the registers of the on-board devices and thememory devices.The logic allocates these devices in the CPU addressing space, for further informations please referto the paragraph "I/O MAPPING".

ITALIAN TECHNOLOGY grifo ®

Page 7 GPC® 184 Rel. 5.10

TECHNICAL FEATURESTECHNICAL FEATURES

GENERAL FEATURES

Devices: Two 16 bit timers (PRT)1 synchronous serial line (CSI/O)2 DMA channels (DMAC)1 RS 232 serial line (ASCI1=A)1 RS 232, RS 422, RS 485, current loop serial line(ASCI0 =B)1 reset contact1 astable hardware watch dog1 real time clock1 configuration jumper1 ABACO® I/O BUS interface1 power failure circuitry

Memory: IC 2: EPROM from 128K x 8 to 512K x 8FLASH EPROM from 128K x 8 to 512K x 8

IC 5: RAM from 128K x 8 to 512K x 8

CPU: ZILOG Z180 or HITACHI 64HD180

Crystal (clock) frequency: 18,432 (9,216) MHz

Watch dog intervent time: from 1,00 sec to 2,25 sec (typical 1,50 sec)

PHYSICAL FEATURES

Size (W x H x D): 100 x 50 x 25 mm (without container)110 x 60 x 60 mm (with DIN rails container)

Weight: 75 g (without container)135 g (with DIN rails container)

Connectors: CN1: 26 pins, male, vertical, low profile connectorCN2: 2 pins, male, vertical, low profile connectorCN3A: 6 pins, Plug, femaleCN3B: 6 pins, Plug, femaleCN5: 5+5 pins, male, vertical, strip connector

Temperature range: from 0 to 50 Centigrad degreeses

Relative humidity: 20% up to 90% (without condens)

grifo ® ITALIAN TECHNOLOGY

Page 8 GPC® 184 Rel. 5.10

ELECTRIC FEATURES

Power Supply: +5 Vdc

Consumption on 5 Vdc: 60 mA (default configuration)

On board back up battery: 3,0 Vdc; 180 mAh

External back up battery: 3,6÷5 Vdc

Back up current: 1,6 µA (on board battery)

RS 422, RS 485 line termination: Line termination resistance= 120 ΩPositive pull up resistance= 3,3 KΩNegative pull up resistance= 3,3 KΩ

Power failure intervent threshold: 1,25 Vdc

ITALIAN TECHNOLOGY grifo ®

Page 9 GPC® 184 Rel. 5.10

INSTALLATIONINSTALLATION

In this chapter there are the information for a right installation and correct use of the card. The usercan find the location and functions of each connectors, jumpers and some explanatory diagrams.

CONNECTIONS

The GPC®184 module has 5 connectors that can be linkeded to other devices or directly to the field,according to system requirements. In this paragraph there are connectors pin out, a short signalsdescription (including the signals direction) and connectors location (see figure 9).

CN2 - BACK UP EXTERNAL BATTERY CONNECTOR

CN2 is a 2 pins, vertical, male connector with 2,54mm pitch. Through CN2 the user can connect anexternal battery for RAM and RTC back up when the power supply is switched off (for furtherinformation please refer to chapter "BACK UP").

FIGURE 2: CN2 - EXTERNAL BACK UP BATTERY CONNECTOR

Signals description:

+Vbat = I - Positive pin of external back up batteryGND = - Negative pin of external back up battery

1 2 +Vbat GND

grifo ® ITALIAN TECHNOLOGY

Page 10 GPC® 184 Rel. 5.10

CN1 - ABACO® I/O BUS CONNECTOR

CN1 is a 26 pins, male, vertical, low profile connector with 2,54mm pitch.Through CN1 the card can be connected to some of the numerous grifo ® boards,both intelligent andnot. All this connector signals are at TTL level.

FIGURE 3 CN1 - ABACO® I/O BUS CONNECTOR

Signals description:

A0-A7 = O - Address BUS.D0-D7 = I/O - Data BUS./INT BUS = I - Interrupt request (open collector type)./NMI BUS = I - Non maskable interrupt (open collector type)./IORQ = O - Input output request./RD = O - Read cycle status./WR = O - Write cycle status./RESET = O - Reset./CS1 = O - Chip select 1: external devices decoded enablePFI = I - Power Failure input+5 Vdc = I/O - +5 Vdc power supply.GND = - Ground signal.

1 2

3 4

5 6

7 8

9 10

11 12

13 14

D0

D2

D4

D6

A0

A2

A4

D1

D3

D5

D7

A1

A3

A5

15 16

17 18

19 20

A6

/WR

/IORQ

A7

/RD

/RESET

21 22

23 24

25 26

/CS1

/INT BUS

GND

PFI

/NMI BUS

+5 Vdc

ITALIAN TECHNOLOGY grifo ®

Page 11 GPC® 184 Rel. 5.10

FIGURE 4: CARD PHOTO

FIGURE 5:COMPONENTS MAPS (SOLDERING SIDE AND COMPONENTS SIDE)

grifo ® ITALIAN TECHNOLOGY

Page 12 GPC® 184 Rel. 5.10

CN3A - SERIAL LINE A CONNECTOR

CN3A is a 6 pins, female PLUG connector for serial communication. Phisically, serial line A ofGPC® 184 board is connected to the ASCI 1 serial line of the CPU.Placing of the signal has been designed to reduce interference and electrical noise and to simplifyconnections with other systems, while the electric protocol follows the CCITT normative.

FIGURE 6: CN3A- SERIAL LINE A CONNECTOR

Signals description:

RXA RS 232 = I - Serial line A=ASCI1 RS 232 Receive Data.TXA RS 232 = O - Serial line A=ASCI1 RS 232 Transmit Data.CTSA RS 232 = I - Serial line A=ASCI1 RS 232 Clear To Send.RTSA RS 232 = O - Serial line A=ASCI1 (*1) RS 232 Request To Send.+5 Vdc/GND = - +5 Vdc power supply or ground signalGND = Ground signal

*1: The output handshake signal RTSA is not software manageable so it is kept continuoslydeactived = -10 Vdc. If this configuration is incompatible with the system to be connected,perform the connection without this signal.

+5 Vdc / GND GND TXA RS 232

RTSA RS 232 (*1) CTSA RS232

RXA RS 232

4 3 2 1 5 6

ITALIAN TECHNOLOGY grifo ®

Page 13 GPC® 184 Rel. 5.10

FIGURE 7: SERIAL COMMUNICATION DIAGRAM

Z180

DR

IVE

RS

RS 232

CN

3B

DRIVERS

RS 422RS 485

CURRENTLOOP

CN

3ASERIAL LINE A

SERIAL LINE B

AS

CI 1

AS

CI 0

grifo ® ITALIAN TECHNOLOGY

Page 14 GPC® 184 Rel. 5.10

CN3B - SERIAL LINE B CONNECTOR

CN3B is a 6 pins, female PLUG connector for serial line B, that can be buffered as RS 232, RS 422,RS 485 or Current Loop. Phisically, serial line B of GPC® 184 board is connected to the ASCI 0 serialline of the CPU. Placing of the signal has been designed to reduce interference and electrical noiseand to simplify connections with other systems, while the electric protocol follows the CCITTnormative.

FIGURE 8: CN3B- SERIAL LINE B CONNECTOR

Signals description:

RXB RS 232 = I - Serial line B=ASCI 0 RS 232 Receive Data.TXB RS 232 = O - Serial line B=ASCI 0 RS 232 Transmit Data.CTSB RS 232 = I - Serial line B=ASCI 0 RS 232 Clear To Send.RTSB RS 232 = O - Serial line B=ASCI 0 RS 232 Request To Send.RXB- RS 422 = I - Receive Data Negative: Serial line B=ASCI 0 negative signal for RS

422 serial differential receive.RXB+ RS 422 = I - Receive Data Positive: Serial line B=ASCI 0 positive signal for RS

422 serial differential receive.TXB- RS 422 = O - Transmit Data Negative: Serial line B=ASCI 0 negative signal for RS

422 serial differential transmit.TXB+ RS 422 = O - Transmit Data Positive: Serial line B=ASCI 0 positive signal for RS

422 serial differential transmit.

+5 Vdc / GNDGND

4 3 2 156

TXB RS 232 / TXB+ RS 422 /TXB- C.L.

RTSB RS 232 / TXB- RS 422 /TXB+ C.L.

CTSB RS232 / RXB- RS 422 /RXTXB- RS 485 / RXB- C.L.

RXB RS 232 / RXB+ RS 422 /RXTXB+ RS 485 / RXB+ C.L.

ITALIAN TECHNOLOGY grifo ®

Page 15 GPC® 184 Rel. 5.10

RXTXB- RS 485 =I/O-Receive Transmit Data Negative: Serial line B=ASCI 0 negativesignal for RS 485 serial differential receive and transmit.

RXTXB+ RS 485 =I/0- Receive Transmit Data Positive: Serial line B=ASCI 0 positive signalfor RS 485 serial differential receive and transmit.

RXB- C.L. = I - Receive Data Negative: Serial line B=ASCI 0 negative signal forCurrent Loop serial bipolar receive.

RXB+ C.L. = I - Receive Data Positive: Serial line B=ASCI 0 positive signal forCurrent Loop serial bipolar receive.

TXB- C.L. = O - Transmit Data Negative: Serial line B=ASCI 0 negative signal forCurrent Loop serial bipolar transmit.

TXB+ C.L. = O - Transmit Data Positive: Serial line B=ASCI 0 positive signal forCurrent Loop serial bipolar transmit.

+5 Vdc/GND = I - +5 Vdc or ground signal.GND = - Ground signal.

FIGURE 9: LEDS, CONNECTORS, MEMORIES , ETC. LOCATION

CN3B

P1

IC5RAM

CN5

CN3A

CN1

CN2

IC2ROM

BT1

LD1

grifo ® ITALIAN TECHNOLOGY

Page 16 GPC® 184 Rel. 5.10

FIGURE 10: RS 232 PIN OUT AND CONNECTION EXAMPLE

FIGURE 11: RS 422 PIN OUT AND POINT TO POINT CONNECTION EXAMPLE

FIGURE 12: RS 485 PIN OUT AND POINT TO POINT CONNECTION EXAMPLE

6 Ext

erna

l Sys

tem

CN

3A,B

GP

184

GND GND

5

2

RXA, RXB

TXA, TXB RX

TX

4

3

CTSA, CTSB

RTSA, RTSB CTS

RTS

4

5

6

RXB -

RXB +

GND GND

TX +

TX -

Ext

erna

l Sys

tem

CN

3B G

PC

® 1

84

3

2

TXB -

TXB + RX +

RX -

4

5

6

RXTXB -

RXTXB +

GND GND

TX / RX +

TX / RX -

Ext

erna

l Sys

tem

CN

3B G

PC

® 1

84

ITALIAN TECHNOLOGY grifo ®

Page 17 GPC® 184 Rel. 5.10

FIGURE 13: RS 485 PIN OUT AND NETWORK CONNECTION EXAMPLE

TXRX +

-

GND

Master

120 Ω

GP

184

Uni

t

TXRXB

+

-

Slave n

GND

+5V

TXRXB

+

-

GND

Slave 2

GP

184

Uni

t

TXRXB

+

-

GND

Slave 1

GP

184

Uni

t

grifo ® ITALIAN TECHNOLOGY

Page 18 GPC® 184 Rel. 5.10

FIGURE 14: 4 WIRES CURRENT LOOP POINT TO POINT CONNECTION EXAMPLE

FIGURE 15: 2 WIRES CURRENT LOOP POINT TO POINT CONNECTION EXAMPLE

4

5

RXB -

RXB + TX -

TX +

Ext

erna

l Sys

tem

CN

3B G

PC

® 1

84

2

3

TXB -

TXB + RX -

RX +

- +VCL

R

R

4

5

RXB -

RXB + TX -

TX +

Ext

erna

l Sys

tem

CN

3B G

PC

® 1

84

2

3

TXB -

TXB + RX -

RX +

- +VCL

R

ITALIAN TECHNOLOGY grifo ®

Page 19 GPC® 184 Rel. 5.10

FIGURE 16: CN5 SIGNALS CONNECTION DIAGRAM

CN5

PIN 5

Z180

PIN 1

PIN 2

PIN 3

CS

I/O

CKS

RXS

TXS

PIN 6

PIN 4

/INT1

CKA1

CKA0

+5 Vdc

grifo ® ITALIAN TECHNOLOGY

Page 20 GPC® 184 Rel. 5.10

CN5 - AUXILIARY SIGNALS CONNECTOR

CN5 is 2.54 mm pitch, 5+5 pins, male, vertical, strip connector. CN5 is the interface for 3 signals ofthe synchronous serial communication, one /INT 1 interrupt signal, 2 baud rate generator signals andthe power supply. All signal are TTL.

FIGURE 17: CN5 - AUXILIARY SIGNALS CONNECTOR

Signals description:

CKS = I/O - Isochronous serial line clock signal.RXS = I - Isochronous serial line receive signal.TXS = O - Isochronous serial line transmit signal./INT1 = I - Interrupt request /INT1.CKA0 = I/O - ASCI 0 = serial B baud rate generator clock signal.CKA1 = I/O - ASCI 1 = serial A baud rate generator clock signal.+5 Vdc = O - +5 Vdc power supply.GND = - Ground signal.

1 2

+5VdcGND

3 4

CKA1/INT1 5 6

CKA0TXS

7 8

RXSCKS

ITALIAN TECHNOLOGY grifo ®

Page 21 GPC® 184 Rel. 5.10

I/O CONNECTION

To prevent possible connecting problems between GPC® 184 and the external systems, the user hasto read carefully the information of the previous paragraphs and he must follow these instrunctions:

- For RS 232,RS 422, RS 485 or Current Loop communication signals the user must follow thestandard rules of these protocols.

- For all TTL signals the user must follow the rules of this electric standard. The connected digitalsignal must be always referred to card digital ground. For TTL signals, the 0 Vdc level correspondsto logic state "0", while 5Vdc level corrisponds to logic state "1".

VISUAL SIGNALATIONS

GPC® 184 board is provided with a LED in order to signal to the User some internal status conditions,as described in the following table:

FIGURE 18: VISUAL SIGNALATIONS TABLE

The main purpose of this LED is to provide the User a visual indication of the board status, makingeasier the operations to verify the correct workig of the system. To easily locate the LED on the boardplease see figure 9, while for a description about the modalities of RTC interrupt generation pleaserefer to the paragraph "REAL TIME CLOCK".

LED COLOUR DESCRIPTION

LD1 RedIndicates the activation of the Real Time Clock interrupt requestsignal (/INT2 of the CPU).

grifo ® ITALIAN TECHNOLOGY

Page 22 GPC® 184 Rel. 5.10

JUMPERS

On GPC® 184 there are 16 jumpers for card configuration, 9 of them are solder jumpers. Connectingthese jumpers, the user can define for example the memory type and size, the peripheral devicesfunctionality and so on. Below there is the jumpers list, location and function.

FIGURE 19: JUMPERS SUMMARIZING TABLE

The following tables describe all the right connections of GPC® 184 jumpers with their relativefunctions. To recognize these valid connections, please refer to the board printed diagram (serigraph)or to figure 5 of this manual, where the pins numeration is listed; for recognizing jumpers location,please refer to figures 20, 21. The "*" used in the following tables, denotes the default connection,or on the other hand the connection set up at the end of testing phase, that is the configuration the userreceives.

JUMPERS N. PIN FUNCTION

J1 3 It selects IC5 RAM size.

J2 3Matching with J3, it selects the device type, EPROM or FLASHEPROM, installed on IC2.

J3 3Matching with J2, it selects the device type, EPROM or FLASHEPROM, installed on IC2.

J4 2 It selects the configuration input (RUN or DEBUG).

J5 5 It selects between RS 422 and RS 485 for serial line B.

JS1 2Matching with JS2, it connects the termination and forcingcircuitry to the RS 485 line or to the RS 422 receive line.

JS2 2Matching with JS1, it connects the termination and forcingcircuitry to the RS 485 line or to the RS 422 receive line.

JS3 3 It selects the type of the connection for pin 1 of CN3A.

JS4 3 It selects the type of the connection for pin 1 of CN3B.

JS10 2 Activates the watch dog circuitry.

JS11 2 It keeps enabled the CPU CTSB handshake.

JS14 2 It connects the on board battery BT1 to the back up circuitry.

JS19 3 It selects which interrupt to connect to the power failure.

JS21 2 It selects the connection of the CTSA handshake.

ITALIAN TECHNOLOGY grifo ®

Page 23 GPC® 184 Rel. 5.10

FIGURE 20: JUMPERS LOCATION (COMPONENT SIDE)

FIGURE 21: JUMPERS LOCATION (SOLDERING SIDE)

J1

J4

J2

J3

J5

JS1

JS11

JS10

JS19

JS3

JS4

JS21

JS14

JS2

grifo ® ITALIAN TECHNOLOGY

Page 24 GPC® 184 Rel. 5.10

2 PINS JUMPERS

FIGURE 22: 2 PINS JUMPERS TABLE

JUMPERS CONNECTION USE DEF.

J4 not connected It connects +5Vcc to the configuration input,selecting RUN mode.

*

connected It connects GND to the configuration input,selecting DEBUG mode.

JS1 not connected Matching with JS2, it does not connect theforcing and terminating circuitry to the RS 485line or to the RS 422 receive line.

*

connected Matching with JS2, it does connects the forcingand terminating circuitry to the RS 485 line orto the RS 422 receive line.

JS2 not connected Matching with JS1, it does not connect theforcing and terminating circuitry to the RS 485line or to the RS 422 receive line.

*

connected Matching with JS1, it does connect the forcingand terminating circuitry to the RS 485 line orto the RS 422 receive line.

JS10 not connected Disables the watch dog circuitry. *

connected Enables the watch dog circuitry.

JS11 not connected It does not keep enabled the CPU CTS0(=CTSB) handshake signal.

*

connected It keeps enabled the CPU CTS0 (=CTSB)handshake signal.

JS14 not connected It does not connect the on-board battery BT1 tothe back up circuitry.

*

connected It connects the on-board battery BT1 to the backup circuitry.

JS21 not connected It does not connect CTS1 (=CTSA) handshaketo the CPU.

connected It connects CTS1 (=CTSA) handshake to theCPU.

*

ITALIAN TECHNOLOGY grifo ®

Page 25 GPC® 184 Rel. 5.10

3 PINS JUMPERS

FIGURE 23: 3 PINS JUMPERS TABLE

5 PINS JUMPERS

FIGURE 24: 5 PINS JUMPERS TABLE

JUMPERS CONNECTION USE DEF.

J1 position 1-2 It configures IC5 RAM for 128K. *

position 2-3 It configures IC5 RAM for 512K.

J2 position 1-2 It configures IC2 for FLASH EPROM, matchingwith J3.

position 2-3 It configures IC2 for EPROM, matching with J3. *

J3 position 1-2 It configures IC2 for FLASH EPROM, matchingwith J2.

position 2-3 It configures IC2 for EPROM, matching with J2. *

JS3 position 1-2 It connects pin 1 of CN3A to GND. *

position 2-3 It connects pin 1 of CN3A to +5 Vcc.

JS4 position 1-2 It connects pin 1 of CN3B to GND. *

position 2-3 It connects pin 1 of CN3B to +5 Vcc.

JS19 Not connected It does not connect the power failure circuitry. *

position 1-2 It connects the power failure circuitry to the CPU/INT0 signal.

position 2-3 It connects the power failure circuitry to the CPU/NMI signal.

JUMPERS CONNECTION USE DEF.

J5 not connected It selects the RS 232 protocol for serial line B. *

position 1-2 and 3-4 It selects the RS 485 (half duplex 2 wires) forserial line B.

position 2-3 and 4-5 It selects the RS 422 (full duplex or half duplex4 wires) for serial line B.

grifo ® ITALIAN TECHNOLOGY

Page 26 GPC® 184 Rel. 5.10

BACK UP

GPC® 184 ha an on board lithium battery BT1 for the back up of RAM and RTC content when powersupply is switched off. Jumper JS14 connects phisically the battery so it can be disconnected to saveits duration whenever back-up is not needed. By CN2 connector itis possible to connect an externalbattery: configuration of jumper JS14 does not affect the working of this battery and it can replaceBT1 completely.Please refer to the paragraph “ELECTRIC FEATURES” to choose the type of the external back upbattery, to easily locate see figure 9.

MEMORY SELECTION

On GPC® 184 can be mounted up to 1024K bytes of memory divided in several configurations, asdescribed in the following table:

FIGURE 25: MEMORY SELECTION TABLE

All the above mentioned devices must follow the JEDEC pin out specifications. Fo furtherinformations about the signatures of the component that can be mounted please refer to themanifacturers documentations. To easily locate the memory devices please refer to figure 9.The default configuration of the GPC® 184 board memory is only 128K RAM; any different memoryconfiguration can be realized by the User by mounting the opportune devices or can be requested inthe ordering phase. Here follow the codes to order the optional memoy configurations:

.512 -> 512K RAM

For further informations about prices and options please contact grifo ®.

IC DEVICE SIZE JUMPERS CONNECTION

2 EPROM 128K Byte J2, J3 position 2-3

EPROM 256K Byte J2, J3 position 2-3

EPROM 512K Byte J2, J3 position 2-3

FLASH EPROM 128K Byte J2, J3 position 1-2

FLASH EPROM 512K Byte J2, J3 position 1-2

5 RAM 128K Byte J1 position 1-2

RAM 512K Byte J1 position 2-3

ITALIAN TECHNOLOGY grifo ®

Page 27 GPC® 184 Rel. 5.10

INTERRUPTS

One of the most important GPC® 184 features is the powerful interrupts management. Here is a shortdescription of how the board's hardware interrupt signals can be managed; a more completedescription of the hardware interrupts can be found in the microprocessor data sheets or in AppendixB of this manual.

- ABACO® I/O BUS -> It generates an /NMI interrupt, by the /NMI BUS signal of CN1connector.It generates an /INT0 non vectored interrupt, by the /INT BUS signalof CN1 connector.

- Real Time Clock -> It generates an /INT2 vectored interrupt.- Auxiliary signals -> It generates an /INT1 vectored interrupt, by the homonymous CN5

signal.- Power failure -> It generates an /NMI interrupt or an /INT0 non vectored interrupt.- CPU inside devices -> They generate a vectored interrupt. Possible sources of internal

interrupt events are: PRT 0, PRT 1, DMA 0, DMA 1, CSI/O, ASCI 0,ASCI 1.

The board features a chained priority structure that manages the case of contemporary interrupts. Theaddresses of the response procedures for vectored interrupts can be software programmed by the Useracing on microprocessor inside registers. So the user program has always the possibility to reactpromptly to every external event, deciding also the priority of interrupts.

CONFIGURATION INPUTS

GPC® 184 board is provided with one jumper (J4), tipically used for system configuration purposes,that can be software acquired by the user program. The mostly implemented applications for thisfeature are: working conditions setting, selection of some on-board firmware parameters, etc. Theconfiguration of the jumper generates a signal in complemented logic (0 -> means jumper connected1 -> means jumper disconnected) that can be read performing a read operation atthe address assignedto the jumper by the on board control logic. Some software tools use this jumper for the selectionbetween the RUN and DEBUG working modalities. For further informations please refer to theparagraph "I/O ADDRESSES", while to easily locate the jumper on the board please refer to figure20.

SOLDER JUMPERS

The solder jumpers called JSxx are connected by a thin copper connection on the solder side. So, ifone of their configurations has to be changed, the User must first cut this connection using asharpened cutter, then make the new connection using a low power soldering tool and some non-corrosive tin.

grifo ® ITALIAN TECHNOLOGY

Page 28 GPC® 184 Rel. 5.10

SERIAL COMMUNICATION SELECTION

The communication serial line A is always buffered in RS 232 while the serial line B can be bufferedin RS 232, RS 422, RS 485 or current loop electric standard. By hardware can be selected which oneof these electric standard is used, through jumpers connection (as described in the previous tables).By software the serial lines can be programmed to operate with 7, 8, 9 bits per character, parity,between 1 and 2 stop bits at standard or no standard baud rates, through some CPU internal registersetting.Some components necessary for RS 422 and RS 485 communication are not mounted and not testedon the default configuration card, so the first not standard configuration must always be executed bygrifo ® technician; then the user can change himself the configuration, following the belowdescription:

- SERIAL LINE B=ASCI 0 CONFIGURED IN RS 232 (default configuration)IC9 = MAX 202 driver

J5 = not connected IC10 = no componentJS1, JS2 = not connected IC11 = no componentJS11 = not connected IC12 = no component

IC13 = no component

- SERIAL LINE B=ASCI 0 CONFIGURED IN CURRENT LOOP (.CLOOP option)IC9 = no component

J5 = not connected IC10 = no componentJS1, JS2 = not connected IC11 = HP 4200 driverJS11 = connected IC12 = no component

IC13 = HP 4100 driverThe current loop serial line is a passive line, so during connection the user must provide anexternal power supply, as described in figures 14 and 15. The current loop interface allowseither point to point or network connection with 4 or 2 wires.

- SERIAL LINE B=ASCI 0 CONFIGURED IN RS 422 (.RS422 option)IC9 = no component

J5 = position 2-3, 4-5 IC10 = SN 75176 driverJS1, JS2 = (*) IC11 = no componentJS11 = connected IC12 = SN 75176 driver

IC13 = no componentWith /RTSB=/RTS0 signal (managed by software with ASCI 0 registers) the user enables ordisables the transmitter driver:

/RTS0 = low level = 0 logic state -> transmitter driver enabled/RTS0 = high level = 1 logic state -> transmitter driver disabled

allowing either point to point (driver can be mantained always enabled) or network (driver isenabled only when the unit can hold the line) connection.

ITALIAN TECHNOLOGY grifo ®

Page 29 GPC® 184 Rel. 5.10

Serial B = ASCI 0 in RS 232 Serial B = ASCI 0 in current loop

Serial B = ASCI 0 in RS 422 Serial B = ASCI 0 in RS 485

FIGURE 26: SERIAL COMMUNICATION DRIVER LOCATION

MAX 202

MA

X 2

02

HP4200

HP4100

MA

X 2

02

SN75176

SN75176

MA

X 2

02

SN75176

MA

X 2

02

grifo ® ITALIAN TECHNOLOGY

Page 30 GPC® 184 Rel. 5.10

- SERIAL LINE B=ASCI 0 CONFIGURED IN RS 485 (.RS485 option)IC9 = no component

J5 = position 1-2, 3-4 IC10 = no componentJS1, JS2 = (*) IC11 = no componentJS11 = connected IC12 = SN 75176 driver

IC13 = no componentWith /RTSB=/RTS0 signal (managed by software with ASCI 0 registers) the user defines theRS 485 line direction:

/RTS0 = low level = 0 logic state -> RS 485 line transmitting/RTS0 = high level = 1 logic state -> RS 485 line receiving

allowing network connection in a master multi slave system and multi master system. With RS485 communication line, on CN3B the pins 4 and 5 have the double function of reception andtransmission signals. All the transmitted characters are at the same time received when the userselect RS 485 on GPC® 184; in this way the line conflicts can be immediately recognized bysimply testing the received character after each transmission.

(*) With jumper JS1 and JS2 the RS 422 receiving line or the RS 485 line can be terminated andforced with a suitable resistors circuit. The line termination must be added only at the beginningand at the end of the physical line, connecting both the jumpers. Normally these jumper mustbe connected in point to point network, or on the farther cards in multipoints network.

After reset or power on phase, the /RTS0 signal is forced to high level that mantain the RS 485 driverreceiving and that disables the RS 422 transmitter driver; this condition eliminates any conflict onthe communication line.

- SERIAL LINE A=ASCI 1The output handshake signal RTSA is not software manageable so it is kept continuoslydeactived = -10 Vdc. If this condition is incompatible with the system to be connected, performthe connection without this signal.The JS21 jumper connects the handshake signal CTSA, converted by proper RS 232 driver,to CPU signal /CTS1. This last signal has a double functionality and it can work also as RXS,if the syncronous serial line available on CN5 is used, the JS21 jumper must be disconnected.

For further information about serial communication, please refer to connection examples describedin figures 10÷13.

RESET AND WATCH DOG

The watch dog circuit of GPC® 184 is really efficient and provided of easy software management.In details the most important features of this circuit are:- astable functionality;- intervent time of about 1,5 sec;- hardware enable;- software retrigger;With the astable mode when the intervent time elapses, the circuit becomes active, it stay active tillthe end of reset time (about200 msec) and after it is deactivated. Jumper JS10 connects the watch dog

ITALIAN TECHNOLOGY grifo ®

Page 31 GPC® 184 Rel. 5.10

circuit to reset circuit so when it is connected the watch dog is enabled and viceversa. The watch dogretrigger operation is described in chapter "WATCH DOG".After an activation and following deactivation of /RESET signal, the card resumes execution of theprogram saved on IC2 (at address 0000H) starting from a global reset status of all the on boardperipheral devices.Please remember that the /RESET signal is connected to CN1 connector and that on GPC® 184 areavailable other reset sources as the power good circuit and the contact P1. The two pins of P1 canbe connected to a normally open contact (i.e. a push button) and when the contact is closed (shortcutof the two pins) the reset circuit is enabled.

POWER FAILURE

Together with the power management circuit of the CPU, it is also available an interesting powerfailure circuit, that can be connected to two different interruptsignals (/NMI or /INT0).The power failure circuit checks the voltage connected to PFI pin of CN1 and whenever it reachesthe threshold intervent value (1,25V), it enables its output and it captures CPU attention if JS19 isconnected.The common use of this circuit is to inform application program of the imminent power supplyfailure, so as to save the necessary status information. The PFI signal can be connected withadvantages to power supply voltage through a dedicated resistors network; this one must provide thethreshold intervent voltage with a sufficient advance in confront of /RESET activation. This advancemust hold out to the end of interrupt service routine, so the resistors network values must be selectedaccording with used power supply voltage, residue capacitor charge and interrupt service executiontime.

grifo ® ITALIAN TECHNOLOGY

Page 32 GPC® 184 Rel. 5.10

SOFTWARESOFTWARE

A wide selection of software development tools can be obtained, allowing use of the module as asystem for its own development, both in assembler and in other high level languages; in this waythe User can easily develop all the requested application programs in a very short time. Generallyall software packages available for the mounted microprocessor, or for the Z80 and Z180 family,can be used, i.e.:

GET 80It is a complete program with Editor, Communication driver, and Mass Memory management for allZ80 family cards. This program, developed by grifo ®, allows to operate in the best conditions whenGDOS, FGDOS or xGDOS MCI software tools are used; GET 80 is supplied when one of thesetools is ordered and it is personalized with name and general data of the customer. A useful list ofpull down menus and the possibility of using mouse, make program use very comfortable. GET 80program can be executed both on MS-DOS system and on MACINTOSH computers too, throughSOFT-PC program. It is supplied on MS-DOS 3”1/2 floppy disk with the documentation on GDOS80 manual.

GDOS 184It is a complete development Tool for GPC® 184 card. It is supplied together with GET 80 programto allow an easy and immediate use of this powerful development system. GDOS is divided in twodifferent structures : the first one works on PC maintaining serial communication with the secondone. The second structure is on EPROM, it works on board of the card and it is an efficient operatingsystem that executes many low level functions and, at the same time, it allows high level languageuse. The combination of the said structures results in a complete machine, in fact the card uses PCresources (like floppy disk, hard disk, printer, keyboard, monitor, etc.) as its own peripheral devices.This resulting “virtual machine” performs operation in a transparent way for the User, so this lattercan operate with the same modality of standard PC languages. It is really interesting the compatibilityof GDOSwith all CP/M program and languages; so, if the User has experience, knowledge ordeveloped applications with CP/M, he can use immediately GDOS, without any changes.Moreover, GDOS can manage all memory devices exceeding 64K Bytes as RAM disk and ROMdisk. The on board RAM devices can directly be used performing data read and write operations withthe confortable file formats.This software tools is supplied on EPROM with MS-DOS GET 80 floppy disk, some examples,utilities and the operating system documentation.

FGDOS 184It is really similar to GDOS, but it can program and erase the on board FLASH EPROM with theapplication program developed from the User. In this way the external EPROM programmer is notnecessary to store definitely the program and it is possible to modify or to add code directly on theinstalled machine, through a portable PC.This software tools is supplied on FLASH EPROM with MS-DOS GET 80 floppy disk, someexamples, utilities and the operating system documentation.

ITALIAN TECHNOLOGY grifo ®

Page 33 GPC® 184 Rel. 5.10

xGDOS MCI 184It is a version of GDOS or FGDOS sofware tools, capable of PCMCIA Memory Card management.Using MCI 64 card, the GDOS operating system manages memory cards as RAM disk or ROM disk.All applications with data acquisition and data logging can be realized with high level languages thatmanage data on files, with a fast development time and without any software complication.This software tool is supplied on EPROM or FLASH EPROM with MS-DOS GET 80 floppy disk,some examples, utilities and the operating system documentation.

PASCAL 80It is an efficient and complete PASCAL Compiler for Z80 family cards, with features similar toRelease 3.0 of Borland Turbo PASCAL . It must work together with any GDOS version and it canexceed the 64K memory limits of Z80 family microprocessors through OVERLAY modality. Morethan one application program can be saved in RAM and/or ROM disks and subsequently executed.The terminal emulation of GET 80 program support the typical full screen PASCAL Editor,including the attributes management.This program is supplied as ROM DISK file in GDOS EPROM or FLASH EPROM and on MS-DOS floppy disk with some example and manual.

HI TECH C 80Professional C Cross Compiler of Hi-Tech Software Inc. This Compiler is terribly fast and itgenerates a small quantity of code. This result is due to advanced techniques in optimizing thegenerated code based on Artificial Intelligence techniques which allow to get a very compact andvery fast code. The package includes: IDE, Compiler, Code optimizer, Assembler, Linker, RemoteDebugger and so on. This tool is Full ANSI/ISO Standard and Full Library Source Code. Once theporting of the Remote-Debugger module is done, this tool allows the user the software debuggingdirectly on the hardware that he is experimenting. This type of specilization of the Remote Debuggeris available from now ant it is supplied with all grifo ® CPU cards. This software package is on 3”1/2 diskettes under MS-DOS format along with user manual. This version supports these followingCPUs: Z80, Z180, 84C011, 84C11, 84C013, 80C13, 84C015, 84C15, 64180, NCS800, Z181, Z182.

DDS MICRO C 85: low cost ross compiler for C source program. It is a powerful software tool thatincludes editor, C compiler (integer), assembler, optimizer, linker, library, and remote debugger, inone easy to use integrated development environment. There are also included the library sources andmany utilities programs.

NOICE : It is a PC hosted debugger consists of a target specific DOS program, NOICExxx.EXE, anda target resident monitor program. The two programs comunicate via RS 232. NOICE includes:source level debug; a disassembler; a file viewer; memory display and editing; a virtually unlimitednumber of breakpoints; hardware free single step; definition of symbols; the ability to record and playback files of commands; on line help.

grifo ® ITALIAN TECHNOLOGY

Page 34 GPC® 184 Rel. 5.10

RSD 184This software tools is a Remote Symbolic Debugger with two operating mode. The first one is amonitor debugger modality with software emulation on P.C.; the second is a remote monitordebugger modality that execute code directly on the card. Trough serial communication the User can:down load an HEX file and associated symbol table, debug code in symbolic mode, execute code instep to step mode or in real time mode, set breakpoint, dump and modify memory and registers, etc.RSD software tool supports both Z80 and Z180 instrunction sets. Really interesting is the programexecution management, in fact many hardware and software breakpoint are supported. RSD can beused together with assembler tools, like ZASM 80, and C Compiler CC 80.It is supplied on EPROM and on MS-DOS floppy disk with technical manual.

ZASM 80It is a macro cross assemler that operates on any PC with MS-DOS operating system. It supports bothZ80 and Z180 instruction sets. The generated code can be debugged on PC, through softwaresimulation, or directly on target card, through remote modality, using RSD software tools. ZASM80 is compatible with C Compiler CC 80 of which it assemble the compilation result.It is supplied on MS-DOS floppy disk with technical manual.

CC 80It is a complete C Compiler with ANSI/ISO standard, provided of floating point procedure, that cangenerate code for Z80 and Z180 family microprocessors. It works together with cross assemblerZASM 80 and Symbolic Debugger RSD.It is supplied on MS-DOS floppy disk with technical manual.

EMBEDDED PASCAL Z80 - Z180Cross compiler for PASCAL source program. It is a powerful software tool that includes editor,PASCAL compiler, assembler, optimizer, library, included in an easy to use integrated developmentenvironment for Windows 95 and NT. Many memory models and data types are supported andsources of library are provided too.

ITALIAN TECHNOLOGY grifo ®

Page 35 GPC® 184 Rel. 5.10

DEVICES MAP AND ADDRESSESDEVICES MAP AND ADDRESSES

INTRODUCTION

In this chapter are reported all informations about card use, related to hardware features ofGPC® 184. For example the registers addresses, the memory and peripheral devices allocation aredescribed below.

ON BOARD DEVICES ADDRESSES

The on board devices addresses are managed from a control logic, realized with CMOS gates. Thiscontrol logic allocates memory and peripheral devices with very low power consumption and simplesoftware management.The control logic has been designed to control the memory and the I/O peripherals addresses in aseparate manner. The Z180 microprocessor directly addresses 64K bytes of memory and 256 I/Oregisters and the control logic provides on board memory and peripheral devices allocattion insidethese addresses spaces. The maps management is completely driven by software through the MMUcircuit programmation: the used memory can be selected and divided in some size definiblesegments. About I/O maps the control logic avoids every conflicts problems between CPU internaland external peripherals.Summarizing the control logic allocates:

- ABACO® I/O BUS- Up to 512K bytes of EPROM or FLASH EPROM on IC 2- Up to 512K of RAM on IC 5- Configuration jumper J4- Real Time Clock- Watch dog circuit

The addresses of all these devices are described in the following paragraphs and can't be set withdifferent values. If some different specific maps are required, please contact directly grifo ®.

ABACO ® I/O BUS ADDRESSES

The GPC® 184 control logic defines ABACO® I/O BUS addresses and only these addresses mustbe used to manages correctly the BUS. As described in following "I/O ADDRESSES" table, only theaddresses from 80H to FFH are available for ABACO® I/O BUS. Any I/O operations at each one ofthese adrresses enables the /IORQ signal and the other control signals of CN1 connector. In theaddresses subrange 80H÷9FH it is also enabled the /CS1 signal, used for external peripheral devicescoded selection.

grifo ® ITALIAN TECHNOLOGY

Page 36 GPC® 184 Rel. 5.10

MEMORY ADDRESSES

The maximum 1024K bytes of memory, are allocated on the board as below described:

- Up to 512K bytes of EPROM or FLASH EPROM allocated in memory space.- Up to 512K bytes of RAM allocated in memory space.

GPC® 184 can directly manage no more than 64K bytes of memory that is the microprocessor logicaddressable space. On the board this logic space can be divided in three separated segments: eachones of these segment have software programmable dimension and start address. The CPU internalMMU circuit divides the logical space directly managed by the microprocessor into these 3 segmentsand it allocates them in the physical memory devices space. The MMU circuit is softwareprogrammable with I/O operations to three specific registers in a fast and comfortable manner. SoMMU allows software managements of a physical memory space very larger than microprocessormemory space.The following figure describe available memory configurations; for further informations on MMUuse and segments meaning (Common Area 0, Common Area 1 and Bank Area), please refer toappendix B, while for memory devices location and configuration refer to figures 9 and 25.After power on or reset phase, the MMU circuit allocates all the logical 64K space at the beginningof the physical space, therefore the card starts execution of code saved at address 0000H of EPROMor FLASH EPROM on IC2.

The memory size and type configurations must be selected both according to used software tools andUser requests and/or application features. The card configuration for the selected memory devicetypes and sizes on IC2 and IC5 sockets, is performed with some comfortable jumpers, as describedin "MEMORY SELECTION" chapter.

Some software tools, i.e. GDOS, self manage the MMU circuit to use all the available memories athigh level witout User intervention.

ITALIAN TECHNOLOGY grifo ®

Page 37 GPC® 184 Rel. 5.10

FIGURE 27: MEMORY ALLOCATION

I/O ADDRESSES

The on board control logic manages the allocation of all the peripheral devices registers in themicroprocessor I/O space, that is 256 bytes long. Next table shows names, addresses, meanings anddirections of peripheral device registers (including the internal microprocessor ones). For a detaileddescription of the registers function, please refer to next chapter "PERIPHERAL DEVICESSOFTWARE DESCRIPTION".

FFFFFH

RAM

IC 5

80000H

7FFFFH

00000H

EPROM / FLASH

IC 2

4÷64 KBytes

COMMON Area 0

BANK Area

COMMON Area 1

4÷64 KBytes

4÷64 KBytes

grifo ® ITALIAN TECHNOLOGY

Page 38 GPC® 184 Rel. 5.10

FIGURE 28: I/O ADDRESSES TABLE

DEVICES REG. ADDRESS R/W FUNCTION

ASCI ASCI 00H÷09H R/WInternal microprocessor registers, forasyncronous serial line

CSI/O CSIO 0AH÷0BH R/WInternal microprocessor registers, forClocked Serial I/O Port management

TIMER TMR 0CH÷1FH R/WInternal microprocessor registers, forTimer/Counter management

DMA DMA 20H÷32H R/WInternal microprocessor registers, for DMAlines management

INTERRUPT INT 33H÷35H R/WInternal microprocessor registers, forinterrupts management

REFRESH RCR 36H÷37H R/WInternal microprocessor registers, forRefresh circuit management

MMU MMU 38H÷3AH R/WInternal microprocessor registers, forMemory Management Unit management

I/O ICR 3BH÷3FH R/WInternal microprocessor registers, for I/Ocontrol management

REAL SEC1 40H R/W Data register for seconds units

TIME SEC10 41H R/W Data register for seconds decinesCLOCK MIN1 42H R/W Data register for minutes units

MIN10 43H R/W Data register for minutes decinesHOU1 44H R/W Data register for hours units

HOU10 45H R/W Data register for hours decines and AM/PMDAY1 46H R/W Data register for day unitsDAY10 47H R/W Data register for day decinesMON1 48H R/W Data register for month units

MON10 49H R/W Data register for month decinesYEA1 4AH R/W Data register for year units

YEA10 4BH R/W Data register for year decinesWEE 4CH R/W Data register for week day

REGD 4DH R/W Control register DREGE 4EH R/W Control register EREGF 4FH R/W Control register F

C. JUMPER RUNDEB 60÷7FH RRegister for configuration jumperacquisition

W. DOG RWD 60÷7FH R Register for watch dog retrigger

ABACO® /CS1 80H÷9FH R/WABACO® I/O BUS addresses that enable/CS1 signal

I/O BUS I/OBUS 80H÷FFH R/W ABACO® I/O BUS addresses

ITALIAN TECHNOLOGY grifo ®

Page 39 GPC® 184 Rel. 5.10

PERIPHERAL DEVICES SOFTWARE DESCRIPTIONPERIPHERAL DEVICES SOFTWARE DESCRIPTION

In the previous paragraphes are described the external registers addresses, while in this one there isa specific description of registers meaning and function (please refer to I/O addresses table, for theregisters names and addresses values). For a more detailed description of the devices, please referto manufacturing company documentation; for microprocessor internal peripheral devices, notdescribed in this paragraph, refer to appendix B. In the following paragraphs the D7÷D0 indicationdenotes the eight bits of the combination used in I/O operations.

REAL TIME CLOCK

This peripherial is allocated in 16 consecutives I/O addresses, 3 of which correspond to statusregistres while the remaining 13 are for datas. Data registers are used both for read operations (of thecurrent time and date) and write operations (to initialize the time and date) just like the status registerswhich are used in write operations (to program the operative mode) and in read operations (to acquirethe RTC status). Here follows a list of the RTC data registers' meanings:

SEC1 - Units of seconds - 4 least significant bits of SEC1.3÷SEC1.0SEC10 - Decines of secondi - 3 least significant bits of SEC10.2÷SEC10.0MIN1 - Units of minutes - 4 least significant bits of MIN1.3÷MIN1.0MIN10 - Decines of minutes - 3 least significant bits of MIN10.2÷MIN10.0HOU1 - Units of hours - 4 least significant bits of HOU1.3÷HOU1.0HOU10 - Decines of hours - 2 least significant bits of HOU10.1÷HOU10.0

The third bit of HOU10.2 indicates AM/PMDAY1 - Units of day number - 4 least significant bits of DAY1.3÷DAY1.0DAY10 - Decines of day number - 2 least significant bits of DAY10.1÷DAY10.0MON1 - Units of month - 4 least significant bits of MON1.3÷MON1.0MON10 - Decines of month - 1 least significant bit of MON10.0YEA1 - Units of year - 4 least significant bits of YEA1.3÷YEA1.0YEA10 - Decines of year - 4 least significant bits of YEA10.3÷YEA10.0WEE - Day of the week - 3 least significant bits of WEE.2÷WEE.0

For this last register the three least significant bits mean:

WEE.2 WEE.1 WEE.0 Day of the week0 0 0 Sunday0 0 1 Monday0 1 0 Tuesday0 1 1 Wednesday1 0 0 Thursday1 0 1 Friday1 1 0 Saturday

The meaning of the three control registers is:

grifo ® ITALIAN TECHNOLOGY

Page 40 GPC® 184 Rel. 5.10

bit 7 6 5 4 3 2 1 0REG D = NU NU NU NU 30S IF B Hwhere:NU = Not used.30S = If high (1) itallowes a 30 seconds correction of the time. Once set the RTC seconds are

reset and the minutes increased, if the previous seconds was equal or greater than 30.IF = It manages the RTC interrupt status. When read it shows the current interrupt status (1

active and viceversa), when reset to 0 it disables the RTC interrupt signal if the interruptmode is selected.

B = Indictes whether R/W operations can be performed on the registers:1 -> operations are not permitted and viceversa.

H = If high (1) it stores the written time and date.

bit 7 6 5 4 3 2 1 0REG E = NU NU NU NU T1 T0 I Mwhere:NU = Not used.T1 T0 = Determin the duration of the internal counters interrupt cycle. 0 0 -> 1/64 second 0 1 -> 1 second 1 0 -> 1 minute 1 1 -> 1 hourI = It defines the interrupt operating mode:

1 -> it selects interrupt mode: when the selected duration elapses the interrupt isenabled and then disabled only with a reset of bit IF of control register D;

0 -> it selects the standard mode: when the selected duration elapses the interruptis enabled and then disabled only after 7,8 msec.

M = It mask the interrupt status:1 -> interrupt masked: the RTC interrupt signal is always disabled;0 -> interrupt not masked: the RTC interrupt signal reflects interrupt status.

bit 7 6 5 4 3 2 1 0REG F = NU NU NU NU T 24/12 S Rwhere:NU = Not used.T = It determines from which internal counter to take the counting signal:

1 -> main counter (fast counter for test);0 -> 15th counter.

24/12 = It determines the hours counting mode:1 -> 0÷23;0 -> 1-12 with AM/PM.

S = If high (1) it stops the clock time counting until the next enabling (0).R = If high (1) it resets all the internal counters.

ITALIAN TECHNOLOGY grifo ®

Page 41 GPC® 184 Rel. 5.10

WATCH DOG

Retrigger operation of GPC® 184 watch dog circuit is performed with a simple read operation at theaddress of register RWD. This register shares the same address of other on board peripherals, but noconflict are generated in fact retrigger operation is an input operation and the read data has nomeaning. To avoid watch dog activation it is necessary to retrigger its circuit at regular time periodsand the duration of these periods must be smaller than intervent time. If retrigger doesn't happen asbefore described and JS14 is connected, when intervention time is elapsed, the card is reset. Thedefault intervention time is about 1.5 sec.

CONFIGURATION JUMPER

The J4 configuration jumper installed on the GPC® 184 board can be acquired simply by performinga read operation from RUNDEB registers and masking bit D7. The value is in complemented logic,this means that the connected jumper gives a logic value "0" while if the jumper is not connected thelogic value read will be "1".This jumper switches between theRUN (not connected) or the DEBUG (connected) mode, a featureused by some grifo ® software tools.

CPU INTERNAL PERIPHERALS

The decriptions of the registers that manages the CPU internal peripheral devices (ASCI, CSI/O,TIMER, DMA, INTERRUPT, REFRESH, MMU, I/O) is available in the appendix B. Whenever thisinformations are still insufficient, please refer to specific documentation of the manufacturingcompany.

grifo ® ITALIAN TECHNOLOGY

Page 42 GPC® 184 Rel. 5.10

EXTERNAL CARDSEXTERNAL CARDS

GPC® 184 can be connected to a wide range of block modules and operator interface systemproduced by grifo ®, or to many system of other companies.The on board resources can be expandedwith a simple connection to the numerous peripheral grifo ® boards,both intelligent and not, thanksto its standard ABACO® I/O BUS connector. Even single EURO cards with BUS ABACO® can beconnected, by using the proper mother boards.Hereunder some of these cards are briefly described; ask the detailed information directly to grifo ®,if required.

QTP G26Quick Terminal Panel - LCD Graphic, 26 keys

Intelligent user panel equipped with graphic LCD display 240x128 pixel, CFC backlit; optocoupledRS 232 line and additional RS 232, RS 422, RS 485 or current loop serial line. Indipendent optionalCAN line controller; serial E2 for set up; RTC and RAM Lithium backed; primary graphic objects;possibility of renaming keys, LEDs and panel name by inserting label with new name into the properslot; 26 Keys and 16 LEDs with blinking attribute and buzzer manageable by software; built in powersupply; reader of magnetic badge, smart card and relay option.

ADC 812Analog to Digital Converter, 12 bits, multi range

DAS (Data Acquisition System) multi range 8 channels 12 bit A/D conversion lines; track and hold;6µs conversion time; range ±10, ±5, +10, +5Vdc or 0÷20, 4÷20mA; analog inputs connectionsthrough quick terminal screw connectors; ABACO ® I/O BUS interface; direct mounting for DIN247277-1 and 3 rails; 4 type dimension.

DAC 212Digital to Analog Converter 12 bits, multi range

Digital to Analog converter; multi range 2 channels 12 bits ± 10, +10 Vdc output; analog outputsconnections through quick terminal screw connectors; ABACO ® I/O BUS interface; direct mountingfor DIN 247277-1 and 3 rails; 4 type dimension.

CAN 14Control Area Network, 1 channel, galvanically insulated

UART CAN SJA1000; 1 serial channels galvanically insulated; ABACO® I/O BUS interface; 4 typedimension; support of CAN 2.0B protocol; transfer rate up to 1M bit/sec; direct mounting for DIN247277-1 and 3 rails.

ETI 324Encoder Timer I/O, 3 counters, 24 I/O

Three timers counters driven by 82C54; bidirectional optocoupled encoder input; direction identifier;phases multiplier; 24 digital lines driven by 82C55 on two standard I/O ABACO® connectors;ABACO® I/O BUS interface; direct mounting for DIN 247277-1 and 3 rails; 4 type dimension.

ABB 05ABACO® Block BUS 5 slots

5 slots ABACO® mother board with power supply. Double power supply built in; 5Vdc 2,5A sectionfor powering the on board logic; second section at 24Vdc 400mA galvanically coupled, for theoptocoupled input lines. Auxiliary connector for ABACO® I/O BUS. Connection for DIN Ω rails.

ITALIAN TECHNOLOGY grifo ®

Page 43 GPC® 184 Rel. 5.10

PC

like

or

Mac

into

shP

L C

QT

P G

26P

C li

ke o

rM

acin

tosh

QT

P G

26

EX

TE

RN

AL

LIT

IUM

BA

TT

ER

Y3,

6 V

+ -

1 H

ardw

are

Ser

ial

Line

RS

232

, R

S 4

22, R

S 4

85, C

urre

nt L

oop

AB

AC

I/O

BU

S

AB

B 0

3 or

AB

B 0

5, e

tc.

ZB

x se

ries

CI/O

R16

-T16

, etc

.

IPC

52,

UA

R 2

4, e

tc.

AN

Y I/

O T

YP

E

ABACO® BUS

1 H

ardw

are

Ser

ial

Line

RS

232

QT

P 2

2

P L

C

CO

NN

EC

TIO

N T

O Q

TP

24P

,Q

TP

16P

, KD

x x

xx, M

CI 6

4, e

tc.

882c

5582

C55

ME

MO

RIE

S, S

HIF

T

RE

GIS

TE

Rs,

PE

RIP

HE

RA

LS,

or a

ny d

evic

es w

ithsy

ncro

nous

ser

ial i

nter

face

(CS

I/O, S

PI,

Mic

row

ire, e

tc.)

FIGURE 29: AVAILABLE CONNECTIONS DIAGRAM

grifo ® ITALIAN TECHNOLOGY

Page 44 GPC® 184 Rel. 5.10

ABB 03ABACO® Block BUS 3 slots

3 slots ABACO® mother board; 4 TE pitch connectors; ABACO® I/O BUS connector; screwterminal for power supply; connection for DIN C type and Ω rails.

ZBT xxxZipped BLOCK Transistors xy Input + yz Output

Peripheral cards family having xy optocoupled inputs and yz 3A open collector transistor outputs;plastic container for Ω rails mounting; double power supply, galvanically coupled, for the optocoupledinput lines and for the logic plus external card. I/O lines displayed by LEDs; transistors outputsequipped with protection against inductive loads; I/O connections available on easy quick terminalconnectors; interface to ABACO® I/O BUS. The following models are available: xxx=324 -> 32 Inand 24 Out; xxx=246 -> 24 In and 16 Out; xxx=168 -> 16 In and 8 Out; xxx=84 -> 8 In and 4 Out.

IBC 01Interface Block Comunication

Conversion card for serial communication, 2 RS 232 lines; 1 RS 422-485 line; 1 optical fibre line;selecatble DTE/DCE interface; quick connection for DIN 46277-1 and 3 rails.

FBC xxxFlat Block Contactxxx pins

This interconnection system "wire to board" allows the connection to many type of flat cableconnectors to terminal for external connections. Connection for DIN Ω rails.

BIBLIOGRAPHYBIBLIOGRAPHY

In this chapter there is a complete list of technical books, where the user can find all the necessarydocumentations on the components mounted on GPC® 184.

Data book Manuale TEXAS INSTRUMENTS: The TTL Data Book - SN54/74 FamiliesData book Manuale TEXAS INSTRUMENTS: RS-422 and RS-485 Interface Circuits

Data book NEC: Memory Products

Data book HEWLETT PACKARD: Optoelectronics Designer's Catalog

Data book MAXIM: New Releases Data Book - Volume 4Data book MAXIM: Integrated Circuits Data Book

Data book SEIKO EPSON: REAL TIME CLOCK MODULE RTC-72421Application manual

Data book ZILOG: Z80180 Z180 MPU Technical Manual

Data book TOSHIBA: Mos Memory Products

For further information and upgrades please refer to specific internet web pages of the manufacturingcompanies.

ITALIAN TECHNOLOGY grifo ®

Page A-1 GPC® 184 Rel. 5.10

APPENDIX A: CARD MECHANICAL MOUNTINGAPPENDIX A: CARD MECHANICAL MOUNTING

The GPC® 184 can be physically mounted in two different manner. The first is the piggy backmounting (stack trough mode) that use the two connectors CN1 and CN5 for the interface with a userdeveloped board. This connectors lead out of 7 mm on solder side and the user board must haveproper female strip connectors (2,54 mm pitch) where the card can be plugged in, obtaining a singlesystem.The second mode expect a mounting inside a proper plastic container for a direct mounting on DIN247277-1 and 3 Ω rails; if the card is used with some other peripheral cards (i.e. ZBR xxx or ZBTxxx), a single longer container can be used obtaining a single module. The described plastic containercode is 414487 type RS/100 by Weidmuller and it can be ordered to grifo ® as WM.lll options, wherelll is the required lenght. By selecting this mounting the electric connection between GPC® 184 andother peripheral cards is performed with a flat cable that must be really short.In the following figures are described the module dimensions with the connector positions and someimmages that illustrate the connection modes.

FIGURE A1: MODULE DIMENSION FOR PIGGY BACK MOUNTING

grifo ® ITALIAN TECHNOLOGY

Page A-2 GPC® 184 Rel. 5.10

FIGURE A2: PIGGY BACK MOUNTING

FIGURE A3: WEIDMULLER RAIL MOUNTING

ITALIAN TECHNOLOGY grifo ®

Page B-1 GPC® 184 Rel. 5.10

APPENDIX B: ON BOARD DEVICES DESCRIPTIONAPPENDIX B: ON BOARD DEVICES DESCRIPTION

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-1

P

RE

LIM

INA

RY

PR

OD

UC

T

S

PE

CIF

ICA

TIO

N

Z80

180/

Z8S

180/

Z8L

180

SL

1919

E

NH

AN

CE

D

Z18

0 M

ICR

OP

RO

CE

SS

OR

FE

AT

UR

ES

Cod

e C

ompa

tible

with

Zilo

g Z

80

®

CP

U

Ext

ende

d In

stru

ctio

ns

Tw

o C

hain

-Lin

ked

DM

A C

hann

els

Low

Pow

er-D

own

Mod

es

On-

Chi

p In

terr

upt C

ontr

olle

rs

Thr

ee O

n-C

hip

Wai

t-S

tate

Gen

erat

ors

On-

Chi

p O

scill

ator

/Gen

erat

or

Exp

ande

d M

MU

Add

ress

ing

(up

to 1

MB

)

Clo

cked

Ser

ial I

/O P

ort

Tw

o 16

-Bit

Cou

nter

/Tim

ers

Tw

o E

nhan

ced

UA

RT

s (u

p to

512

Kbp

s)

Clo

ck S

peed

s: 6

, 8, 1

0, 2

0, 3

3 M

Hz

Ope

ratin

g R

ange

: 5V

(3.

3V@

20

MH

z)

Ope

ratin

g T

empe

ratu

re R

ange

: 0

°

C to

+70

°

C

-40

°

C to

+85

°

C E

xten

ded

Tem

pera

ture

Ran

ge

Thr

ee P

acka

ging

Sty

les

–68

-Pin

PLC

C

–64

-Pin

DIP

–80

-Pin

QF

P

GE

NE

RA

L D

ES

CR

IPT

ION

The

enh

ance

d Z

8018

0/Z

8S18

0/Z

8L18

0

sig

nific

antly

im-

prov

es o

n th

e pr

evio

us Z

8018

0 m

odel

s w

hile

stil

l pro

vidi

ngfu

ll ba

ckw

ard

com

patib

ility

with

exi

stin

g Z

ilog

Z80

dev

ices

.T

he Z

8018

0/Z

8S18

0/Z

8L18

0 no

w o

ffers

fas

ter

exec

utio

nsp

eeds

, pow

er s

avin

g m

odes

, and

EM

I noi

se r

educ

tion.

Thi

s en

hanc

ed Z

180

desi

gn a

lso

inco

rpor

ates

add

ition

alfe

atur

e en

hanc

emen

ts

to

the

AS

CIs

, D

MA

s,

and

I

cc

ST

AN

DB

Y M

ode

pow

er c

onsu

mpt

ion.

With

the

addi

tion

of“E

SC

C-li

ke” B

aud

Rat

e G

ener

ator

s (B

RG

s), t

he tw

o A

SC

Isno

w h

ave

the

flexi

bilit

y an

d ca

pabi

lity

to tr

ansf

er d

ata

asyn

-ch

rono

usly

at r

ates

of u

p to

512

Kbp

s. In

add

ition

, the

AS

CI

rece

iver

has

add

ed a

4-b

yte

Firs

t In

Firs

t Out

(F

IFO

) w

hich

can

be u

sed

to b

uffe

r in

com

ing

data

to

redu

ce t

he i

nci-

denc

e of

ove

rrun

err

ors.

The

DM

As

have

bee

n m

odifi

ed to

allo

w f

or a

“ch

ain-

linki

ng”

of t

he t

wo

DM

A c

hann

els

whe

nse

t to

tak

e th

eir

DM

A r

eque

sts

from

the

sam

e pe

riphe

rals

devi

ce. T

his

feat

ure

allo

ws

for n

on-s

top

DM

A o

pera

tion

be-

twee

n th

e tw

o D

MA

cha

nnel

s, re

duci

ng th

e am

ount

of C

PU

inte

rven

tion

(Fig

ure

1).

Not

onl

y do

es t

he Z

8018

0/Z

8S18

0/Z

8L18

0 co

nsum

e le

sspo

wer

dur

ing

norm

al o

pera

tions

tha

n th

e pr

evio

us m

odel

it ha

s al

so b

een

desi

gned

with

thre

e m

odes

inte

nded

to fu

rth

er re

duce

the

pow

er c

onsu

mpt

ion.

Zilo

g re

duce

d I

cc

pow

er c

onsu

mpt

ion

durin

g S

TA

ND

BY

Mod

e to

a m

inim

um o

10

µ

A b

y st

oppi

ng t

he e

xter

nal

osci

llato

rs a

nd i

nter

nacl

ock.

The

SLE

EP

mod

e re

duce

s po

wer

by

plac

ing

the

CP

U i

nto

a “s

topp

ed”

stat

e, t

here

by c

onsu

min

g le

ss c

urre

nt w

hile

the

on-

chip

I/O

dev

ice

is s

till

oper

atin

g. T

heS

YS

TE

M S

TO

P m

ode

plac

es b

oth

the

CP

U a

nd t

he o

nch

ip p

erip

hera

ls in

to a

“st

oppe

d” m

ode,

the

reby

red

ucin

gpo

wer

con

sum

ptio

n ev

en fu

rthe

r.

A n

ew c

lock

dou

bler

feat

ure

has

been

impl

emen

ted

in th

eZ

8018

0/Z

8S18

0/Z

8L18

0 de

vice

tha

t al

low

s th

e pr

ogra

mm

er t

o do

uble

the

int

erna

l cl

ock

from

tha

t of

the

ext

erna

cloc

k. T

his

prov

ides

a s

yste

ms

cost

sav

ings

by

allo

win

gth

e us

e of

low

er c

ost,

low

er f

requ

ency

cry

stal

s in

stea

d o

the

high

er c

ost,

and

high

er s

peed

osc

illat

ors.

The

Enh

ance

d Z

180

is h

ouse

d in

80-

pin

QF

P,

68-p

inP

LCC

, and

64-

pin

DIP

pac

kage

s.

Z

8018

0/Z

8S18

0/Z

8L18

0

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-2

P R

E L

I M

I N

A R

Y

DS

9718

0040

2

No

tes:

All

Sig

nals

with

a p

rece

ding

fron

t sla

sh, “

/” a

re a

c-tiv

e Lo

w,

for

exam

ple,

B//W

(W

OR

D is

act

ive

Low

); /

B/W

(BY

TE

is

activ

e Lo

w,

only

). A

ltern

ativ

ely,

an

over

slas

hm

ay b

e us

ed to

sig

nify

act

ive

Low

, for

exa

mpl

e W

R

Pow

er c

onne

ctio

ns f

ollo

w c

onve

ntio

nal

desc

riptio

ns b

e-lo

w:

Co

nn

ecti

on

Cir

cuit

Dev

ice

Pow

erV

CC

V

DD

Gro

und

GN

DV

SS

Fig

ure

1.

Z80

180/

Z8S

180/

Z8L

180

Fu

nct

ion

al B

lock

Dia

gra

m

16-

bit

Pro

gram

mab

leR

eloa

d Ti

mer

s

(2)

Clo

cked

S

eria

l I/O

P

ort

MM

U

Bus

Sta

te C

ontr

ol CP

U

Inte

rrup

t

/RESET

/RD

/WR

/M1

/MREQ

IORQ

/HALT

/WAIT

/BUSREQ

/BUSACK

/RFSH

ST

E

/NMI

INT0

INT1

INT2

TX

S

RX

S/C

TS

1

CK

S

A18

/TO

UT

DM

AC

S

(2)

Asy

nchr

onou

sS

CI

(Cha

nnel

0)

Asy

nchr

onou

sS

CI

(Cha

nnel

1)

/DR

EQ

1

TE

ND

1

TX

A0

CK

A0,

/DR

EQ

0

RX

A0

/RT

S0

/CT

S0

/DC

D0

TX

A1

CK

A1,

/TE

ND

0

RX

A1

Ti

min

gG

ener

ator

XTAL

EXTAL

Ø

Dat

aB

uffe

rA

ddre

ssB

uffe

rV

CC

VS

S

A19

-A0

D7-

D0

Data Bus (8-Bit)

Address Bus (16-Bit)

grifo ® ITALIAN TECHNOLOGY

Page B-2 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-17

HA

LT

an

d

Lo

w-P

ow

er

Op

erat

ing

M

od

es.

The

Z80

180/

Z8S

180/

Z8L

180

can

oper

ate

in s

even

mod

es w

ithre

spec

t to

activ

ity a

nd p

ower

con

sum

ptio

n:

–N

orm

al O

pera

tion

–H

ALT

Mod

e

–IO

STO

P M

ode

–S

LEE

P M

ode

–S

YS

TE

M S

TOP

Mod

e

–ID

LE M

ode

–S

TAN

DB

Y

Mod

e (w

ith

or

with

out

QU

ICK

RE

CO

VE

RY

)

No

rmal

Op

erat

ion

. The

Z80

180/

Z8S

180/

Z8L

180

proc

es-

sor

is f

etch

ing

and

runn

ing

a pr

ogra

m.

All

enab

led

func

-tio

ns a

nd p

ortio

ns o

f th

e de

vice

are

act

ive,

and

the

HA

LTpi

n is

Hig

h.

HA

LT

Mo

de.

Thi

s m

ode

is e

nter

ed b

y th

e H

ALT

inst

ruc-

tion.

The

reaf

ter,

the

Z80

180/

Z8S

180/

Z8L

180

proc

esso

rco

ntin

ually

fetc

hes

the

follo

win

g op

code

but

doe

s no

t exe

-cu

te it

, and

driv

es th

e H

ALT

, ST

and

M1

pins

all

Low

. The

osci

llato

r an

d P

HI

pin

rem

ain

activ

e, i

nter

rupt

s an

d bu

sgr

antin

g to

ext

erna

l mas

ters

, and

DR

AM

refr

esh

can

occu

ran

d al

l on

-chi

p I/O

dev

ices

con

tinue

to

oper

ate

incl

udin

gth

e D

MA

cha

nnel

s.

The

Z80

180/

Z8S

180/

Z8L

180

leav

es H

ALT

mod

e in

re-

spon

se to

a L

ow o

n R

ES

ET

, on

to a

n in

terr

upt f

rom

an

en-

able

d on

-chi

p so

urce

, an

ext

erna

l re

ques

t on

NM

I, or

an

enab

led

exte

rnal

req

uest

on

INT

0, I

NT

1, o

r IN

T2.

In

case

of a

n in

terr

upt,

the

retu

rn a

ddre

ss w

ill b

e th

e in

stru

ctio

n fo

l-lo

win

g th

e H

ALT

inst

ruct

ion;

at t

hat p

oint

the

prog

ram

can

eith

er b

ranc

h ba

ck t

o th

e H

ALT

inst

ruct

ion

to w

ait

for

an-

othe

r in

terr

upt,

or c

an e

xam

ine

the

new

sta

te o

f th

e sy

s-te

m/a

pplic

atio

n an

d re

spon

d ap

prop

riate

ly.

SL

EE

P

Mo

de.

T

his

mod

e is

en

tere

d by

ke

epin

g th

eIO

ST

OP

bit

(IC

R5)

bits

3 a

nd 6

of t

he C

PU

Con

trol

Reg

is-

ter

(CC

R3,

CC

R6)

all

zero

and

exe

cutin

g th

e S

LP in

stru

c-tio

n. T

he o

scill

ator

and

PH

I out

put c

ontin

ue o

pera

ting,

but

are

bloc

ked

from

the

CP

U c

ore

and

DM

A c

hann

els

to r

e-du

ce p

ower

con

sum

ptio

n. D

RA

M r

efre

sh s

tops

but

int

er-

rupt

s an

d gr

antin

g to

ext

erna

l m

aste

r ca

n oc

cur.

Exc

ept

whe

n th

e bu

s is

gra

nted

to a

n ex

tern

al m

aste

r, A

19-0

and

all

cont

rol

sign

als

exce

pt /

HA

LT a

re m

aint

aine

d H

igh.

/HA

LT is

Low

. I/O

ope

ratio

ns c

ontin

ue a

s be

fore

the

SLP

inst

ruct

ion,

exc

ept f

or th

e D

MA

cha

nnel

s.

The

Z80

180/

Z8S

180/

Z8L

180

leav

es S

LEE

P m

ode

in r

e-sp

onse

to

a lo

w o

n /R

ES

ET

, an

inte

rrup

t re

ques

t fr

om a

non

-chi

p so

urce

, an

exte

rnal

requ

est o

n /N

MI,

or a

n ex

tern

alre

ques

t on

/INT

0, 1

, or

2.

Fig

ure

13.

HA

LT T

imin

g

INT

i, N

MI

A0-

A19

/HA

LT /M1

/MR

EQ

/RD

HA

LT O

pcod

e A

ddre

ssH

ALT

Opc

ode

Add

ress

+ 1

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-18

P R

E L

I M

I N

A R

YD

S97

1800

402

If an

int

erru

pt s

ourc

e is

ind

ivid

ually

dis

able

d, i

t ca

nnot

brin

g th

e Z

8018

0/Z

8S18

0/Z

8L18

0 ou

t of

SLE

EP

mod

e. I

fan

inte

rrup

t sou

rce

is in

divi

dual

ly e

nabl

ed, a

nd th

e IE

F b

itis

1 s

o th

at i

nter

rupt

s ar

e gl

obal

ly e

nabl

ed (

by a

n E

I in

-st

ruct

ion)

, th

e hi

ghes

t pr

iorit

y ac

tive

inte

rrup

t w

ill o

ccur

,w

ith th

e re

turn

add

ress

bei

ng th

e in

stru

ctio

n af

ter

the

SLP

inst

ruct

ion.

If

an i

nter

rupt

sou

rce

is i

ndiv

idua

lly e

nabl

ed,

but

the

IEF

bit

is 0

so

that

inte

rrup

ts a

re g

loba

lly d

isab

led

(by

a D

I in

stru

ctio

n),

the

Z80

180/

Z8S

180/

Z8L

180

leav

es

SLE

EP

mod

e by

sim

ply

exec

utin

g th

e fo

llow

ing

inst

ruc-

tion(

s).

Thi

s pr

ovid

es a

tec

hniq

ue f

or s

ynch

roni

zatio

n w

ith h

igh-

spee

d ex

tern

al e

vent

s w

ithou

t in

curr

ing

the

late

ncy

im-

pose

d by

an

in

terr

upt

resp

onse

se

quen

ce.

Fig

ure

14sh

ows

the

timin

g fo

r ex

iting

SLE

EP

mod

e du

e to

an

inte

r-ru

pt r

eque

st. N

ote

that

the

Z80

180/

Z8S

180/

Z8L

180

take

sab

out 1

.5 c

lock

s to

res

tart

.

IOS

TO

P M

od

e. I

OS

TO

P m

ode

is e

nter

ed b

y se

tting

the

IOS

TO

P b

it of

the

I/O

Con

trol

Reg

iste

r (I

CR

) to

1.

In t

his

case

, on

-chi

p I/O

(A

SC

I, C

SI/O

, P

RT

) st

ops

oper

atin

g.H

owev

er,

the

CP

U c

ontin

ues

to o

pera

te.

Rec

over

y fr

omIO

ST

OP

mod

e is

by

rese

tting

the

IOS

TO

P b

it in

ICR

to 0

.

SY

ST

EM

ST

OP

Mo

de.

SY

ST

EM

ST

OP

mod

e is

the

com

-bi

natio

n of

SLE

EP

and

IO

ST

OP

mod

es.

SY

ST

EM

ST

OP

mod

e is

ent

ered

by

setti

ng th

e IO

ST

OP

bit

in IC

R to

1 fo

l-lo

wed

by

exec

utio

n of

the

SLP

ins

truc

tion.

In

this

mod

e,on

-chi

p I/O

and

CP

U s

top

oper

atin

g, r

educ

ing

pow

er c

on-

sum

ptio

n, b

ut th

e P

HI o

utpu

t con

tinue

s to

ope

rate

. Rec

ov-

ery

from

SY

ST

EM

ST

OP

mod

e is

the

sam

e as

rec

over

yfr

om S

LEE

P m

ode

exce

pt t

hat

inte

rnal

I/O

sou

rces

(di

s-ab

led

by IO

ST

OP

) ca

nnot

gen

erat

e a

reco

very

inte

rrup

t.

IDL

E

Mo

de.

S

oftw

are

can

put

the

Z80

180/

Z8S

180/

Z8L

180

into

th

is

mod

e by

se

tting

th

eIO

ST

OP

bit

(IC

R5)

to

1, C

CR

6 to

0,

CC

R3

to 1

and

exe

-cu

ting

the

SLP

inst

ruct

ion.

The

osc

illat

or k

eeps

ope

ratin

gbu

t its

out

put

is b

lock

ed t

o al

l ci

rcui

try

incl

udin

g th

e P

HI

pin.

DR

AM

ref

resh

and

all

inte

rnal

dev

ices

sto

p, b

ut e

xter

-na

l int

erru

pts

can

occu

r. B

us g

rant

ing

to e

xter

nal m

aste

rsca

n oc

cur

if th

e B

RE

ST

bit

in t

he C

PU

con

trol

Reg

iste

r(C

CR

5) w

as s

et to

1 b

efor

e ID

LE m

ode

was

ent

ered

.

The

Z80

180/

Z8S

180/

Z8L

180

leav

es I

DLE

mod

e in

re-

spon

se to

a L

ow o

n R

ES

ET

, an

exte

rnal

inte

rrup

t req

uest

on N

MI,

or a

n ex

tern

al in

terr

upt r

eque

st o

n /IN

T0,

/IN

T1

or/IN

T2

that

is e

nabl

ed in

the

INT

/TR

AP

Con

trol

Reg

iste

r. A

spr

evio

usly

de

scrib

ed

for

SLE

EP

m

ode,

w

hen

the

Z80

180/

Z8S

180/

Z8L

180

leav

es I

DLE

mod

e du

e to

an

NM

I, or

due

to a

n en

able

d ex

tern

al in

terr

upt r

eque

st w

hen

the

IEF

fla

g is

1 d

ue t

o an

EI

inst

ruct

ion,

it s

tart

s by

per

-fo

rmin

g th

e in

terr

upt

with

the

ret

urn

addr

ess

bein

g th

at o

fth

e in

stru

ctio

n af

ter

the

SLP

inst

ruct

ion.

If an

ext

erna

l int

erru

pt e

nabl

es th

e IN

T/T

RA

P c

ontr

ol r

eg-

iste

r w

hile

th

e IE

F1

bit

is

0,

Z80

180/

Z8S

180/

Z8L

180

leav

es I

DLE

mod

e; s

peci

fical

ly,

the

proc

esso

r re

star

ts b

yex

ecut

ing

the

inst

ruct

ions

follo

win

g th

e S

LP in

stru

ctio

n.

Fig

ure

14.

SL

EE

P T

imin

g

SLP

2nd

Opc

ode

SLE

EP

Mod

e

φT

2T

3T

1T

2T

ST

ST

1

/INT

i, /N

MI

A0-

A19

/HA

LT

M1

Opc

ode

Fet

ch o

r In

terr

upt

Ack

now

ledg

e C

ycle

SLP

2nd

Opc

ode

Add

ress

FF

FF

FH

Fet

ch C

ycle

T2

T3

ITALIAN TECHNOLOGY grifo ®

Page B-3 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-19

Fig

ure

15 s

how

s th

e tim

ing

for

exiti

ng I

DLE

mod

e du

e to

an

inte

rrup

t re

ques

t. N

ote

that

th

eZ

8018

0/Z

8S18

0/Z

8L18

0 ta

kes

abou

t 9.5

clo

cks

to r

esta

rt.

Whi

le th

e Z

8018

0/Z

8S18

0/Z

8L18

0 is

in ID

LE m

ode,

it w

illgr

ant

the

bus

to a

n ex

tern

al m

aste

r if

the

BR

EX

T b

it(C

CR

5) is

1. F

igur

e 16

sho

ws

the

timin

g fo

r thi

s se

quen

ce.

Not

e th

at th

e pa

rt ta

kes

8 cl

ock

cycl

es lo

nger

to re

spon

d to

the

Bus

Req

uest

than

in n

orm

al o

pera

tion.

Afte

r th

e ex

tern

al m

aste

r ne

gate

s th

e B

us R

eque

st,

the

Z80

180/

Z8S

180/

Z8L

180

disa

bles

the

PH

I cl

ock

and

re-

mai

ns in

IDLE

mod

e.

Fig

ure

15.

Z80

180/

Z8S

180/

Z8L

180

IDL

E M

od

e E

xit

du

e to

Ext

ern

al In

terr

up

t

φT

1T

2T

4

NM

I

A19

-A0

HA

LT M1

Opc

ode

Fet

ch o

r In

terr

upt

Ack

now

ledg

e C

ycle

FF

FF

FH

IDLE

Mod

e

T3

9.5

Cyc

le D

elay

from

INT

i Ass

erte

d

INT

i

or

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-37

IAS

CI R

EG

IST

ER

DE

SC

RIP

TIO

N

Fig

ure

32.

AS

CI B

lock

Dia

gra

m

Inte

rnal

Add

ress

/Dat

a B

us

AS

CI T

rans

mit

Dat

a R

egis

ter

Ch

0: T

DR

0

AS

CI T

rans

mit

Shi

ft R

egis

ter*

Ch

0: T

SR

0

AS

CI R

ecei

ve D

ata

FIF

OC

h 0:

RD

R0

AS

CI R

ecei

ve S

hift

Reg

iste

r*C

h 0:

RS

R0

(8)

AS

CI C

ontr

ol R

egis

ter

AC

h 0:

CN

TLA

0 (8

)

AS

CI C

ontr

ol R

egis

ter

BC

h 0:

CN

TB

0 (8

)

AS

CI S

tatu

s R

egis

ter

Ch

0: S

TAT

0 (8

)

AS

CI E

xten

sion

Con

trol

Reg

.C

h 0:

AS

EX

T0

(7)

AS

CI T

ime

Con

stan

t Low

Ch

0: A

ST

CO

L (8

)

AS

CI T

ime

Con

stan

t Hig

hC

h 0:

AS

TC

OH

(8)

AS

CI S

tatu

s F

IFO

Ch

0

AS

CI T

rans

mit

Dat

a R

egis

ter

Ch

1: T

DR

1

AS

CI T

rans

mit

Shi

ft R

egis

ter*

Ch

1: T

SR

1

AS

CI R

ecei

ve D

ata

FIF

OC

h 1:

RD

R1

AS

CI R

ecei

ve S

hift

Reg

iste

r*C

h 1:

RS

R1

(8)

AS

CI C

ontr

ol R

egis

ter

AC

h 1:

CN

TLA

1 (8

)

AS

CI C

ontr

ol R

egis

ter

BC

h 1:

CN

TB

1 (8

)

AS

CI S

tatu

s R

egis

ter

Ch

1: S

TAT

1 (8

)

AS

CI E

xten

sion

Con

trol

Reg

.C

h 1:

AS

EX

T1

(5)

AS

CI T

ime

Con

stan

t Low

Ch

1: A

ST

CIL

(8)

AS

CI T

ime

Con

stan

t Hig

hC

h 1:

AS

TC

IH (

8)

AS

CI S

tatu

s F

IFO

Ch

1

TX

A0

RX

A0

RT

S0

CT

S0

DC

D0

TX

A1

RX

A1

CT

S1

AS

CI

Con

trol

Bau

d R

ate

Gen

erat

or 0

Bau

d R

ate

Gen

erat

or 1

CK

A0

CK

A1

φ

No

te:

*Not

Pro

gram

Inte

rrup

t Req

uest

Acc

essi

ble.

grifo ® ITALIAN TECHNOLOGY

Page B-4 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-38

P R

E L

I M

I N

A R

YD

S97

1800

402

The

fol

low

ing

para

grap

hs e

xpla

in t

he v

ario

us f

unct

ions

of

the

AS

CI r

egis

ters

.

AS

CI

Tra

nsm

it R

egis

ter

0. W

hen

the

AS

CI

Tra

nsm

itR

egis

ter

rece

ives

dat

a fr

om th

e A

SC

I Tra

nsm

it D

ata

Reg

-is

ter

(TD

R),

the

dat

a is

shi

fted

out

to t

he T

xA p

in.

Whe

ntr

ansm

issi

on i

s co

mpl

eted

, th

e ne

xt b

yte

(if a

vaila

ble)

is

auto

mat

ical

ly l

oade

d fr

om T

DR

int

o T

SR

and

the

nex

ttr

ansm

issi

on s

tart

s. If

no

data

is a

vaila

ble

for t

rans

mis

sion

,T

SR

IDLE

s by

out

putti

ng a

con

tinuo

us H

igh

leve

l. T

his

reg-

iste

r is

not

pro

gram

acc

essi

ble

AS

CI T

ran

smit

Dat

a R

egis

ter

0,1

(TD

R0,

1: I

/O a

dd

ress

= 06

H, 0

7H).

Dat

a w

ritte

n to

the

AS

CI T

rans

mit

Dat

a R

eg-

iste

r is

tra

nsfe

rred

to

the

TS

R a

s so

on a

s T

SR

is e

mpt

y.D

ata

can

be w

ritte

n w

hile

TS

R is

shi

fting

out

the

prev

ious

byte

of d

ata.

Thu

s, th

e A

SC

I tra

nsm

itter

is d

oubl

e bu

ffere

d.

Dat

a ca

n be

writ

ten

into

and

rea

d fr

om th

e A

SC

I Tra

nsm

itD

ata

Reg

iste

r. If

dat

a is

read

from

the

AS

CI T

rans

mit

Dat

a

Reg

iste

r, t

he A

SC

I da

ta t

rans

mit

oper

atio

n w

ill n

ot b

e af

-fe

cted

by

this

rea

d op

erat

ion

AS

CI R

ecei

ve S

hif

t R

egis

ter

0,1

(RS

R0,

1). T

his

regi

ster

rece

ives

dat

a sh

ifted

in o

n th

e R

xA p

in. W

hen

full,

dat

a is

auto

mat

ical

ly tr

ansf

erre

d to

the

AS

CI R

ecei

ve D

ata

Reg

is-

ter

(RD

R)

if it

is e

mpt

y. If

RS

R is

not

em

pty

whe

n th

e ne

xtin

com

ing

data

byt

e is

shi

fted

in,

an o

verr

un e

rror

occ

urs

Thi

s re

gist

er is

not

pro

gram

acc

essi

ble.

AS

CI R

ecei

ve D

ata

FIF

O 0

,1 (R

DR

0, 1

:I/O

Add

ress

= 0

8H09

H).

The

AS

CI R

ecei

ve D

ata

Reg

iste

r is

a r

ead-

only

reg

-is

ter.

Whe

n a

com

plet

e in

com

ing

data

byt

e is

ass

embl

edin

RS

R,

it is

aut

omat

ical

ly t

rans

ferr

ed t

o th

e 4

char

acte

rR

ecei

ve D

ata

Firs

t-In

Firs

t-O

ut (F

IFO

) mem

ory.

The

old

est

char

acte

r in

the

FIF

O (i

f any

) can

be

read

from

the

Rec

eive

Dat

a R

egis

ter

(RD

R).

The

nex

t inc

omin

g da

ta b

yte

can

besh

ifted

into

RS

R w

hile

the

FIF

O is

full.

Thu

s, th

e A

SC

I re-

ceiv

er is

wel

l buf

fere

d.

AS

CI S

TA

TU

S F

IFO

Thi

s 4

entr

y F

IFO

con

tain

s P

arity

Err

or, F

ram

ing

Err

or, R

xO

verr

un, a

nd B

reak

sta

tus

bits

ass

ocia

ted

with

eac

h ch

ar-

acte

r in

the

rec

eive

dat

a F

IFO

. T

he s

tatu

s of

the

old

est

char

acte

r (if

any

) ca

n be

rea

d fr

om th

e A

SC

I sta

tus

regi

s-te

rs a

s de

scrib

ed b

elow

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-39

AS

CI C

HA

NN

EL

CO

NT

RO

L R

EG

IST

ER

A

MP

E:

Mu

lti-

Pro

cess

or

Mo

de

En

able

(b

it 7

). T

he A

SC

Iha

s a

mul

tipro

cess

or c

omm

unic

atio

n m

ode

that

util

izes

an

extr

a da

ta b

it fo

r se

lect

ive

com

mun

icat

ion

whe

n a

num

ber

of p

roce

ssor

s sh

are

a co

mm

on s

eria

l bus

. M

ultip

roce

ssor

data

form

at is

sel

ecte

d w

hen

the

MP

bit

in C

NT

LB is

set

to1.

If m

ultip

roce

ssor

mod

e is

not

sel

ecte

d (M

P b

it in

CN

TLB

= 0

), M

PE

has

no

effe

ct. I

f mul

tipro

cess

or m

ode

is s

elec

t-ed

, MP

E e

nabl

es o

r di

sabl

es th

e “w

ake-

up”

feat

ure

as fo

l-lo

ws.

If

MB

E is

set

to

1, o

nly

rece

ived

byt

es in

whi

ch t

heM

PB

(m

ultip

roce

ssor

bit)

= 1

can

affe

ct th

e R

DR

F a

nd e

r-ro

r fla

gs.

Effe

ctiv

ely,

oth

er b

ytes

(w

ith M

PB

= 0

) ar

e “ig

-no

red”

by

the

AS

CI.

If M

PE

is r

eset

to 0

, all

byte

s, r

egar

d-le

ss o

f the

sta

te o

f the

MP

B d

ata

bit,

affe

ct th

e R

ED

R a

nder

ror

flags

. MP

E is

cle

ared

to 0

dur

ing

RE

SE

T.

RE

: R

ecei

ver

En

able

(b

it 6

). W

hen

RE

is

set

to 1

, th

eA

SC

I tr

ansm

itter

is

enab

led.

Whe

n T

E i

s re

set

to 0

, th

etr

ansm

itter

is

di

sabl

es

and

any

tran

smit

oper

atio

n in

prog

ress

is in

terr

upte

d. H

owev

er, t

he T

DR

E fl

ag is

not

re-

set

and

the

prev

ious

con

tent

s of

TD

RE

are

hel

d. T

E i

scl

eare

d to

0 in

IOS

TO

P m

ode

durin

g R

ES

ET

.

TE

: T

ran

smit

ter

En

able

(b

it 5

). W

hen

TE

is s

et t

o 1,

the

AS

CI r

ecei

ver i

s en

able

d. W

hen

TE

is re

set t

o 0,

the

tran

s-m

itter

is d

isab

led

and

any

tran

smit

oper

atio

n in

pro

gres

s is

inte

rrup

ted.

How

ever

, th

e T

DR

E f

lag

is n

ot r

eset

and

the

prev

ious

con

tent

s of

TD

RE

are

hel

d. T

E is

cle

ared

to

0 in

IOS

TO

P m

ode

durin

g R

ES

ET

.

RT

S0 :

Req

ues

t to

Sen

d C

han

nel

0 (

bit

4 i

n C

NT

LA

0o

nly

). If

bit

4 of

the

Sys

tem

Con

figur

atio

n R

egis

ter i

s 0,

the

RT

S0/

TxS

pin

has

the

RT

S0

func

tion.

RT

S0

allo

ws

the

AS

CI t

o co

ntro

l (st

art/s

top)

ano

ther

com

mun

icat

ion

devi

ces

tra

nsm

issi

on (

for

exam

ple,

by

conn

ectin

g to

tha

t de

vice

’s C

TS

inpu

t).

RT

S0

is e

ssen

tially

a 1

bit

outp

ut p

ort

havi

ng n

o si

de e

ffect

s on

oth

er A

SC

I reg

iste

rs o

r fla

gs.

Bit

4 in

CN

TLA

1 is

use

d.

CK

A1D

= 1

, CK

A1/

TE

ND

0 pi

n =

TE

ND

0

CK

A1D

= 0

, CK

A1/

TE

ND

0 pi

n =

CK

A1

Cle

ared

to 0

on

rese

t.

MP

BR

/EF

R: M

ult

ipro

cess

or

Bit

Rec

eive

/Err

or

Fla

g R

e-se

t (b

it 3

). W

hen

mul

tipro

cess

or m

ode

is e

nabl

ed (

MP

inC

NT

LB =

1),

MP

BR

, whe

n re

ad, c

onta

ins

the

valu

e of

the

MP

B b

it fo

r th

e la

st r

ecei

ve o

pera

tion.

Whe

n w

ritte

n to

0th

e E

FR

func

tion

is s

elec

ted

to re

set a

ll er

ror f

lags

(OV

RN

FE

, PE

and

BR

K in

the

AS

EX

T R

egis

ter)

to 0

. MP

BR

/EF

Ris

und

efin

ed d

urin

g R

ES

ET

.

Fig

ure

33.

AS

CI C

han

nel

Co

ntr

ol R

egis

ter

A

Bit

MP

ER

E

R/W

R/W

R/W

TE

76

54

32

10

RT

S0

MP

BR

/M

OD

2M

OD

1M

OD

0

R/W

R/W

AS

CI C

ontr

ol R

egis

ter

A 0

(C

NT

LA0:

I/O

Add

ress

= 0

0H)

R/W

R/W

R/W

EF

R

Bit

MP

ER

E

R/W

R/W

R/W

TE

76

54

32

10

MO

D2

MO

D1

MO

D0

R/W

R/W

AS

CI C

ontr

ol R

egis

ter

A 1

(C

NT

LA1:

I/O

Add

ress

= 0

1H)

R/W

R/W

R/W

MP

BR

/E

FR

CK

A1D

ITALIAN TECHNOLOGY grifo ®

Page B-5 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-40

P R

E L

I M

I N

A R

YD

S97

1800

402

MO

D2,

1,

0: A

SC

I D

ata

Fo

rmat

Mo

de

2, 1

, 0

(bit

s 2-

0).

The

se b

its p

rogr

am th

e A

SC

I dat

a fo

rmat

as

follo

ws.

MO

D2

= 0

→7

bit d

ata

= 1

→8

bit d

ata

MO

D1

= 0

→N

o pa

rity

= 1

→P

arity

ena

bled

MO

D0

= 0

→1

stop

bit

= 1

→2

stop

bits

The

dat

a fo

rmat

s av

aila

ble

base

d on

all

com

bina

tions

of

MO

D2,

MO

D1,

and

MO

D0

are

show

n in

Tab

le 5

-6.

AS

CI C

HA

NN

EL

CO

NT

RO

L R

EG

IST

ER

B

MP

BT

: M

ult

ipro

cess

or

Bit

Tra

nsm

it (

bit

7).

Whe

n m

ulti-

proc

esso

r co

mm

unic

atio

n fo

rmat

is s

elec

ted

(MP

bit

= 1

),M

PB

T is

use

d to

spe

cify

the

MP

B d

ata

bit f

or tr

ansm

issi

on.

If M

PB

T =

1,

then

MP

B =

1 i

s tr

ansm

itted

. If

MP

BT

= 0

,th

en M

PB

= 0

is tr

ansm

itted

. MP

BT

sta

te is

und

efin

ed d

ur-

ing

and

afte

r R

ES

ET

.

MP

: M

ult

ipro

cess

or

Mo

de

(bit

6).

Whe

n M

P is

set

to

1,th

e da

ta f

orm

at i

s co

nfig

ured

for

mul

tipro

cess

or m

ode

base

d on

the

MO

D2

(num

ber

of d

ata

bits

) an

d M

OD

0(n

umbe

r of

sto

p bi

ts)

bits

in C

NT

LA.

The

for

mat

is a

s fo

l-lo

ws.

Sta

rt b

it +

7 o

r 8

data

bits

+ M

PB

bit

+ 1

or

2 st

op b

its

Not

e th

at m

ultip

roce

ssor

(M

P=

1) f

orm

at h

as n

o pr

ovis

ion

for

parit

y. I

f M

P =

0,

the

data

for

mat

is b

ased

on

MO

D0,

MO

D1,

MO

D2,

and

may

inc

lude

par

ity.

The

MP

bit

iscl

eare

d to

0 d

urin

g R

ES

ET

.

CT

S/P

S:

Cle

ar t

o S

end

/Pre

scal

e (b

it 5

). W

hen

read

,/C

TS

/PS

refle

cts

the

stat

e of

the

exte

rnal

/CT

S in

put.

If th

e/C

TS

inpu

t pi

n is

HIG

H,

/CT

S/P

S w

ill b

e re

ad a

s 1.

Not

eth

at w

hen

the

/CT

S in

put

pin

is H

IGH

, th

e T

DR

E b

it is

in-

hibi

ted

(i.e.

hel

d at

0).

For

cha

nnel

1, t

he /C

TS

inpu

t is

mul

-tip

lexe

d w

ith

RX

S

pin

(Clo

cked

S

eria

l R

ecei

ve

Dat

a).

Thu

s, /

CT

S/P

S i

s on

ly v

alid

whe

n re

ad i

f th

e ch

anne

l 1

CT

S1E

bit

= 1

and

the

/CT

S in

put p

in fu

nctio

n is

sel

ecte

dT

he r

ead

data

of /

CT

S/P

S is

not

affe

cted

by

RE

SE

T.

If th

e S

S2-

0 bi

ts in

this

reg

iste

r ar

e no

t 111

, and

the

BR

Gm

ode

bit i

n th

e A

SE

XT

reg

iste

r is

0, t

hen

writ

ing

to th

is b

itse

ts th

e pr

esca

le (P

S) c

ontr

ol a

s de

scrib

ed in

the

follo

win

g“C

lock

Mod

es” s

ectio

n. U

nder

thos

e ci

rcum

stan

ces,

a 0

in-

dica

tes

a di

vide

by

10 p

resc

ale

func

tion

whi

le a

1 in

dica

tes

divi

de b

y 30

. The

bit

rese

ts to

0.

PE

O:

Par

ity

Eve

n O

dd

(b

it 4

). P

EO

sel

ects

ove

n or

odd

parit

y. P

EO

doe

s no

t affe

ct th

e en

ablin

g/di

sabl

ing

of p

arity

(MO

D1

bit

of C

NT

LA).

If

PE

O is

cle

ared

to

0, e

ven

parit

yis

sel

ecte

d. If

PE

O is

set

to 1

, odd

par

ity is

sel

ecte

d. P

EO

is c

lear

ed to

0 d

urin

g R

ES

ET

.

DR

: D

ivid

e R

atio

(b

it 3

). If

the

X1

bit i

n th

e A

SE

XT

reg

is-

ter

is 0

, th

is b

it sp

ecifi

es t

he d

ivid

er u

sed

to o

btai

n ba

udra

te f

rom

the

dat

a sa

mpl

ing

cloc

k. I

f D

R is

res

et t

o 0,

di-

vide

- by

-16

is u

sed,

whi

le if

DR

is s

et t

o 1

divi

de-b

y-64

isus

ed. D

R is

cle

ared

to 0

dur

ing

RE

SE

T.

SS

2,1,

0: S

ou

rce/

Sp

eed

Sel

ect

2,1,

0 (b

its

2-0)

. F

irst,

ifth

ese

bits

are

111

, as

they

are

afte

r a

Res

et, t

he C

KA

pin

Tab

le 5

.D

ata

Fo

rmat

s

MO

D2

MO

D1

MO

D0

Dat

a F

orm

at

00

0S

tart

+ 7

bit

data

+ 1

sto

p0

01

Sta

rt +

7 b

it da

ta +

2 s

top

01

0S

tart

+ 7

bit

data

+ p

arity

+ 1

sto

p0

11

Sta

rt +

7 b

it da

ta +

par

ity +

2 s

top

10

0S

tart

+ 8

bit

data

+ 1

sto

p1

01

Sta

rt +

8 b

it da

ta +

2 s

top

11

0S

tart

+ 8

bit

data

+ p

arity

+ 1

sto

p1

11

Sta

rt +

8 b

it da

ta +

par

ity +

2 s

top

Fig

ure

34.

AS

CI C

han

nel

Co

ntr

ol R

egis

ter

B

Bit

MP

BT

MP

R/W

R/W

R/W

CT

S/

76

54

32

10

PE

OD

RS

S2

SS

1S

S0

R/W

R/W

AS

CI C

ontr

ol R

egis

ter

B 1

(C

NT

LB1:

I/O

Add

ress

= 0

3H)

R/W

R/W

R/W

AS

CI C

ontr

ol R

egis

ter

B 0

(C

NT

LB0:

I/O

Add

ress

= 0

2H)

PS

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-41

is u

sed

as a

clo

ck in

put,

and

is d

ivid

ed b

y 1,

16,

or

64 d

e-pe

ndin

g on

the

DR

bit

and

the

X1

bit i

n th

e A

SE

XT

regi

ster

.

If th

ese

bits

are

not

111

and

the

BR

G m

ode

bit

is A

SE

XT

is 0

, th

en t

hese

bits

spe

cify

a p

ower

-of-

two

divi

der

for

the

PH

I clo

ck a

s sh

own

in T

able

9.

Set

ting

or l

eavi

ng t

hese

bits

as

111

mak

es s

ense

for

ach

anne

l on

ly w

hen

its C

KA

pin

is

sele

cted

for

the

CK

Afu

nctio

n. C

KA

O/C

KS

has

the

CK

AO

func

tion

whe

n bi

t 4 o

fth

e S

yste

m C

onfig

urat

ion

Reg

iste

r is

0.

DC

D0 /

CK

A1

has

the

CK

A1

func

tion

whe

n bi

t 0 o

f the

Inte

rrup

t Edg

e re

gist

eis

1.

AS

CI S

TA

TU

S R

EG

IST

ER

0, 1

(S

TA

T0,

1)

Eac

h ch

anne

l sta

tus

regi

ster

allo

ws

inte

rrog

atio

n of

AS

CI

com

mun

icat

ion,

err

or a

nd m

odem

con

trol

sig

nal

stat

us,

and

enab

ling

or d

isab

ling

of A

SC

I int

erru

pts.

RD

RF

: Rec

eive

Dat

a R

egis

ter

Fu

ll (b

it 7

). R

DR

F is

set

to1

whe

n an

inco

min

g da

ta b

yte

is lo

aded

into

an

empt

y R

xF

IFO

. Not

e th

at if

a fr

amin

g or

par

ity e

rror

occ

urs,

RD

RF

isst

ill s

et a

nd th

e re

ceiv

e da

ta (

whi

ch g

ener

ated

the

erro

r) is

still

load

ed in

to th

e F

IFO

. RD

RF

is c

lear

ed to

0 b

y re

adin

gR

DR

and

last

cha

ract

er in

the

FIF

O f

rom

IO

ST

OP

mod

e,du

ring

RE

SE

T a

nd fo

r AS

CI0

if th

e /D

CD

0 in

put i

s au

to-e

n-ab

led

and

is n

egat

ed (

Hig

h).

OV

RN

: O

verr

un

Err

or

(bit

6).

An

over

run

cond

ition

oc-

curs

if th

e re

ceiv

er h

as fi

nish

ed a

ssem

blin

g a

char

acte

r but

the

Rx

FIF

O is

ful

l so

ther

e is

no

room

for

the

cha

ract

er.

How

ever

, thi

s st

atus

bit

is n

ot s

et u

ntil

the

last

cha

ract

er re

-ce

ived

bef

ore

the

over

run

beco

mes

the

old

est

byte

in t

heF

IFO

. T

his

bit

is c

lear

ed w

hen

softw

are

writ

es a

1 t

o th

e

EF

R b

it in

the

CN

TLA

reg

iste

r, a

nd a

lso

by R

eset

, in

IOS

TO

P m

ode,

and

for

AS

CI0

if th

e /D

CD

0 pi

n is

aut

o en

able

d an

d is

neg

ated

(H

igh)

.

Not

e th

at w

hen

an o

verr

un o

ccur

s, t

he r

ecei

ver

does

no

plac

e th

e ch

arac

ter

in t

he s

hift

regi

ster

into

the

FIF

O,

noan

y su

bseq

uent

cha

ract

ers,

unt

il th

e la

st g

ood

char

acte

has

com

e to

the

top

of th

e F

IFO

so

that

OV

RN

is s

et, a

ndso

ftwar

e th

en w

rites

a 1

to E

FR

to c

lear

it.

Tab

le 6

.D

ivid

e R

atio

SS

2S

S1

SS

0D

ivid

e R

atio

00

0÷1

00

1÷2

01

0÷4

01

1÷8

10

0÷1

61

01

÷32

11

0÷6

41

11

Ext

erna

l Clo

ck

Fig

ure

35.

AS

CI S

tatu

s R

egis

ters

Bit

RD

RF

OV

RN

RR

R/W

PE

76

54

32

10

FE

RE

DC

D0

TD

RE

TIE

RR

AS

CI S

tatu

s R

egis

ter

0 (S

TAT

0: I/

O A

ddre

ss =

04H

)

RR

R/W

Bit

RD

RF

OV

RN

RR

/W

PE

76

54

32

10

FE

RE

TD

RE

TIE

RR

AS

CI S

tatu

s R

egis

ter

1 (S

TAT

1: I/

O A

ddre

ss =

05H

)

RR

R/W

CT

SIE

R/W

grifo ® ITALIAN TECHNOLOGY

Page B-6 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-42

P R

E L

I M

I N

A R

YD

S97

1800

402

PE

: P

arit

y E

rro

r (b

it 5

). A

par

ity e

rror

is

dete

cted

whe

npa

rity

chec

king

is e

nabl

ed b

y th

e M

OD

1 bi

t in

the

CN

T1L

Are

gist

er b

eing

1,

and

a ch

arac

ter

has

been

ass

embl

ed in

whi

ch th

e pa

rity

does

not

mat

ch th

e P

EO

bit

in th

e C

NT

LBre

gist

er. H

owev

er, t

his

stat

us b

it is

not

set

unt

il/un

less

the

erro

r cha

ract

er b

ecom

es th

e ol

dest

one

in th

e R

xFIF

O. P

Eis

cle

ared

whe

n so

ftwar

e w

rites

a 1

to

the

EF

R b

it in

the

CN

TR

LA r

egis

ter,

and

als

o by

Res

et,

in I

OS

TO

P m

ode,

and

for

AS

CI0

if th

e /D

CD

0 pi

n is

aut

o-en

able

d an

d is

ne-

gate

d (H

igh)

.

FE

: F

ram

ing

Err

or

(bit

4).

A f

ram

ing

erro

r is

det

ecte

dw

hen

the

stop

bit

of a

cha

ract

er i

s sa

mpl

ed a

s 0/

Spa

ce.

How

ever

, th

is s

tatu

s bi

t is

not

set

unt

il/un

less

the

err

orch

arac

ter

beco

mes

the

old

est

one

in t

he R

xFIF

O.

FE

is

clea

red

whe

n so

ftwar

e w

rites

a 1

to

the

EF

R b

it in

the

CN

TLA

regi

ster

, and

als

o by

Res

et, i

n IO

ST

OP

mod

e, a

ndfo

r AS

CIO

if th

e /D

CD

O p

in is

aut

o-en

able

d an

d is

neg

ated

(Hig

h).

RE

I: R

ecei

ve In

terr

up

t E

nab

le (

bit

3).

RIE

sho

uld

be s

etto

1 to

ena

ble

AS

CI r

ecei

ve in

terr

upt r

eque

sts.

Whe

n R

IEis

1,

the

Rec

eive

r re

ques

ts a

n in

terr

upt

whe

n a

char

acte

ris

rec

eive

d an

d R

DR

F is

set

, but

onl

y if

neith

er D

MA

cha

n-ne

l ha

s its

Req

uest

-rou

ting

field

set

to

rece

ive

data

fro

mth

is A

SC

I. T

hat i

s, if

SM

1-0

are

11 a

nd S

AR

17-1

6 ar

e 10

,or

DIM

1 is

1 a

nd IA

R17

-16

are

10, t

hen

AS

CI1

doe

sn't

re-

ques

t an

int

erru

pt f

or R

DR

F.

If R

IE i

s 1,

eith

er A

SC

I re

-qu

ests

an

inte

rrup

t w

hen

OV

RN

, P

E o

r F

E i

s se

t, an

d

AS

CI0

req

uest

s an

inte

rrup

t w

hen

/DC

D0

goes

Hig

h. R

IEis

cle

ared

to 0

by

Res

et.

DC

D0 :

Dat

a C

arri

er D

etec

t (b

it 2

ST

AT

0).

Thi

s bi

t is

set

to 1

whe

n th

e pi

n is

Hig

h. It

is c

lear

ed to

0 o

n th

e fir

st r

ead

of S

TA

T0

follo

win

g th

e pi

n's

tran

sitio

n fr

om H

igh

to L

owan

d du

ring

RE

SE

T.

Bit

6 of

the

AS

EX

T0

regi

ster

is 0

to s

e-le

ct a

uto-

enab

ling,

and

the

pin

is n

egat

ed (H

igh)

. C

hann

e1

has

an e

xter

nal C

TS

1 in

put w

hich

is m

ultip

lexe

d w

ith th

ere

ceiv

e da

ta p

in R

SX

for

the

CS

I/O.

Bit

2 =

0; S

elec

t RX

S fu

nctio

n.

Bit

2 =

1; S

elec

t CT

S1

func

tion.

TD

RE

: T

ran

smit

Dat

a R

egis

ter

Em

pty

(b

it 1

). T

DR

E =

1in

dica

tes

that

the

TD

R is

em

pty

and

the

next

tran

smit

data

byte

is

writ

ten

to T

DR

. A

fter

the

byte

is

writ

ten

to T

DR

TD

RE

is c

lear

ed to

0 u

ntil

the

AS

CI t

rans

fers

the

byte

from

TD

R to

the

TS

R a

nd th

en T

DR

E is

aga

in s

et to

1. T

DR

E is

set t

o 1

in IO

ST

OP

mod

e an

d du

ring

RE

SE

T. O

n A

SC

IOif

the

CT

S0

pin

is a

uto-

enab

led

in t

he A

SE

XT

0 re

gist

ers

and

the

pin

is H

igh,

TD

RE

is r

eset

to 0

.

TIE

: Tra

nsm

it In

terr

up

t En

able

(bit

0).

TIE

sho

uld

be s

etto

1 to

ena

ble

AS

CI t

rans

mit

inte

rrup

t req

uest

s. If

TIE

= 1

an i

nter

rupt

will

be

requ

este

d w

hen

TD

RE

= 1

. T

IE i

scl

eare

d to

0 d

urin

g R

ES

ET

.

AS

CI T

RA

NS

MIT

DA

TA

RE

GIS

TE

RS

Reg

iste

r ad

dres

ses

06H

and

07H

hol

d th

e A

SC

I tr

ansm

itda

ta fo

r ch

anne

l 0 a

nd c

hann

el 1

, res

pect

ivel

y.

Cha

nnel

0

Mne

mon

ics

TD

R0

Add

ress

(06

H)

Cha

nnel

1

Mne

mon

ics

TD

R1

Add

ress

(07

H)

AS

CI R

ecei

ve R

egis

ter

Reg

iste

r ad

dres

ses

08H

and

09H

hol

d th

e A

SC

I re

ceiv

eda

ta fo

r ch

anne

l 0 a

nd c

hann

el 1

, res

pect

ivel

y.

Cha

nnel

0

Mne

mon

ics

TS

R0

--

Fig

ure

36.

AS

CI R

egis

ter

AS

CI T

rans

mit

----

----

----

--

76

54

32

10

----

Cha

nnel

0F

igu

re 3

7.A

SC

I Reg

iste

r

AS

CI T

rans

mit

----

----

----

--

76

54

32

10

----

Cha

nnel

1

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-43

Add

ress

(08

H)

Cha

nnel

1--

Mne

mon

ics

TS

R1

Add

ress

(09

H)

CS

I/O C

ON

TR

OL

/ST

AT

US

RE

GIS

TE

R

(CN

TR

: I/O

Ad

dre

ss =

0A

H).

CN

TR

is

used

to

mon

itor

CS

I/O s

tatu

s, e

nabl

e an

d di

sabl

e th

e C

SI/O

, en

able

and

disa

ble

inte

rrup

t ge

nera

tion,

and

sel

ect

the

data

clo

cksp

eed

and

sour

ce.

EF

: En

d F

lag

(bit

7).

EF

is s

et to

1 b

y th

e C

SI/O

to in

dica

teco

mpl

etio

n of

an

8-bi

t dat

a tr

ansm

it or

rece

ive

oper

atio

n. If

EIE

(E

nd I

nter

rupt

Ena

ble)

bit

= 1

whe

n E

F is

set

to

1, a

CP

U i

nter

rupt

req

uest

is

gene

rate

d. P

rogr

am a

cces

s of

TR

DR

onl

y oc

curs

if

EF

= 1

. T

he C

SI/O

cle

ars

EF

to

0w

hen

TR

DR

is

read

or

writ

ten.

EF

is

clea

red

to 0

dur

ing

RE

SE

T a

nd IO

ST

OP

mod

e.

EIE

: E

nd

Inte

rru

pt

En

able

(b

it 6

). E

IE is

set

to

1 to

gen

-er

ate

a C

PU

inte

rrup

t re

ques

t. T

he in

terr

upt

requ

est

is in

-hi

bite

d if

EIE

is r

eset

to

0. E

IE is

cle

ared

to

0 du

ring

RE

-S

ET

.

RE

: R

ecei

ve E

nab

le (

bit

5).

A C

SI/O

rec

eive

ope

ratio

n is

star

ted

by s

ettin

g R

E t

o 1.

Whe

n R

E is

set

to

1, t

he d

ata

cloc

k is

ena

bled

. In

inte

rnal

clo

ck m

ode,

the

dat

a cl

ock

isou

tput

from

the

CK

S p

in. I

n ex

tern

al c

lock

mod

e, th

e cl

ock

is in

put o

n th

e C

KS

pin

. In

eith

er c

ase,

dat

a is

shi

fted

in o

nth

e R

XS

pin

in s

ynch

roni

zatio

n w

ith t

he (

inte

rnal

or

exte

r-na

l) da

ta c

lock

. Afte

r rec

eivi

ng 8

bits

of d

ata,

the

CS

I/O a

u-to

mat

ical

ly c

lear

s R

E t

o 0,

EF

is s

et t

o 1,

and

an

inte

rrup

t

(if e

nabl

ed b

y E

IE =

1)

is g

ener

ated

. RE

and

TE

are

nev

ebo

th s

et t

o 1

at t

he s

ame

time.

RE

is c

lear

ed t

o 0

durin

gR

ES

ET

and

IST

OP

mod

e.

Fig

ure

38.

AS

CI R

ecei

ve R

egis

ter

Ch

ann

el 0

AS

CI T

rans

mit

Dat

a

----

----

----

--

76

54

32

10

----

Fig

ure

39.

AS

CI R

ecei

ve R

egis

ter

Ch

ann

el 1

R

AS

CI T

rans

mit

Dat

a

----

----

----

--

76

54

32

10

----

Fig

ure

40.

CS

I/O C

on

tro

l Reg

iste

r

Bit

EF

EIE

R/W

R/W

R/W

RE

76

54

32

10

TE

__S

S2

SS

1S

S0

RR

/WR

/WR

/W

ITALIAN TECHNOLOGY grifo ®

Page B-7 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-44

P R

E L

I M

I N

A R

YD

S97

1800

402

Tra

nsm

it E

nab

le (

bit

4).

A C

SI/O

tra

nsm

it op

erat

ion

isst

arte

d by

set

ting

TE

to

1. W

hen

TE

is s

et t

o 1,

the

dat

acl

ock

is e

nabl

ed.

Whe

n in

int

erna

l cl

ock

mod

e, t

he d

ata

cloc

k is

out

put

from

the

CK

S p

in.

In e

xter

nal c

lock

mod

e,th

e cl

ock

is i

nput

on

the

CK

S p

in.

In e

ither

cas

e, d

ata

issh

ifted

out

on

the

TX

S p

in s

ynch

rono

us w

ith t

he (

inte

rnal

or e

xter

nal)

data

clo

ck. A

fter t

rans

mitt

ing

8 bi

ts o

f dat

a, th

eC

SI/O

aut

omat

ical

ly c

lear

s T

E to

0, E

F is

set

to 1

, and

an

inte

rrup

t (if

ena

bled

by

EIE

= 1

) is

gen

erat

ed.

TE

and

RE

are

neve

r bo

th s

et t

o 1

at t

he s

ame

time.

TE

is c

lear

ed t

o0

durin

g R

ES

ET

and

IOS

TO

P m

ode.

SS

2, 1

, 0:

Sp

eed

Sel

ect

2, 1

, 0 (

bit

s 2-

0). S

S2,

SS

1 an

dS

S0

sele

ct t

he C

SI/O

tra

nsm

it/re

ceiv

e cl

ock

sour

ce a

ndsp

eed.

SS

2, S

S1

and

SS

0 ar

e al

l set

to

1 du

ring

RE

SE

T.

Tab

le 1

0 sh

ows

CS

I/O B

aud

Rat

e S

elec

tion.

Afte

r R

ES

ET

, th

e C

KS

pin

is

conf

igur

ed a

s an

ext

erna

lcl

ock

inpu

t (S

S2,

SS

1, S

S0

= 1

). C

hang

ing

thes

e va

lues

caus

es C

KS

to

beco

me

an o

utpu

t pi

n an

d th

e se

lect

edcl

ock

is o

utpu

t whe

n tr

ansm

it or

rece

ive

oper

atio

ns a

re e

n-ab

led.

CS

I/O T

ran

smit

/Rec

eive

Dat

a R

egis

ter

(TR

DR

: I/O

Ad

dre

ss =

0B

H).

Tim

er D

ata

Reg

iste

r C

han

nel

0L

TM

DR

0L

0CH

Tim

er D

ata

Reg

iste

r C

han

nel

0H

TM

DR

0H

0D H

Tim

er R

elo

ad R

egis

ter

0LR

LDR

0L

Tab

le 7

.C

SI/O

Bau

d R

ate

Sel

ecti

on

SS

2S

S1

SS

0D

ivid

e R

atio

00

0÷2

00

01

÷40

01

0÷8

00

11

÷160

10

0÷3

201

01

÷640

11

0÷1

280

11

1E

xter

nal C

lock

Inpu

t(le

ss th

an ÷

20.)

Fig

ure

41.

CS

I/O T

ran

smit

/Rec

eive

Dat

a R

egis

ter

1R

CS

I/O T

/R D

ata

----

----

----

----

76

54

32

1

--0

Fig

ure

42.

Tim

er R

egis

ter

Ch

ann

el O

L

Fig

ure

43.

Tim

er D

ata

Reg

iste

r C

han

nel

OH

AS

CI R

ecei

ve D

ata

----

----

----

----

76

54

32

1

--0

Tim

er D

ata

----

----

----

----

76

54

32

1

--0

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-45

0E H

Tim

er R

elo

ad R

egis

ter

0HR

LDR

0H

0F H

TIM

ER

CO

NT

RO

L R

EG

IST

ER

(T

CR

)

TC

R m

onito

rs b

oth

chan

nels

(P

RT

0, P

RT

1) T

MD

R s

tatu

s.It

also

con

trol

s en

ablin

g an

d di

sabl

ing

of d

own

coun

ting

and

inte

rrup

ts a

long

with

con

trol

ling

outp

ut p

in A

18/T

OU

Tfo

r P

RT

1.

TIF

1: T

imer

Inte

rru

pt F

lag

1 (b

it 7

). W

hen

TM

DR

1 de

cre-

men

ts to

0, T

IF1

is s

et to

1. T

his

gene

rate

s an

inte

rrup

t re-

ques

t if e

nabl

ed b

y T

IE1

= 1

. TIF

1 is

res

et to

0 w

hen

TC

Ris

read

and

the

high

er o

r low

er b

yte

of T

MD

R1

is re

ad. D

ur-

ing

RE

SE

T, T

IF1

is c

lear

ed to

0.

TIF

0: T

imer

Inte

rru

pt F

lag

0 (b

it 6

). W

hen

TM

DR

0 de

cre-

men

ts to

0, T

IF0

is s

et to

1. T

his

gene

rate

s an

inte

rrup

t re-

ques

t if e

nabl

ed b

y T

IE0

= 1

. TIF

0 is

res

et to

0 w

hen

TC

Ris

read

and

the

high

er o

r low

er b

yte

of T

MD

R0

is re

ad. D

ur-

ing

RE

SE

T, T

IF0

is c

lear

ed to

0.

TIE

1: T

imer

Inte

rru

pt

En

able

1 (

bit

5).

Whe

n T

IE0

is s

etto

1,

TIF

1 =

1 g

ener

ates

a C

PU

int

erru

pt r

eque

st.

Whe

nT

IE0

is r

eset

to 0

, the

inte

rrup

t req

uest

is in

hibi

ted.

Dur

ing

RE

SE

T, T

IE0

is c

lear

ed to

0.

TO

C1,

0:

Tim

er O

utp

ut

Co

ntr

ol

(bit

s 3,

2).

TO

C1

and

TO

C0

cont

rol

the

outp

ut o

f P

RT

1 us

ing

the

mul

tiple

xed

TO

UT

/DR

EQ

pin

as

show

n in

Tab

le 1

1. D

urin

g R

ES

ET

TO

C1

and

TO

C0

are

clea

red

to 0

. If b

it 3

of th

e IA

R1B

reg

iste

r is

1, t

he T

OU

T fu

nctio

n is

sel

ecte

d. B

y pr

ogra

mm

ing

TO

C1

and

TO

C0,

the

TO

UT

/DR

EQ

pin

can

be

forc

edH

igh,

Low

, or

togg

led

whe

n T

MD

R1

decr

emen

ts to

0.

Fig

ure

44.

Tim

er R

elo

ad R

egis

ter

Lo

w

Tim

er R

eloa

d D

ata

----

----

----

----

76

54

32

1

--0

Fig

ure

45.

Tim

er R

elo

ad R

egis

ter

Ch

ann

el

Tim

er R

eloa

d D

ata

----

----

----

----

76

54

32

1

--0

Fig

ure

46.

Tim

er C

on

tro

l Reg

iste

r (T

CR

: I/O

Ad

dre

ss =

10H

)

Bit

TIF

1T

IF0

R/W

R/W

R/W

TIE

1

76

54

32

10

TIE

0TO

C0

TD

E1

TD

E0

RR

R/W

R/W

R/W

TOC

1

Tab

le 8

.T

imer

Ou

tpu

t C

on

tro

l

TOC

1TO

C0

Ou

tpu

t

00

Inhi

bite

dT

he T

OU

T/D

RE

Q p

in is

not

af

fect

ed b

y th

e P

RT.

01

Togg

led

If bi

t 3 o

f IA

R1B

is 1

, the

TO

UT

/DR

EQ

pin

is to

ggle

s or

se

t Low

or

Hig

h as

indi

cate

d.1

00

11

1

grifo ® ITALIAN TECHNOLOGY

Page B-8 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-46

P R

E L

I M

I N

A R

YD

S97

1800

402

TD

E1,

0:

Tim

er D

ow

n C

ou

nt

En

able

(b

its

1, 0

). T

DE

1an

d T

DE

0 en

able

and

dis

able

dow

n co

untin

g fo

r T

MD

R1

and

TM

DR

0, r

espe

ctiv

ely.

Whe

n T

DE

n (n

= 0

, 1)

is s

et to

1, d

own

coun

ting

is s

topp

ed a

nd T

MD

Rn

is f

reel

y re

ad o

rw

ritte

n. T

DE

1 an

d T

DE

0 ar

e cl

eare

d to

0 d

urin

g R

ES

ET

and

TM

DR

n w

ill n

ot d

ecre

men

t unt

il T

DE

n is

set

to 1

.

AS

CI E

XT

EN

SIO

N C

ON

TR

OL

RE

GIS

TE

R C

HA

NN

EL

0 (

AS

EX

T0)

AN

D C

HA

NN

EL

1 (

AS

EX

T1)

No

te:

Thi

s re

gist

er

cont

rols

fu

nctio

ns

that

ha

ve

been

adde

d to

the

AS

CIs

in th

e Z

8018

0/Z

8S18

0/Z

8L18

0 fa

mily

.N

ote

: A

ll b

its

in t

his

reg

iste

r re

set

to z

ero

.

DC

D0

dis

(b

it 6

, A

SC

I0 o

nly

). I

f th

is b

it is

0,

then

the

DC

D0

pin

“aut

o-en

able

s” t

he A

SC

I0 r

ecei

ver,

suc

h th

atw

hen

the

pin

is n

egat

ed/H

igh,

the

Rec

eive

r is

held

in a

RE

-S

ET

sta

te.

The

sta

te o

f th

e D

CD

-pin

has

no

effe

ct o

n re

-ce

iver

ope

ratio

n. I

n ei

ther

sta

te o

f th

is b

it, s

oftw

are

can

read

the

stat

e of

the

DC

D0

pin

in th

e S

TA

T0

regi

ster

, and

the

rece

iver

will

inte

rrup

t on

a ris

ing

edge

of D

CD

0 .

CT

S0

dis

(bit

5, A

SC

I0 o

nly

). If

this

bit

is 0

, the

n th

e C

TS

0pi

n “a

uto-

enab

les”

the

AS

CIO

tran

smitt

er, i

n th

at w

hen

the

pin

is n

egat

ed/h

igh,

the

TD

RE

bit

in th

e S

TA

T0

regi

ster

isfo

rced

to 0

. If t

his

bit i

s 1,

the

stat

e of

the

CT

S0

pin

has

noef

fect

on

the

tran

smitt

er. R

egar

dles

s of

the

stat

e of

this

bit,

softw

are

can

read

the

sta

te o

f th

e C

TS

0 pi

n th

e C

NT

LB0

regi

ster

.

X1

(bit

4).

If th

is b

it is

1, t

he c

lock

from

the

Bau

d R

ate

Gen

-er

ator

or

CK

A p

in is

take

n as

a “

1X”

bit c

lock

(th

is is

som

e-tim

es c

alle

d “is

ochr

onou

s” m

ode)

. In

thi

s m

ode,

rec

eive

data

on

the

RX

A p

in m

ust b

e sy

nchr

oniz

ed to

the

cloc

k on

the

CK

A p

in,

rega

rdle

ss o

f w

heth

er C

KA

is a

n in

put

or a

nou

tput

. If t

his

bit i

s 0,

the

cloc

k fr

om th

e B

aud

Rat

e G

ener

-at

or o

r C

KA

pin

is

divi

ded

by 1

6 or

64

per

the

DR

bit

inC

NT

LB r

egis

ter,

to o

btai

n th

e ac

tual

bit

rate

. In

this

mod

e,re

ceiv

e da

ta o

n th

e R

xA p

in n

eed

not

be s

ynch

roni

zed

toa

cloc

k.

BR

G M

od

e (b

it 3

). If

the

SS

2-0

bits

in th

e C

NT

LB r

egis

ter

are

not

111,

and

thi

s bi

t is

0,

this

AS

CI's

Bau

d R

ate

Gen

-er

ator

div

ides

PH

I by

10 o

r 30

, dep

endi

ng o

n th

e D

R b

it in

CN

TLB

, and

then

by

a po

wer

of t

wo

sele

cted

by

the

SS

2-

0 bi

ts, t

o ob

tain

the

cloc

k th

at is

pre

sent

ed to

the

tran

smit-

ter

and

rece

iver

and

that

can

be

outp

ut o

n th

e C

KA

pin

. If

SS

2-0

are

not 1

11, a

nd th

is b

it is

1, t

he B

aud

Rat

e G

ener

-at

or d

ivid

es P

HI

by t

wic

e (t

he 1

6-bi

t va

lue

prog

ram

med

into

the

Tim

e C

onst

ant R

egis

ters

, plu

s tw

o). T

his

mod

e is

iden

tical

to th

e op

erat

ion

of th

e ba

ud r

ate

gene

rato

r in

the

ES

CC

.

Bre

ak E

nab

le (b

it 2

). If

this

bit

is 1

, the

rec

eive

r w

ill d

etec

tB

reak

con

ditio

ns a

nd re

port

them

in b

it 1,

and

the

tran

smit-

ter

will

sen

d B

reak

s un

der

the

cont

rol o

f bit

0.

Bre

ak D

etec

t (b

it 1

). T

he r

ecei

ver

sets

thi

s re

ad-o

nly

bit

to 1

whe

n an

all-

zero

cha

ract

er w

ith a

Fra

min

g E

rror

be-

com

es t

he o

ldes

t ch

arac

ter

in t

he R

x F

IFO

. T

he b

it is

clea

red

whe

n so

ftwar

e w

rites

a 0

to th

e E

FR

bit

in C

NT

LAre

gist

er, a

lso

by R

eset

, by

IOS

TO

P m

ode,

and

for

AS

CIO

if th

e D

CD

0 pi

n is

aut

o-en

able

d an

d is

neg

ated

(hi

gh).

Sen

d B

reak

(bit

0).

If th

is b

it an

d bi

t 2 a

re b

oth

1, th

e tr

ans-

mitt

er h

olds

the

TX

A p

in l

ow t

o se

nd a

Bre

ad c

ondi

tion

The

dur

atio

n of

the

Bre

ad is

und

er s

oftw

are

cont

rol (

one

ofth

e P

RT

s or

CT

Cs

can

be u

sed

to t

ime

it).

Thi

s bi

t re

sets

to 0

, in

whi

ch s

tate

TX

A c

arrie

s th

e se

rial

outp

ut o

f th

etr

ansm

itter

.

Fig

ure

47.

AS

CI E

xten

sio

n C

on

tro

l Reg

iste

rs, C

han

nel

0 a

nd

1

Bit

DC

DO

76

54

32

10

XI

BR

GO

Bre

akB

reak

Sen

d

AS

CI E

xten

sion

Con

trol

Reg

iste

r 0(

AS

EX

T0

I/O A

ddre

ss =

12H

)

CT

SO

Mod

eN

abB

reak

Bit

76

54

32

10

XI

BR

GI

Bre

akB

reak

Sen

dM

ode

Ena

bB

reak

AS

CI E

xten

sion

Con

trol

Reg

iste

r 1

(AS

EX

T1

I/O A

ddre

ss =

13H

)

Res

erve

d

Res

erve

dR

eser

ved

Res

erve

d

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-47

Tim

er D

ata

Reg

iste

r C

han

nel

1L

Mne

mon

ic T

MD

R1L

Add

ress

14

Tim

er D

ata

Reg

iste

r C

han

nel

1H

Mne

mon

ic T

MD

R1H

Add

ress

15

Tim

er R

elo

ad R

egis

ter

Ch

ann

el 1

LM

nem

onic

RLD

R1L

Add

ress

16

Tim

er R

elo

ad R

egis

ter

Ch

ann

el 1

LM

nem

onic

RLD

R1H

Add

ress

17

Fre

e R

un

nin

g C

ou

nte

r (R

ead

On

ly)

Mne

mon

ic F

RC

Add

ress

18

Fig

ure

48.

Tim

er D

ata

Reg

iste

r 1L

Fig

ure

49.

Tim

er D

ata

Reg

iste

r 1H

Fig

ure

50.

Tim

er R

elo

ad C

han

nel

1L

76

54

32

1 0

Tim

er D

ata

76

54

32

1 0

Tim

er D

ata

76

54

32

1 0

Rel

oad

Dat

a

Fig

ure

51.

Tim

er R

elao

d R

egis

ter

Ch

ann

el 1

L

Fig

ure

52.

Fre

e R

un

nin

g C

ou

nte

r

76

54

32

1 0

Rel

oad

Dat

a

76

54

32

1 0

Cou

ntin

g D

ata

ITALIAN TECHNOLOGY grifo ®

Page B-9 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-50

P R

E L

I M

I N

A R

YD

S97

1800

402

DM

A S

OU

RC

E A

DD

RE

SS

RE

GIS

TE

R C

HA

NN

EL

0

(SA

R0:

I/O

Add

ress

= 2

0H t

o 22

H)

spec

ifies

the

phy

sica

l sou

rce

addr

ess

for

chan

nel 0

tra

nsfe

rs.

The

reg

iste

r co

ntai

ns20

bits

and

can

spe

cify

up

to 1

024

KB

mem

ory

addr

esse

s or

up

to 6

4 K

B I/

O a

ddre

sses

. Cha

nnel

0 s

ourc

e ca

n be

mem

ory,

I/O

, or

mem

ory

map

ped

I/O. F

or I/

O, t

he M

S b

its o

f thi

s re

gist

er id

entif

y th

e R

eque

st H

ands

hake

sig

nal.

DM

A S

ou

rce

Ad

dre

ss R

egis

ter,

Ch

ann

el 0

LM

nem

onic

SA

R0L

Add

ress

20

DM

A S

ou

rce

Ad

dre

ss R

egis

ter,

Ch

ann

el 0

HM

nem

onic

SA

R0H

Add

ress

21

DM

A S

ou

rce

Ad

dre

ss R

egis

ter

Ch

ann

el 0

BM

nem

onic

s S

AR

0B

Add

ress

22

Fig

ure

55.

DM

A S

ou

rce

Ad

dre

ss R

egis

ter

0L

Fig

ure

56.

DM

A S

ou

rce

Ad

dre

ss R

egis

ter

0H

DM

A C

hann

el 0

Add

ress

----

----

----

----

76

54

32

1

--0

DM

A C

hann

el 0

Add

ress

----

----

----

--

76

54

32

1

--0

Fig

ure

57.

DM

A S

ou

rce

Ad

dre

ss R

egis

ter

0B

DM

A C

hann

el B

Add

ress

----

----

----

----

----

----

----

--

76

54

32

1

--0

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-51

DM

A D

ES

TIN

AT

ION

AD

DR

ES

S R

EG

IST

ER

CH

AN

NE

L 0

(DA

R0:

I/O

Add

ress

= 2

3H t

o 25

H)

spec

ifies

the

phy

sica

l des

tinat

ion

addr

ess

for

chan

nel 0

tra

nsfe

rs.

The

reg

iste

r co

nta

ins

20 b

its a

nd c

an s

peci

fy u

p to

102

4 K

B m

emor

y ad

dres

ses

or u

p to

64

KB

I/O

add

ress

es. C

hann

el 0

des

tinat

ion

can

be m

emor

y, I

/O,

or m

emor

y m

appe

d I/O

. F

or I

/O,

the

MS

bits

of

this

reg

iste

r id

entif

y th

e R

eque

st H

ands

hake

sig

nal f

och

anne

l 0.

DM

A D

esti

nat

ion

Ad

dre

ss R

egis

ter

Ch

ann

el

0L Mne

mon

ic D

AR

0L

Add

ress

23

DM

A D

esti

nat

ion

Ad

dre

ss R

egis

ter

Ch

ann

el

0H Mne

mon

ic D

AR

0H

Add

ress

24

DM

A D

esti

nat

ion

Ad

dre

ss R

egis

ter

Ch

ann

el

0B Mne

mon

ic D

AR

0B

Add

ress

25

No

te:

In t

he R

1 an

d Z

Mas

k, t

hese

DM

A r

egis

ters

are

expa

nded

from

4 b

it to

3 b

its in

the

pack

age

vers

ion

of C

P68

Fig

ure

58.

DM

A D

esti

nat

ion

Ad

dre

ss R

egis

ter

Ch

ann

el 0

L

Fig

ure

59.

DM

A D

esti

nat

ion

Ad

dre

ss R

egis

ter

Ch

ann

el 0

H

Fig

ure

60.

DM

A D

esti

nat

ion

Ad

dre

ss R

egis

ter

Ch

ann

el 0

B

A19

*A

18A

17A

16D

MA

Tra

nsfe

r R

eque

st

XX

00

DR

EQ

0X

X0

1T

DR

0 (A

SC

I0)

XX

10

TD

R1

(AS

CI1

)X

X1

1N

ot U

sed

grifo ® ITALIAN TECHNOLOGY

Page B-10 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-52

P R

E L

I M

I N

A R

YD

S97

1800

402

DM

A B

YT

E C

OU

NT

RE

GIS

TE

R C

HA

NN

EL

0

(BC

RO

: I/O

Add

ress

= 2

6H to

27H

) spe

cifie

s th

e nu

mbe

r of b

ytes

to b

e tr

ansf

erre

d. T

his

regi

ster

con

tain

s 16

bits

and

may

spec

ify u

p to

64

KB

tra

nsfe

rs.

Whe

n on

e by

te is

tra

nsfe

rred

, th

e re

gist

er is

dec

rem

ente

d by

one

. If

“n”

byte

s sh

ould

be

tran

sfer

red,

“n”

mus

t be

stor

ed b

efor

e th

e D

MA

ope

ratio

n.

No

te:

All

DM

A C

ount

Reg

iste

r ch

anne

ls a

re u

ndef

ined

dur

ing

rese

t.

DM

A B

yte

Co

un

t R

egis

ter

Ch

ann

el 0

LM

nem

onic

BC

R0L

Add

ress

26

DM

A B

yte

Co

un

t R

egis

ter

Ch

ann

el 0

HM

nem

onic

BC

R0H

Add

ress

27

DM

A B

yte

Co

un

t R

egis

ter

Ch

ann

el 1

LM

nem

onic

BC

R1L

Add

ress

2E

DM

A B

yte

Co

un

t R

egis

ter

Ch

ann

el 0

HM

nem

onic

BC

R1H

Add

ress

2F

Fig

ure

61.

DM

A B

yte

Co

un

t R

egis

ter

0L

Fig

ure

62.

DM

A B

yte

Co

un

t R

egis

ter

0H

Fig

ure

63.

DM

A B

yte

Co

un

t R

egis

ter

1L

Fig

ure

64.

DM

A B

yte

Co

un

t R

egis

ter

0H

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-53

DM

A M

EM

OR

Y A

DD

RE

SS

RE

GIS

TE

R C

HA

NN

EL

1

(MA

R1:

I/O

Add

ress

= 2

8H to

2A

H)

spec

ifies

the

phys

ical

mem

ory

addr

ess

for

chan

nel 1

tran

sfer

s. T

his

may

be

dest

ina

tion

or s

ourc

e m

emor

y ad

dres

s. T

he r

egis

ter

cont

ains

20

bits

and

may

spe

cify

up

to 1

024

KB

mem

ory

addr

ess.

DM

A M

emo

ry A

dd

ress

Reg

iste

r, C

han

nel

1L

Mne

mon

ic M

AR

1L

Add

ress

28

DM

A M

emo

ry A

dd

ress

Reg

iste

r, C

han

nel

1H

. M

nem

onic

MA

R1H

Add

ress

29

DM

A M

emo

ry A

dd

ress

Reg

iste

r, C

han

nel

1B

Mne

mon

ic M

AR

1B

Add

ress

2A

Fig

ure

65.

DM

A M

emo

ry A

dd

ress

Reg

iste

r, C

han

nel

1L

Fig

ure

66.

DM

A M

emo

ry A

dd

ress

Reg

iste

r, C

han

nel

1H

Fig

ure

67.

DM

A M

emo

ry A

dd

ress

Reg

iste

r, C

han

nel

1B

ITALIAN TECHNOLOGY grifo ®

Page B-11 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-54

P R

E L

I M

I N

A R

YD

S97

1800

402

DM

A I/

O A

DD

RE

SS

RE

GIS

TE

R C

HA

NN

EL

1

(IA

R1:

I/O

Add

ress

= 2

BH

to

2DH

) sp

ecifi

es t

he I

/O a

d-dr

ess

for

chan

nel 1

tra

nsfe

rs.

Thi

s m

ay b

e de

stin

atio

n or

sour

ce I/

O a

ddre

ss. T

he re

gist

er c

onta

ins

16 b

its o

f I/O

ad-

dres

s;

its

mos

t si

gnifi

cant

by

te

iden

tifie

s th

e R

eque

st

Han

dsha

ke s

igna

l an

d co

ntro

ls t

he A

ltern

atin

g C

hann

efe

atur

e.

All

bits

in IA

R1B

res

et to

0.

DM

A I/

O A

dd

ress

Reg

iste

r C

han

nel

1L

Mne

mon

ic IA

R1L

Add

ress

2B

DM

A I/

O A

dd

ress

Reg

iste

r C

han

nel

1H

Mne

mon

ic IA

R1H

Add

ress

2C

DM

A I/

O A

dd

ress

Reg

iste

r C

han

nel

1B

Mne

mon

ic IA

R1B

Add

ress

2D

Fig

ure

68.

IAR

MS

Byt

e R

egis

ter

(IA

RIB

: I/O

Ad

dre

ss 2

DH

)

Bit

A/T

A/T

76

54

32

10

FC

TOU

T/D

RE

QR

eq 1

Sel

Fig

ure

69.

DM

A I/

O A

dd

ress

Reg

iste

r C

han

nel

1L

Fig

ure

70.

DM

A I/

O A

dd

ress

Reg

iste

r C

han

nel

1H

Fig

ure

71.

DM

A I/

O A

dd

ress

Reg

iste

r C

han

nel

1B

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-55

DM

A S

TA

TU

S R

EG

IST

ER

(D

ST

AT

) D

ST

AT

is

used

to

enab

le a

nd d

isab

le D

MA

tra

nsfe

r an

dD

MA

ter

min

atio

n in

terr

upts

. D

ST

AT

als

o in

dica

tes

DM

Atr

ansf

er s

tatu

s, in

oth

er w

ords

, com

plet

ed o

r in

pro

gres

s.

Mne

mon

ic D

ST

AT

Add

ress

30

DE

1: D

MA

En

able

Ch

ann

el 1

(b

it 7

). W

hen

DE

1 =

1 a

ndD

ME

= 1

, cha

nnel

1 D

MA

is e

nabl

ed. W

hen

a D

MA

tran

s-fe

r te

rmin

ates

(B

CR

1 =

0),

DE

1 is

res

et to

0 b

y th

e D

MA

C.

Whe

n D

E1

= 0

and

the

DM

A in

terr

upt

is e

nabl

ed (

DIE

1 =

1), a

DM

A in

terr

upt r

eque

st is

mad

e to

the

CP

U.

To

perf

orm

a s

oftw

are

writ

e to

DE

1, D

WE

1 sh

ould

be

writ

-te

n w

ith 0

dur

ing

the

sam

e re

gist

er w

rite

acce

ss.

Writ

ing

DE

1 to

0 d

isab

les

chan

nel 1

DM

A, b

ut D

MA

is r

esta

rtab

le.

Writ

ing

DE

1 to

1 e

nabl

es c

hann

el 1

DM

A a

nd a

utom

atic

al-

ly s

ets

DM

E (

DM

A M

ain

Ena

ble)

to 1

. DE

1 is

cle

ared

to 0

durin

g R

ES

ET

.

DE

0: D

MA

En

able

Ch

ann

el 0

(b

it 6

). W

hen

DE

0 =

1 a

ndD

ME

= 1

, cha

nnel

0 D

MA

is e

nabl

ed. W

hen

a D

MA

tran

s-fe

r te

rmin

ates

(B

CR

0 =

0),

DE

0 is

res

et to

0 b

y th

e D

MA

C.

Whe

n D

E0

= 0

and

the

DM

A in

terr

upt

is e

nabl

ed (

DIE

0 =

1), a

DM

A in

terr

upt r

eque

st is

mad

e to

the

CP

U.

To

perf

orm

a s

oftw

are

writ

e to

DE

0, D

WE

0 sh

ould

be

writ

-te

n w

ith 0

dur

ing

the

sam

e re

gist

er w

rite

acce

ss.

Writ

ing

DE

0 to

0 d

isab

les

chan

nel

0 D

MA

. W

ritin

g D

E0

to 1

en-

able

s ch

anne

l 0 D

MA

and

aut

omat

ical

ly s

ets

DM

E (

DM

AM

ain

Ena

ble)

to 1

. DE

0 is

cle

ared

to 0

dur

ing

RE

SE

T.

DW

E1:

DE

1 B

it W

rite

En

able

(b

it 5

). W

hen

perf

orm

ing

any

softw

are

writ

e to

DE

1, D

WE

1 sh

ould

be

writ

ten

with

0du

ring

the

sam

e ac

cess

. DW

E1

alw

ays

read

s as

1.

DW

E0 :

DE

0 B

it W

rite

En

able

(b

it 4

). W

hen

perf

orm

ing

any

softw

are

writ

e to

DE

0, D

WE

0 sh

ould

be

writ

ten

with

0du

ring

the

sam

e ac

cess

. DW

E0

alw

ays

read

s as

1.

DIE

1: D

MA

In

terr

up

t E

nab

le C

han

nel

1 (

bit

3).

Whe

nD

IE0

is s

et t

o 1,

the

ter

min

atio

n ch

anne

l 1 D

MA

tra

nsfe

(indi

cate

d w

hen

DE

1 =

0)

caus

es a

CP

U in

terr

upt r

eque

sto

be

gene

rate

d. W

hen

DIE

0 =

0,

the

chan

nel 0

DM

A t

erm

inat

ion

inte

rrup

t is

dis

able

d. D

IE0

is c

lear

ed t

o 0

durin

gR

ES

ET

.

DIE

0: D

MA

In

terr

up

t E

nab

le C

han

nel

0 (

bit

2).

Whe

nD

IE0

is s

et to

1, t

he te

rmin

atio

n ch

anne

l 0 o

f DM

A tr

ansf

e(in

dica

ted

whe

n D

E0=

0) c

ause

s a

CP

U in

terr

upt r

eque

st to

be g

ener

ated

. Whe

n D

IE0=

0, th

e ch

anne

l 0 D

MA

term

ina

tion

inte

rrup

t is

dis

able

d. D

IE0

is c

lear

ed t

o 0

durin

g R

ES

ET

.

DM

E:

DM

A M

ain

En

able

(b

it 0

). A

DM

A o

pera

tion

is o

nly

enab

led

whe

n its

DE

bit

(DE

0 fo

r ch

anne

l 0, D

E1

for

chan

nel 1

) an

d th

e D

ME

bit

is s

et to

1.

Whe

n N

MI o

ccur

s, D

ME

is r

eset

to 0

, thu

s di

sabl

ing

DM

Aac

tivity

dur

ing

the

NM

I int

erru

pt s

ervi

ce r

outin

e. T

o re

star

DM

A, D

E-

and/

or D

E1

shou

ld b

e w

ritte

n w

ith 1

(ev

en if

the

cont

ents

are

alre

ady

1). T

his

auto

mat

ical

ly s

ets

DM

E to

1al

low

ing

DM

A o

pera

tions

to c

ontin

ue. N

ote

that

DM

E c

anno

t be

dire

ctly

writ

ten.

It is

cle

ared

to 0

by

NM

I or i

ndire

ctly

set t

o 1

by s

ettin

g D

E0

and/

or D

E1

to 1

. DM

E is

cle

ared

to0

durin

g R

ES

ET

.

Fig

ure

72.

DM

A S

tatu

s R

egis

ter

(DS

TAT:

I/O

Ad

dre

ss =

30H

)

Bit

DE

1D

E0

DW

E1

76

54

32

10

R/W

R/W

W

DW

E0

DIE

1D

IE0

DM

E

WR

/WR

/WR

grifo ® ITALIAN TECHNOLOGY

Page B-12 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-56

P R

E L

I M

I N

A R

YD

S97

1800

402

DM

A M

OD

E R

EG

IST

ER

(D

MO

DE

).

DM

OD

E is

use

d to

set

the

add

ress

ing

and

tran

sfer

mod

efo

r ch

anne

l 0.

Mne

mon

ic D

MO

DE

Add

ress

31H

DM

1, D

M0:

Des

tin

atio

n M

od

e C

han

nel

0 (b

its

5,4)

spe

c-ifi

es w

heth

er t

he d

estin

atio

n fo

r ch

anne

l 0

tran

sfer

s is

mem

ory

or I/

O, a

nd w

heth

er th

e ad

dres

s sh

ould

be

incr

e-m

ente

d or

dec

rem

ente

d fo

r ea

ch b

yte

tran

sfer

red.

DM

1an

d D

M0

are

clea

red

to 0

dur

ing

RE

SE

T.

SM

1, S

M0:

So

urc

e M

od

e C

han

nel

0 (

bit

s 3,

2)

spec

ifies

whe

ther

the

sou

rce

for

chan

nel

0 tr

ansf

ers

is m

emor

y or

I/O,

and

whe

ther

the

add

ress

sho

uld

be i

ncre

men

ted

orde

crem

ente

d fo

r ea

ch b

yte

tran

sfer

red.

Fig

ure

73.

DM

A M

od

e R

egis

ter

(DM

OD

E: I

/O A

dd

ress

= 3

1H)

Bit

DM

1D

M0

76

54

32

10

R/W

R/W

SM

1S

M0

MM

OD

R/W

R/W

R/W

Tab

le 1

0.C

han

nel

0 D

esti

nat

ion

Mem

ory

DM

1D

M0

Mem

ory

I/O

Incr

emen

t/D

ecre

men

t

00

Mem

ory

+1

01

Mem

ory

–11

0M

emor

yfix

ed1

1I/O

fixed

Tab

le 1

1.C

han

nel

0 S

ou

rce

Mem

ory

SM

1S

M0

Mem

ory

I/O

Incr

emen

t/D

ecre

men

t

00

Mem

ory

+1

01

Mem

ory

–11

0M

emor

yfix

ed1

1I/O

fixed

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-57

Tab

le 1

2 sh

ows

all

DM

A t

rans

fer

mod

e co

mbi

natio

ns o

fD

M0,

DM

1, S

M0,

and

SM

1. S

ince

I/O

to/fr

om I/

O tr

ansf

ers

are

not i

mpl

emen

ted,

12

com

bina

tions

are

ava

ilabl

e.

MM

OD

: M

emo

ry M

od

e C

han

nel

0 (

bit

). W

hen

chan

nel 0

is c

onfig

ured

for m

emor

y to

/from

mem

ory

tran

sfer

s th

ere

isno

Req

uest

Han

dsha

ke s

igna

l to

cont

rol t

he t

rans

fer

tim-

ing.

Ins

tead

, tw

o au

tom

atic

tra

nsfe

r tim

ing

mod

es a

re s

e-le

ctab

le:

burs

t (M

MO

D =

1)

and

cycl

e st

eal (

MM

OD

= 0

).F

or b

urst

mem

ory

to/fr

om m

emor

y tr

ansf

ers,

the

DM

AC

take

s co

ntro

l of t

he b

us c

ontin

uous

ly u

ntil

the

DM

A tr

ansf

erco

mpl

etes

(as

show

n by

the

byte

cou

nt re

gist

er =

0).

In c

y-cl

e st

eal

mod

e, t

he C

PU

is

give

n a

cycl

e fo

r ea

ch D

MA

byte

tran

sfer

cyc

le u

ntil

the

tran

sfer

is c

ompl

eted

.

For

cha

nnel

0 D

MA

with

I/O

sou

rce

or d

estin

atio

n, th

e se

lect

ed R

eque

st s

igna

l tim

es t

he t

rans

fer

and

thus

MM

OD

is ig

nore

d. M

MO

D is

cle

ared

to 0

dur

ing

RE

SE

T.

Tab

le 1

2.Tr

ansf

er M

od

e C

om

bin

atio

ns

Ad

dre

ssD

M1

DM

0S

M1

SM

0Tr

ansf

er M

od

eIn

crem

ent/

Dec

rem

ent

00

00

Mem

ory→

Mem

ory

SA

R0+

1, D

AR

0+1

00

01

Mem

ory→

Mem

ory

SA

R0–

1, D

AR

0+1

00

10

Mem

ory*

→M

emor

yS

AR

0 fix

ed, D

AR

0+1

00

11

I/O→

Mem

ory

SA

R0

fixed

, DA

R0+

10

10

0M

emor

y→M

emor

yS

AR

0+1,

DA

R0–

10

10

1M

emor

y→M

emor

yS

AR

0–1,

DA

R0–

10

11

0M

emor

y*→

Mem

ory

SA

R0

fixed

, DA

R0–

10

11

1I/O

→M

emor

yS

AR

0 fix

ed, D

AR

0–1

10

00

Mem

ory→

Mem

ory*

SA

R0+

1, D

AR

0 fix

ed1

00

1M

emor

y→M

emor

y*S

AR

0–1,

DA

R0

fixed

10

10

Res

erve

d1

01

1R

eser

ved

11

00

Mem

ory→

I/OS

AR

0+1,

DA

R0

fixed

11

01

Mem

ory

I/OS

AR

0–1,

DA

R0

fixed

11

10

Res

erve

d1

11

0R

eser

ved

No

te:

* In

clud

es m

emor

y m

appe

d I/O

.

ITALIAN TECHNOLOGY grifo ®

Page B-13 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-58

P R

E L

I M

I N

A R

YD

S97

1800

402

DM

A/W

AIT

CO

NT

RO

L R

EG

IST

ER

(D

CN

TL

)

DC

NT

L co

ntro

ls t

he i

nser

tion

of w

ait

stat

es i

nto

DM

AC

(and

CP

U)

acce

sses

of m

emor

y or

I/O

. Als

o, it

def

ines

the

Req

uest

sig

nal f

or e

ach

chan

nel a

s le

vel o

r ed

ge s

ense

.

DC

NT

L al

so s

ets

the

DM

A t

rans

fer

mod

e fo

r ch

anne

l 1

whi

ch is

lim

ited

to m

emor

y to

/from

I/O

tran

sfer

s.

MW

I1,

MW

I0:

Mem

ory

Wai

t In

sert

ion

(b

its

7-6)

. S

peci

-fie

s th

e nu

mbe

r of

wai

t st

ates

int

rodu

ced

into

CP

U o

rD

MA

C m

emor

y ac

cess

cyc

les.

MW

I1 a

nd M

WI0

are

set

to1

durin

g R

ES

ET

.

IWI1

, IW

I0:

I/O W

ait

Inse

rtio

n (

bit

s 5-

4).

Spe

cifie

s th

enu

mbe

r of

wai

t st

ates

int

rodu

ced

into

CP

U o

r D

MA

C I

/Oac

cess

cyc

les.

IWI1

and

IWI0

are

set

to 1

dur

ing

RE

SE

T.

See

the

sect

ion

on W

ait-

Sta

te G

ener

atio

n fo

r de

tails

.

DM

S1,

DM

S0:

DM

A R

equ

est

Sen

se (

bit

s 3-

2).

DM

S1

and

DM

S0

spec

ify t

he D

MA

req

uest

sen

se f

or c

hann

el 0

and

chan

nel 1

res

pect

ivel

y. W

hen

rese

t to

0,

the

inpu

t is

leve

l sen

se. W

hen

set t

o 1,

the

inpu

t is

edge

sen

se. D

MS

1an

d D

MS

0 ar

e cl

eare

d to

0 d

urin

g R

ES

ET

.

Typ

ical

ly, f

or a

n in

put/s

ourc

e de

vice

, the

ass

ocia

ted

DM

Sbi

t sh

ould

be

prog

ram

med

as

0 fo

r le

vel

sens

e be

caus

eth

e de

vice

has

a r

elat

ivel

y lo

ng ti

me

to u

pdat

e its

Req

uest

sign

al a

fter

the

DM

A c

hann

el r

eads

dat

a fr

om it

in th

e fir

stof

the

two

mac

hine

cyc

les

invo

lved

in tr

ansf

errin

g a

byte

.

An

outp

ut/d

estin

atio

n de

vice

has

muc

h le

ss ti

me

to u

pdat

eits

Req

uest

sig

nal,

afte

r the

DM

A c

hann

el s

tart

s a

writ

e op

-er

atio

n to

it, a

s th

e se

cond

mac

hine

cyc

le o

f the

two

cycl

esin

volv

ed in

tran

sfer

ring

a by

te. W

ith z

ero-

wai

t sta

te I/

O c

y-cl

es,

whi

ch a

pply

onl

y to

the

AS

CIs

, it

is im

poss

ible

for

ade

vice

to u

pdat

e its

Req

uest

sig

nal i

n tim

e, a

nd e

dge

sens

-in

g m

ust b

e us

ed.

Fig

ure

74.

DM

A/W

AIT

Co

ntr

ol R

egis

ter

(DC

NT

L: I

/O A

dd

ress

= 3

2H)

Bit

MW

I1IW

I0

76

54

32

10

R/W

R/W

DM

S1

DM

S0

DIM

1

R/W

R/W

R/W

MW

I0IW

I1D

IM0

R/W

R/W

R/W

MW

I1M

WI0

Wai

t S

tate

00

00

11

10

21

13

IWI1

IWI0

Wai

t S

tate

00

00

12

10

31

14

DM

Si

Sen

se

1E

dge

Sen

se0

Leve

l Sen

se

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-59

With

one

-wai

t-st

ate

I/O c

ycle

s (t

he fa

stes

t pos

sibl

e ex

cept

for

the

AS

CIs

), i

t is

unl

ikel

y th

at a

n ou

tput

dev

ice

will

be

able

to

upda

te it

s R

eque

st in

tim

e, a

nd e

dge

sens

e is

re-

quire

d.

DIM

1, D

IM0:

DM

A C

han

nel

1 I

/O a

nd

Mem

ory

Mo

de

(bit

s 1-

0).

Spe

cifie

s th

e so

urce

/des

tinat

ion

and

addr

ess

mod

ifier

for

chan

nel 1

mem

ory

to/fr

om I/

O tr

ansf

er m

odes

DIM

1 an

d D

IM0

are

clea

red

to 0

dur

ing

RE

SE

T.

INT

ER

RU

PT

VE

CT

OR

LO

W R

EG

IST

ER

Mne

mon

ic: I

L

Add

ress

33

Bits

7-5

of I

L ar

e us

ed a

s bi

ts 7

-5 o

f the

syn

thes

ized

inte

rru

pt v

ecto

r du

ring

inte

rrup

ts f

or t

he I

NT

1 an

d IN

T2

pins

and

for

the

DM

As,

AS

CIs

, PR

Ts,

and

CS

I/O. T

hese

thre

ebi

ts a

re c

lear

ed to

0 d

urin

g R

eset

(F

igur

e 75

).

INT

/TR

AP

CO

NT

RO

L R

EG

IST

ER

Mne

mon

ics

ITC

Add

ress

34

INT

/TR

AP

Co

ntr

ol

Reg

iste

r (I

TC

, I/O

Ad

dre

ss 3

4H).

Thi

s re

gist

er i

s us

ed i

n ha

ndlin

g T

RA

P i

nter

rupt

s an

d to

enab

le o

r di

sabl

e M

aska

ble

Inte

rrup

t Lev

el 0

and

the

INT

1an

d IN

T2

pins

.

TR

AP

(b

it 7

). T

his

bit

is s

et t

o 1

whe

n an

und

efin

ed O

p-co

de is

fetc

hed.

TR

AP

can

be

rese

t und

er p

rogr

am c

ontr

olby

writ

ing

it w

ith a

0,

how

ever

, it

cann

ot b

e w

ritte

n w

ith 1

unde

r pr

ogra

m c

ontr

ol. T

RA

P is

res

et to

0 d

urin

g R

ES

ET

.

UF

O:

Un

def

ined

Fet

ch O

bje

ct (

bit

6).

Whe

n a

TR

AP

in-

terr

upt o

ccur

s, th

e co

nten

ts o

f UF

O a

llow

det

erm

inat

ion

of

the

star

ting

addr

ess

of t

he u

ndef

ined

ins

truc

tion.

Thi

s is

nece

ssar

y si

nce

the

TR

AP

may

occ

ur o

n ei

ther

the

seco

ndor

thi

rd b

yte

of t

he O

pcod

e. U

FO

allo

ws

the

stac

ked

PC

valu

e to

be

corr

ectly

adj

uste

d. If

UF

O =

0, t

he fi

rst O

pcod

esh

ould

be

inte

rpre

ted

as th

e st

acke

d P

C-1

. If U

FO

= 1

, the

first

Opc

ode

addr

ess

is s

tack

ed P

C-2

. UF

O is

Rea

d-O

nly

ITE

2, 1

, 0:

In

terr

up

t E

nab

le 2

, 1,

0 (

bit

s 2-

0).

ITE

2 an

dIT

E1

enab

le a

nd d

isab

le th

e ex

tern

al in

terr

upt i

nput

s /IN

T2

and

/INT

1, r

espe

ctiv

ely.

IT

E0

enab

les

and

disa

bles

inte

rru

pts

from

the

on-c

hip

ES

CC

, CT

Cs

and

Bid

irect

iona

l Cen

tron

ics

cont

rolle

r as

wel

l as

the

ext

erna

l in

terr

upt

inpu

/INT

0. A

1 in

a b

it en

able

s th

e co

rres

pond

ing

inte

rrup

t lev

ew

hile

a 0

dis

able

s it.

A R

eset

set

s IT

E0

to 1

and

cle

ars

ITE

1 an

d IT

E2

to 0

.

TR

AP

In

terr

up

t. T

he Z

8018

0/Z

8S18

0/Z

8L18

0 ge

nera

tes

a no

n-m

aska

ble

(not

affe

cted

by

the

stat

e of

IE

F1)

TR

AP

inte

rrup

t w

hen

an u

ndef

ined

Opc

ode

fetc

h oc

curs

. T

his

feat

ure

can

be u

sed

to in

crea

se s

oftw

are

relia

bilit

y, im

ple

men

t an

“ext

ende

d” in

stru

ctio

n se

t, or

bot

h. T

RA

P m

ay o

ccu

r du

ring

Opc

ode

fetc

h cy

cles

and

als

o if

an u

ndef

ined

Tab

le 1

3.C

han

nel

1 T

ran

sfer

Mo

de

Ad

dre

ssD

IM1

DM

I0Tr

ansf

er M

od

eIn

crem

ent/

Dec

rem

ent

00

Mem

ory→

I/OM

AR

1 +

1, IA

R1

fixed

01

Mem

ory→

I/OM

AR

1–1,

IAR

1 fix

ed1

0I/O

→M

emor

yIA

R1

fixed

, MA

R1

+ 1

11

I/O→

Mem

ory

IAR

1 fix

ed, M

AR

1 –1

Fig

ure

75.

Inte

rru

pt V

ecto

r L

ow

Reg

iste

r (I

L: I

/O A

dd

ress

= 3

3H)

Bit

IL 7

IL 6

Inte

rrup

t Sou

rce

Dep

ende

nt C

ode

IL 5

76

54

32

10

––––

R/W

R/W

––––

––

R/W

Pro

gram

mab

le

Bit

TR

AP

UF

O

R/W

R/W

R/W

––

76

54

32

10

––––

ITE

2IT

E1

ITE

0

R/W

R

grifo ® ITALIAN TECHNOLOGY

Page B-14 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-60

P R

E L

I M

I N

A R

YD

S97

1800

402

Opc

ode

is fe

tche

d du

ring

the

inte

rrup

t ack

now

ledg

e cy

cle

for

INT

0 w

hen

Mod

e 0

is u

sed.

Whe

n a

TR

AP

in

terr

upt

occu

rs,

the

Z80

180/

Z8S

180/

Z8L

180

oper

ates

as

follo

ws:

1.T

he T

RA

P b

it in

the

Int

erru

pt T

RA

P/C

ontr

ol (

ITC

)re

gist

er is

set

to 1

.

2.T

he c

urre

nt P

C (

Pro

gram

Cou

nter

) va

lue,

ref

lect

ing

the

loca

tion

of th

e un

defin

ed O

pcod

e, is

sav

ed o

n th

est

ack.

3.T

he

Z80

180/

Z8S

180/

Z8L

180

vect

ors

to

logi

cal

addr

ess

0.

Not

e th

at

if lo

gica

l ad

dres

s 00

00H

is

map

ped

to p

hysi

cal a

ddre

ss 0

0000

H, t

he v

ecto

r is

the

sam

e as

for

RE

SE

T. I

n th

is c

ase,

test

ing

the

TR

AP

bit

in

ITC

w

ill

reve

al

whe

ther

th

e re

star

t at

ph

ysic

aad

dres

s 00

000H

was

cau

sed

by R

ES

ET

or

TR

AP

.

All

TR

AP

inte

rrup

ts o

ccur

afte

r fe

tchi

ng a

n un

defin

ed s

ec-

ond

Opc

ode

byte

fol

low

ing

one

of t

he “

pref

ix”

Opc

odes

CB

H,

DD

H,

ED

H,

or F

DH

, or

afte

r fe

tchi

ng a

n un

defin

edth

ird O

pcod

e by

te fo

llow

ing

one

of th

e “d

oubl

e pr

efix

” O

p-co

des

DD

CB

H o

r F

DC

BH

.

The

sta

te o

f th

e U

ndef

ined

Fet

ch O

bjec

t (U

FO

) bi

t in

IT

Cal

low

s T

RA

P s

oftw

are

to c

orre

ctly

“adj

ust”

the

stac

ked

PC

depe

ndin

g on

whe

ther

the

seco

nd o

r th

ird b

yte

of th

e O

p-co

de g

ener

ated

the

TR

AP

. If U

FO

=0,

the

star

ting

addr

ess

of t

he i

nval

id i

nstr

uctio

n is

equ

al t

o th

e st

acke

d P

C-1

. If

UF

O=

1, t

he s

tart

ing

addr

ess

of t

he i

nval

id i

nstr

uctio

n is

equa

l to

the

stac

ked

PC

-2.

Fig

ure

76.

TR

AP

Tim

ing

-2n

d O

pco

de

Un

defi

ned

T1

T2

T3

TT

PT

iT

iT

iT

iT

iT

1T

2T

3T

2T

3T

1T

1T

2

A0-

A18

(A

19)

φ

D0-

D7

PC

0000

HS

P-1

Und

efin

ed

MR

EQ

M1

RD

WR

T3

SP

-2

Opc

ode

PC

HP

CL

2nd

Opc

ode

Fet

ch C

ycle

PC

Sta

ckin

gO

pcod

eF

etch

Cyc

le

Res

tart

fr

om 0

000H

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-61

RE

FR

ES

H C

ON

TR

OL

RE

GIS

TE

R

Mne

mon

ic R

CR

Add

ress

36

The

RC

R s

peci

fies

the

inte

rval

and

len

gth

of r

efre

sh c

y-cl

es, w

hile

ena

blin

g or

dis

ablin

g th

e re

fres

h fu

nctio

n.

RE

FE

: R

efre

sh E

nab

le (

bit

7).

RE

FE

= d

isab

les

the

re-

fres

h co

ntro

ller

whi

le R

EF

E =

1 e

nabl

es r

efre

sh c

ycle

in-

sert

ion.

RE

FE

is s

et to

1 d

urin

g R

ES

ET

.

RE

FW

: R

efre

sh W

ait

(bit

6).

RE

FW

= 0

cau

ses

the

re-

fres

h cy

cle

to b

e tw

o cl

ocks

in d

urat

ion.

RE

FW

= 1

cau

ses

the

refr

esh

cycl

e to

be

thre

e cl

ocks

in d

urat

ion

by a

ddin

g a

refr

esh

wai

t cyc

le (T

RW

). R

EF

W is

set

to 1

dur

ing

RE

SE

T

CY

C1,

0:

Cyc

le In

terv

al (

bit

1,0

). C

YC

1 an

d C

YC

0 sp

ec-

ify th

e in

terv

al (

in c

lock

cyc

les)

bet

wee

n re

fres

h cy

cles

. In

the

case

of d

ynam

ic R

AM

s re

quiri

ng 1

28 re

fres

h cy

cles

ev-

ery

2 m

s (0

r 256

cyc

les

in e

very

4 m

s), t

he re

quire

d re

fres

hin

terv

al is

less

than

or e

qual

to 1

5.62

5 µs

. Thu

s, th

e un

der-

lined

val

ues

indi

cate

the

bes

t re

fres

h in

terv

al d

epen

ding

on C

PU

clo

ck f

requ

ency

. C

YC

0 an

d C

YC

1 ar

e cl

eare

d to

0 du

ring

RE

SE

T (

see

Tab

le 1

4).

Fig

ure

77.

TR

AP

Tim

ing

-3rd

Op

cod

e U

nd

efin

ed

T1

T2

T3

T1

T2

TT

PT

3T

iT

iT

1T

2T

3T

2T

3T

1T

1T

2

A0-

A18

(A

19)φ

D0-

D7

PC

0000

HS

P-1

Und

efin

ed

MR

EQ

M1

RD

WR

T3

SP

-2

Opc

ode

PC

-1H

PC

-1L

3nd

Opc

ode

Fet

ch C

ycle

PC

Sta

ckin

gO

pcod

eF

etch

Cyc

le

Res

tart

Mem

ory

IX +

d, I

Y +

d

Ti

Ti

Rea

d C

ycle

from

000

0H

Fig

ure

78.

Ref

resh

Co

ntr

ol R

egis

ter

(RC

A: I

/O A

dd

ress

= 3

6H)

Res

erve

d

----

----

----

--

76

54

32

1

Cyc

1Cyc

0

RE

FW

RE

FE

-

--0

ITALIAN TECHNOLOGY grifo ®

Page B-15 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-62

P R

E L

I M

I N

A R

YD

S97

1800

402

Ref

resh

Co

ntr

ol a

nd

Res

et. A

fter

RE

SE

T,

base

d on

the

initi

aliz

ed v

alue

of

RC

R,

refr

esh

cycl

es w

ill o

ccur

with

an

inte

rval

of

10 c

lock

cyc

les

and

be 3

clo

ck c

ycle

s in

dur

a-tio

n.

Dyn

amic

RA

M R

efre

sh O

pera

tion

1.R

efre

sh C

ycle

inse

rtio

n is

sto

pped

whe

n th

e C

PU

is in

the

follo

win

g st

ates

:

a.D

urin

g R

ES

ET

b.W

hen

the

bus

is

rele

ased

in

re

spon

se

toB

US

RE

Q.

c.D

urin

g S

LEE

P m

ode.

d.D

urin

g W

AIT

sta

tes.

2.R

efre

sh

cycl

es

are

supp

ress

ed

whe

n th

e bu

s is

rele

ased

in

re

spon

se

to

BU

SR

EQ

. H

owev

er,

the

refr

esh

timer

con

tinue

s to

ope

rate

. T

hus,

the

tim

e at

whi

ch

the

first

re

fres

h cy

cle

occu

rs

afte

r th

eZ

8018

0/Z

8S18

0/Z

8L18

0 re

-acq

uire

s th

e bu

s de

pend

son

the

refr

esh

timer

and

has

no

timin

g re

latio

nshi

p w

ithth

e bu

s ex

chan

ge.

3.R

efre

sh c

ycle

s ar

e su

ppre

ssed

dur

ing

SLE

EP

mod

eIf

a re

fres

h cy

cle

is r

eque

sted

dur

ing

SLE

EP

mod

eth

e re

fres

h cy

cle

requ

est

is i

nter

nally

“la

tche

d” (

unti

repl

aced

with

the

nex

t re

fres

h re

ques

t).

The

“la

tche

d”re

fres

h cy

cle

is in

sert

ed a

t the

end

of t

he fi

rst m

achi

necy

cle

afte

r S

LEE

P m

ode

is e

xite

d. A

fter

this

ini

tiacy

cle,

the

tim

e at

whi

ch t

he n

ext

refr

esh

cycl

e oc

curs

depe

nds

on t

he r

efre

sh t

ime

and

has

no r

elat

ions

hip

with

the

exit

from

SLE

EP

mod

e.

4.T

he r

efre

sh a

ddre

ss i

s in

crem

ente

d by

one

for

eac

hsu

cces

sful

ref

resh

cyc

le,

not

for

each

ref

resh

. T

hus

inde

pend

ent

of

the

num

ber

of

“mis

sed”

re

fres

hre

ques

ts,

each

ref

resh

bus

cyc

le w

ill u

se a

ref

resh

addr

ess

incr

emen

ted

by o

ne fr

om th

at o

f the

pre

viou

sre

fres

h bu

s cy

cles

.

MM

U C

OM

MO

N B

AS

E R

EG

IST

ER

Mne

mon

ic C

BR

Add

ress

38

MM

U C

om

mo

n B

ase

Reg

iste

r (C

BR

). C

BR

spe

cifie

s th

eba

se a

ddre

ss (o

n 4

KB

bou

ndar

ies)

use

d to

gen

erat

e a

20-

bit p

hysi

cal a

ddre

ss fo

r C

omm

on A

rea

1 ac

cess

es. A

ll bi

tsof

CB

R a

re r

eset

to 0

dur

ing

RE

SE

T.

Tab

le 1

4.D

RA

M R

efre

sh In

terv

als

Inse

rtio

nT

ime

Inte

rval

CY

C1

CY

C0

Inte

rval

Ø: 1

0 M

Hz

8 M

Hz

6 M

Hz

4 M

Hz

2.5

MH

z

00

10 s

tate

s(1

.0 µ

s)*

(1.2

5 µs

)*1.

66 µ

s2.

5 µs

4.0

µs0

120

sta

tes

(2.0

µs)

*(2

.5 µ

s)*

3.3

µs5.

0 µs

8.0

µs1

040

sta

tes

(4.0

µs)

*(5

.0 µ

s)*

6.6

µs10

.0 µ

s16

.0 µ

s1

180

sta

tes

(8.0

µs)

*(1

0.0

µs)*

13.3

µs

20.0

µs

32.0

µs

No

te:

*cal

cula

ted

inte

rval

Fig

ure

79.

MM

U C

om

mo

n B

ase

Reg

iste

r (B

BR

: I/O

Ad

dre

ss =

38H

)

Bit

CB

7C

B6

R/W

CB

5

76

54

32

10

CB

4C

B2

CB

1C

B0

R/W

CB

3

R/W

R/W

R/W

R/W

R/W

R/W

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-63

MM

U B

AN

K B

AS

E R

EG

IST

ER

(B

BR

).

Mne

mon

ic B

BR

Add

ress

39

BB

R s

peci

fies

the

base

add

ress

(on

4 K

B b

ound

arie

s)us

ed t

o ge

nera

te a

19-

bit

phys

ical

add

ress

for

Ban

k A

rea

acce

sses

. All

bits

of B

BR

are

res

et to

0 d

urin

g R

ES

ET

.

MM

U C

OM

MO

N/B

AN

K A

RE

A R

EG

IST

ER

(C

BA

R).

Mne

mon

ic C

BA

R

Add

ress

3A

CB

AR

sp

ecifi

es

boun

darie

s w

ithin

th

eZ

8018

0/Z

8S18

0/Z

8L18

0 64

KB

logi

cal a

ddre

ss s

pace

for

up t

o th

ree

area

s; C

omm

on A

rea)

, B

ank

Are

a an

d C

om-

mon

Are

a 1.

CA

3-C

A0:

CA

(b

its

7-4)

. C

A s

peci

fies

the

star

t (L

ow)

ad-

dres

s (o

n 4

KB

bou

ndar

ies)

for

the

Com

mon

Are

a 1.

Thi

sal

so d

eter

min

es th

e la

st a

ddre

ss o

f the

Ban

k A

rea.

All

bits

of C

A a

re s

et to

1 d

urin

g R

ES

ET

.

BA

-BA

0 (b

its

3-0)

. B

A s

peci

fies

the

star

t (L

ow)

addr

ess

(on

4 K

B b

ound

arie

s) f

or t

he B

ank

Are

a. T

his

also

det

er-

min

es t

he la

st a

ddre

ss o

f th

e C

omm

on A

rea

0. A

ll bi

ts o

fB

A a

re s

et to

1 d

urin

g R

ES

ET

.

Fig

ure

80.

MM

U B

ank

Bas

e R

egis

ter

(BB

R: I

/O A

dd

ress

= 3

9H)

Bit

BB

7B

B6

R/W

BB

5

76

54

32

10

BB

4B

B2

BB

1B

B0

R/W

BB

3

R/W

R/W

R/W

R/W

R/W

R/W

Fig

ure

81.

MM

U C

om

mo

n/B

ank

Are

a R

egis

ter

(CB

AR

: I/O

Ad

dre

ss =

3 A

H

Bit

CA

3C

A2

R/W

CA

1

76

54

32

10

CA

0B

A2

BA

1B

A0

MM

U C

omm

on/B

ank

Are

a R

egis

ter

(CB

AR

: I/O

Add

ress

= 3

AH

)

R/W

BA

3

R/W

R/W

R/W

R/W

R/W

R/W

grifo ® ITALIAN TECHNOLOGY

Page B-16 GPC® 184 Rel. 5.10

Z80

180/

Z8S

180/

Z8L

180

En

han

ced

Z18

0 M

icro

pro

cess

or

Zilo

g

1-64

P R

E L

I M

I N

A R

YD

S97

1800

402

OP

ER

AT

ION

MO

DE

CO

NT

RO

L R

EG

IST

ER

Mne

mon

ic O

MC

R

Add

ress

3E

The

Z80

180/

Z8S

180/

Z8L

180

is d

esce

nded

fro

m t

wo

dif-

fere

nt “

ance

stor

” pr

oces

sors

, Z

ilog'

s or

igin

al Z

80 a

nd t

heH

itach

i 641

80. T

he O

pera

ting

Mod

e C

ontr

ol R

egis

ter (

OM

-C

R)

can

be p

rogr

amm

ed t

o se

lect

bet

wee

n ce

rtai

n di

ffer-

ence

s be

twee

n th

e Z

80 a

nd th

e 64

180.

M1E

(M

1 E

nab

le).

Thi

s bi

t co

ntro

ls t

he M

1 ou

tput

and

isse

t to

a 1

durin

g re

set.

Whe

n M

1E=

1, t

he M

1 ou

tput

is

asse

rted

Low

dur

ing

the

opco

de f

etch

cyc

le,

the

INT

0 ac

know

ledg

e cy

cle,

and

the

first

mac

hine

cyc

le o

f the

NM

I ack

now

ledg

e.

On

the

Z80

180/

Z8S

180/

Z8L

180,

thi

s ch

oice

mak

es t

hepr

oces

sor

fetc

h an

RE

TI i

nstr

uctio

n on

ce, a

nd w

hen

fetc

h-in

g an

RE

TI

from

zer

o-w

ait-

stat

e m

emor

y w

ill u

se t

hree

cloc

k m

achi

ne c

ycle

s w

hich

are

not

ful

ly Z

80-t

imin

g co

m-

patib

le b

ut a

re c

ompa

tible

with

the

on-c

hip

CT

Cs.

Whe

n M

IE=

0, th

e pr

oces

sor d

oes

not d

rive

M1

Low

dur

ing

inst

ruct

ion

fetc

h cy

cles

, and

afte

r fet

chin

g an

RE

TI i

nstr

uc-

tion

once

with

nor

mal

tim

ing,

it g

oes

back

and

re-

fetc

hes

the

inst

ruct

ion

usin

g fu

lly Z

80-c

ompa

tible

cyc

les

that

in-

clud

e dr

ivin

g M

1 Lo

w. T

his

may

be

need

ed b

y so

me

exte

r-na

l Z80

per

iphe

rals

to

prop

erly

dec

ode

the

RE

TI

inst

ruc-

tion.

I/O C

ontr

ol R

egis

ter

(IC

R).

ICR

allo

ws

relo

catin

g of

the

inte

rnal

I/O

add

ress

es. I

CR

als

o co

ntro

ls e

nabl

ing/

disa

blin

g of

the

IOS

TO

P m

ode

(Fig

ure

84).

Fig

ure

82.

Op

erat

ing

Co

ntr

ol R

egis

ter

(OM

CR

: I/O

Ad

dre

ss =

3E

H)

D7

Res

erve

d

D6

D5

--

IOC

(R

/W)

M1T

E (

W)

M1E

(R

/W)

----

---- Fig

ure

83.

RE

TI I

nst

ruct

ion

Seq

uen

ce w

ith

MIE

=0

Fig

ure

84.

I/O C

on

tro

l Reg

iste

r (I

CR

: I/O

Ad

dre

ss =

3F

H)

T1

T2

T3

T1

T2

T3

TI

TI

TI

T1

T2

T3

T1

T2

T3

TI

TI

A0-

A18

(A

19)φ

D0-

D7

PC

PC

+1

PC

PC

+1

ED

H4D

HE

DH

4DH

MR

EQ

M1

RD ST

IOA

7IO

A6

----

----

IOS

TP

Bit

76

54

32

10 --

R/W

R/W

R/W

Z80

180/

Z8S

180/

Z8L

180

Zilo

gE

nh

ance

d Z

180

Mic

rop

roce

sso

r

DS

9718

0040

2P

R E

L I

M I

N A

R Y

1-65

IOA

7, 6

: I/O

Ad

dre

ss R

elo

cati

on

(b

its

7,6)

. IO

A7

and

IOA

6 re

loca

te in

tern

al I/

O a

s sh

own

in F

igur

e 85

. Not

e th

atth

e hi

gh-o

rder

8 b

its o

f 16

-bit

inte

rnal

I/O

add

ress

are

al-

way

s 0.

IOA

7 an

d IO

A6

are

clea

red

to 0

dur

ing

Res

et.

IOS

TP

. IO

ST

OP

Mod

e (b

it 5)

. IO

ST

OP

mod

e is

ena

bled

whe

n IO

ST

P i

s se

t to

1.

Nor

mal

I/O

ope

ratio

n re

sum

esw

hen

IOS

TO

P is

rep

rogr

amm

ed o

r R

eset

to 0

Fig

ure

85.

I/O A

dd

ress

Rel

oca

tio

n

IOA

7-IO

A6

= 1

1

IOA

7-IO

A6

= 1

0

IOA

7- IO

A6

= 0

1

IOA

7-IO

A6

= 0

0

00F

FH

00C

OH

00B

FH

008O

H00

7OH

004O

H00

3FH

000O

H

ITALIAN TECHNOLOGY grifo ®

Page C-1 GPC® 184 Rel. 5.10

APPENDIX C: ELECTRIC DIAGRAMSAPPENDIX C: ELECTRIC DIAGRAMS

In this appendix are available some electric diagrams of the most frequently used GPC® 184interfaces. All these interface can be yourself produced and some of them are standard grifo ® cardsand, if required, they can be directly ordered.

FIGURE C1: PPI EXPANSION ELECTRIC DIAGRAM

A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 4

5 5

6 6

grifo ®Title:

Date:

Page : of

Rel.16/11/1998

ABACO® I/O BUS26 pin connector

A0A1

/RST/RD/WR

Standard I/O20 pin connector

+5V

GND

40 pin Dip

PB.6PB.5PB.4PB.3PB.2PB.1PB.0

PB.7

Power supply

Gnd

+5v

Dip Switch

Standard I/O20 pin connector

Gnd

+Vcc

/CS2/CS1/NMI/INT

/IRQ

D0D1D2D3D4D5D6D7

A2A3A4A5A6A7

N.C.N.C.

PA.7PA.6PA.5PA.4PA.3PA.2PA.1PA.0

PC.2PC.1PC.0

PC.3

+5V

GND

PC.4PC.5PC.6PC.7

1.1

PPI example

1 1

1

23a

74HCT00

10K

10K

1N

41

48

2 1

+5V

7

8563412

131615

18

17

1112

9

14

10

1920

100n

F+22µF

+5V

+5V

100nF

161514131211

87654321

19

23242122

26

25

100n

F

+22µF

+5V

D0D1D2D3D4D5D6D7

10K+5V

654321

+5V

10K

10K

+5V

+22µF

100n

F

100n

F

100n

F

/G

P0P1P2P3P4P5P6P7

/P=Q

Q0Q1Q2Q3Q4Q5Q6Q7

1

2468

11131517

19

357912141618

74LS688

/GDIRA1A2A3A4A5A6A7A8

B1B2B3B4B5B6B7B8

191

23456789

1817161514131211

74LS245

9

108c 74HCT00

12

1311d 74HCT00

+5V

1

D0D1D2D3D4D5D6D7

A0A1

/CS

/RD

/WR

RESET

PB0PB1PB2PB3PB4PB5PB6PB7

PC0PC1PC2PC3PC4PC5PC6PC7

PA0PA1PA2PA3PA4PA5PA6PA7

Vcc

Gnd

8 2 c 5 5

3433323130292827

98

6

5

36

35

1819202122232425

1415161713121110

432140393837

26

7

7

8563412

4

56b

74HCT00

10K

+5V

10K +5V

10K+5V

18

17

100n

F

+22µF

+5V

171820

A0A1

+5V

10K

/G1/G2A1A2A3A4A5A6A7A8

Y1Y2Y3Y4Y5Y6Y7Y8

119

23456789

1817161514131211

74LS54110K

+5V

A0A1

D0D1D2D3D4D5D6D7

109

N.C.N.C.N.C.N.C.

/RD

/RD

/WR

/WR

/CS

/CS

/CS

RES

RES

/RES

/RST

/RST

BA2BA3

BA5

BA7BA6

BA4

/BIRQ

BD0

BD2

BD7BD6BD5BD4BD3

BD1

/BRD

BA1BA0/BWR

/BRST

grifo ® ITALIAN TECHNOLOGY

Page C-2 GPC® 184 Rel. 5.10

FIGURE C2: SPA 03 ELECTRIC DIAGRAM

A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 4

5 5

6 6

grifo ®Title:

Date:

Page : of

Rel.

D0D1D2D3D4D5D6D7

A0A1A2A3A4A5A6A7

+Vdc

Dip Switch

/IRQ

Power supply

Gnd

+5v

Gnd

16/11/98

ABACO® I/O BUS26 pin connector

/RST

/CS2/CS1/NMI/INT

/RD/WR

1.1

SPA-03

1 1

1718

23242122

20

26

25100nF

C4+

22µF

C1

+5V

1

2

1KR1

1KR2

Rosso

LD2

Rosso

LD1

J1

100n

F

C3

91011121314

19

+5V

100KRR4

/G

P0P1P2P3P4P5P6P7

/P=Q

Q0Q1Q2Q3Q4Q5Q6Q7

1

2468

11131517

19

357912141618

IC1

74HCT688100KRR1

1516

100KRR3

+5V

100KRR4

+5V

6

21

J2

43

5

12345678

DSW1

100nF

C2

100KRR2

87654321

+5V

CN1

/WR/RD/RST

CN2

CN4

/CS

/IRQ

D0D1D2D3D4D5D6D7

/CS2/CS1/NMI/INT

A0A1A2A3A4A5A6A7

ITALIAN TECHNOLOGY grifo ®

Page C-3 GPC® 184 Rel. 5.10

FIGURE C3: QTP 16P ELECTRIC DIAGRAM

A

A

B

B

C

C

1 1

2 2

3 3

4 4

5 5

grifo ®Title:

Date:

Page : of

Rel.

1 2 3 4 5 6 7 8

1 2 3 A4 5 6 B7 8 9 C* 0 # D1 2 3 4

5

6

78

1.2

Standard I/O 20 p in connector DISPLAY 4x20DISPLAY 2x20

Keyboard connector

DC Power supply

AC Power supply

OPTIONAL

MatrixKeyboard 4x4

* 7

#

A

28

1

B

39

5

C

4

0

D

6

PA.7PA.6PA.5PA.4PA.3PA.2PA.1PA.0

PC.2PC.1PC.0PC.3

+5VGND

N.C.N.C.

PC.4PC.5PC.6PC.7

QTP 16P

1 1

22-07-1998

7

CN4

8

RR1

563412

1 4

CN1

1 31 21 11 0

987

1 31 61 5

1 81 7

1 11 29

1 4

1 0

654

654

21

1 6

3

21

1 51 5

3

C1

R7

R6

R5

R4

4

CN3

3

3

2

8 7 6 5

C5

+5V

+5V

+5V

1 92 0

+5V

J1

1 0987

1 3

RR2

R1

R2

R3

+5V

C2

1 21 1

RR2

+5V

1

2

A

B

3

CN5

4

+-

~

~

PD1

C3+

C4 C6+

C9 C8+

C7

TZ1

L1

A

B

1 4

CN2

RV1

1 6

SN7407

2 4 6 8 1 0 1 2

1 3 5 9 1 1 1 3

1 4

7

+5V

SWITCHING

REGOLATOR

D6D7

R/W R/WRS RS

Contrast

E E

D0

D0D0

D2.

D2D2

D1

D1D1

D3

D3D3D4D5

grifo ® ITALIAN TECHNOLOGY

Page C-4 GPC® 184 Rel. 5.10

FIGURE C4: QTP 24P ELECTRIC DIAGRAM (1 OF 2)

A

A

B

B

C

C

1 1

2 2

3 3

4 4

5 5

grifo ®Title:

Date:

Page : of

Rel.

1 2 3 4

5 6 7 8

9 0ESC ENTER

QTP 24

ALD5

BLD6

CLD7

DLD8

ELD9

FLD10

GLD11

HLD12

ILD13

JLD14

KLD15

LLD16

LD1

LD2

LD3

LD4

1.2

I/O 20 p ins VFD FUTABA

QTP 24 keyboard 4x6

L

K

J

AEI281

BF395

CG

H

40Esc

D6Enter7

LCD 20x4LCD 20x2

PA.7PA.6PA.5PA.4PA.3PA.2PA.1PA.0

PC.2PC.1PC.0PC.3PC.4

+5VGND

N.C.N.C.

PC.4

PC.5PC.6PC.7

QTP 24P

1 2

22-07-1998

7

CN2

8

RR1

563412

1

CN5

3579

1 11 31 5

1 4

CN6

1 31 21 11 0

987

1 31 61 5

1 1

1 81 7

1 1

1 29

1 4

1 0

1 8 654

654

2 0

1 6

1 41 0

4

821

1 6

3

21

1 51 5

3

C9

C13+

C12

R7

R6

R5

RV1

RR2

+C10

1 2

R8

R9

R10

R11

1 0

CN3

9

8

7

6 5 4 3 2 1

C3

+5V

+5V

+5V

+5V

1 92 0

+5V

7407

8 6 1 0 4 1 2 2

9 5 1 1 3 1 3 1

1 4

7 IC3

1 4

CN4

1 7

J1

6

2

RR2

J2

1 21 11 0

987

1 3

1 6

D6D7

/BUSY

EE

CLK

/WRRSRS

Contrast

+VLED

/SEL

TEST

D0

Col.6

Col.6

D1

Col.4

Col.4

Col.5

Col.5

D2D3

Col3

D4

Col.2

Col.2

D5

Col.1

Col.1

SD

R/W R/W

Metal Panel

Col.3

ITALIAN TECHNOLOGY grifo ®

Page C-5 GPC® 184 Rel. 5.10

FIGURE C5: QTP 24P ELECTRIC DIAGRAM (2 OF 2)

A

A

B

B

C

C

1 1

2 2

3 3

4 4

5 5

grifo ®Title:

Date:

Page : of

Rel.

22

1.2

QTP 24P

22-07-1998

LD1

LD2

LD3

LD4

LD5

LD16

LD15

LD14

LD13

LD12

LD11

LD10

LD9

LD8

LD7

LD6

D4 D3+5V

R3R4

R1

+5V

C2

+5V

C4

3

CN1

4

8÷24Vac

PD1

+ C8+ C7

+C11

+C5

+5V

16

15

1

13

14

12

11

10

9

8

7

6

5

4

3

2

28

27

26

25

2423222120191817

M 5 4 8 0

IC2SWITCHING

REGOLATOR

IC1

CLK

SD

grifo ® ITALIAN TECHNOLOGY

Page C-6 GPC® 184 Rel. 5.10

FIGURE C6: ABACO® I/O BUS INPUT OUTPUT ELECTRIC DIAGRAM

A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 4

5 5

6 6

grifo ®Title:

Date:

Page : of

Rel.28/04/1999 1.2

ABACO® I/O BUS26 pin connector

Standard I/O20 pin connector

N.C.N.C.

+5V

GND

PA.7PA.6PA.5PA.4PA.3PA.2PA.1PA.0

PC.2PC.1PC.0

PC.3PC.4PC.5PC.6PC.7

Standard I/O20 pin connector

N.C.N.C.

+5V

GND

PA.7PA.6PA.5PA.4PA.3PA.2PA.1PA.0

PC.2PC.1PC.0

PC.3PC.4PC.5PC.6PC.7

A0A1A2

/RST

Power supply

Gnd

+5v

Dip Switch

Gnd

+Vcc

/CS2/CS1/NMI/INT

/IRQ

/RD/WR

D0D1D2D3D4D5D6D7

A3A4A5A6A7

I/O example

1 1

1

23

74HCT00

a

10K

10K

1N

41

48

2 1

+5V

1615141312

87654321

1718

19

23242122

20

26

2510

0nF

+22µF

+5V

D0D1D2D3D4D5D6D7

10K

+5V

+5V

+5V

10K

+5V

+22µF

100n

F

100n

F

100n

F

/G

P0P1P2P3P4P5P6P7

/P=Q

Q0Q1Q2Q3Q4Q5Q6Q7

1

2468

11131517

19

357912141618

74LS688

/G1/G2A1A2A3A4A5A6A7A8

Y1Y2Y3Y4Y5Y6Y7Y8

119

23456789

1817161514131211

74LS541

/GDIRA1A2A3A4A5A6A7A8

B1B2B3B4B5B6B7B8

191

23456789

1817161514131211

74LS245

9

108

74HCT00c

12

1311 74HCT00d

+5V

1

4

56

74HCT00

b

+5V

10K +5V

10K

+5V

+5V

10K 10K12345

11109

10K10K

A0A1A2

ABC

G1/G2A/G2B

Y0Y1Y2Y3Y4Y5Y6Y7

123

645

15141312111097

74LS138

A2A1A0

+5V

/CLRCLK

1D2D3D4D5D6D7D8D

1Q2Q3Q4Q5Q6Q7Q8Q

111

3478

13141718

256912151619

74LS273

+5V

D7D6D5D4D3D2D1D0

D7D6D5D4D3D2D1D0

1

23

74HCT32

a

9

108

74HCT32

c

12

1311

74HCT32

d

+5V

7

8563412

131615

1112

9

14

10

18

17

1920

100n

F+22µF

+5V

/CLRCLK

1D2D3D4D5D6D7D8D

1Q2Q3Q4Q5Q6Q7Q8Q

111

3478

13141718

256912151619

74LS273

+5V

D7D6D5D4D3D2D1D0

D7D6D5D4D3D2D1D0

1

23

74HCT32

a

7

8563412

131615

1112

9

14

10

18

17

1920

100n

F+22µF

+5V

10K

10K

10K

/G1/G2

A1A2A3A4A5A6A7A8

Y1Y2Y3Y4Y5Y6Y7Y8

119

23456789

1817161514131211

74LS541

/G1/G2

A1A2A3A4A5A6A7A8

Y1Y2Y3Y4Y5Y6Y7Y8

119

23456789

1817161514131211

74LS541

N.C.N.C.N.C.N.C.

RES

/RST

/RST

BA3

BA5

BA7BA6

BA4

/BIRQ

BD0

BD2

BD7BD6BD5BD4BD3

BD1

/BWR/BRD/BRSTBA2

BA0BA1

/CS

/CS

/CS

/CS3/CS4/CS5/CS6/CS7/CS8

/RES

/RES

/RES

/RES

/RD

/RD

/RD

/CS2

/CS2

/CS2

/CS1

/CS1

/CS1

/WR

/WR

/WR

ITALIAN TECHNOLOGY grifo ®

Page C-7 GPC® 184 Rel. 5.10

FIGURE C7: BUS INTERFACE ELECTRIC DIAGRAM

A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 4

5 5

6 6

grifo ®Title:

Date:

Page : of

Rel.16/11/98

ABACO® I/O BUS26 pin connector

/RST

A0A1

Power supply

Gnd

+5v

Dip Switch

Gnd

+Vcc

/CS2/CS1/NMI/INT

/IRQ

/RD/WR

D0D1D2D3D4D5D6D7

A2A3A4A5A6A7

1.1

BUS interface

1 1

1

23

74HCT00

a

10K

10K

1N

41

48

2 1

+5V

161514131211

87654321

1718

19

23242122

20

26

25

100n

F

+22µF

+5V

D0D1D2D3D4D5D6D7

10K

+5V

+5V

+5V

10K

+22µF

100n

F

100n

F

100n

F

/G

P0P1P2P3P4P5P6P7

/P=Q

Q0Q1Q2Q3Q4Q5Q6Q7

1

2468

11131517

19

357912141618

74LS688

/G1/G2A1A2A3A4A5A6A7A8

Y1Y2Y3Y4Y5Y6Y7Y8

119

23456789

1817161514131211

74LS541

/GDIRA1A2A3A4A5A6A7A8

B1B2B3B4B5B6B7B8

191

23456789

1817161514131211

74LS245

9

108

74HCT00c

12

1311 74HCT00d

+5V

1

4

56

74HCT00

b

+5V

10K

10K

+5V

+5V

10K10K12345678

109

10K10K

N.C.N.C.N.C.N.C.

/RD/WR

/CS

/CS

RES

/RES

/RST

/RST

BA2BA3

BA5

BA7BA6

BA4

/BIRQ

BD0

BD2

BD7BD6BD5BD4BD3

BD1

/BWR/BRD/BRST

BA0BA1

grifo ® ITALIAN TECHNOLOGY

Page C-8 GPC® 184 Rel. 5.10

FIGURE C8: IAC 01 ELECTRIC DIAGRAM

A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 4

5 5

grifo ®Title:

Date:

Page : of

Rel.

D2D3D4D5D6D7D8/ACKBUSYPESELECT/AUTOLF

/STROBED1

/FAULT/RESETMODE

13-11-98 1.1

IAC 01

1 1

1521436587121011916201314191817

CN220 pin Low-Profile Male

123456789

10111213141516171819202122232425

CN1

25 pin D-Type Female

C11

2,2 nF

C10 2,2 nF

C9

2,2 nF

C8 2,2 nF

C7

2,2 nF

C6 2,2 nF

C5

2,2 nF

C4 2,2 nF

C3

2,2 nF

C2

100 nF

+

C1

22 µF 6,3V

RR14,7 KΩ 9+1

+5V

P1.4

P1.5

P1.6

P1.7

P0.7P0.6P0.5P0.4P0.3P0.2

P0.0P0.1

P1.3P1.2

P1.1

P1.0

+5VGND

ITALIAN TECHNOLOGY grifo ®

Page D-1 GPC® 184 Rel. 5.10

APPENDICE D: ALPHABETICAL INDEXAPPENDICE D: ALPHABETICAL INDEX

Simbols

/CS1 3582c55 43, C-1

A

ABACO ® I/O BUS 6, 7, 10, 27, 35, 42, C-5Addresses 35

ABACO® I/O BUS 35I/O 37memory 36

Assistance 1

B

Back up 8, 9, 26Battery 8, 9, 24, 26Baud rate 20Bibliography 44Block diagram 5

C

Clock 4, 7Components maps11Configuration jumper 4, 7, 24, 27, 38, 41Connections diagram43Connectors 7, 9, 15

CN1 10, 35CN2 9CN3A 12CN3B 14, 30CN5 19, 20

Consumption 8Container 1, 7, A-1Control logic 6CPU 3, 7, B-1CPU devices 27, 38, 41, B-1Crystal 4, 7Current loop 4, 7, 14, 18, 21, 28

D

DEBUG 4, 27, 41Default configuration 22, 26, 28Devices 7Dimension A-1

grifo ® ITALIAN TECHNOLOGY

Page D-2 GPC® 184 Rel. 5.10

DIN Ω rails 7, A-1DMA 7

E

Electric diagram C-1EPROM 3, 7, 26, 36Expansion 6, 42, C-1External cards 42

F

Featureselectric 8general 2, 7physical 7technical 7

FLASH EPROM 3, 7, 26, 36

H

Handshake 12, 24, 30Humidity 7

I

I/O addresses 37I/O connection 21I/O lines C-1Installation 9Interfaces C-1Interrupt 10, 20, 27, 31, 40

J

Jumpers 222 pins 243 pins 255 pins 25

Jumpers location 23

L

LED 15, 21

M

Maintenance 1Maps 35Memory 3, 7, 15, 25, 26, 36MMU 36

ITALIAN TECHNOLOGY grifo ®

Page D-3 GPC® 184 Rel. 5.10

Mounting A-1

N

Network 17

O

On board devices 35Operator interface 42, C-3, C-4Options 26, 28, 30, A-1

P

Peripheral devices39Photo 11Piggy back 45Power failure 7, 8, 10, 25, 27, 31Power supply 4, 8, 10, 31Printer C-8

R

RAM 3, 7, 26, 36Real Time Clock 6, 7, 21, 27, 38, 39Registers 38Release 1Reset 31Reset contact 6, 7RS 232 4, 7, 12, 14, 16, 21, 28RS 422 4, 7, 8, 14, 16, 21, 24, 28RS 485 4, 7, 8, 14, 16, 17, 21, 24, 30RUN 4, 27, 41

S

Serial communication 13Serial drivers 29Serial line A 12, 30Serial line B 14, 28Serial lines 4, 7, 12, 14, 28Size 7Software 32Solder jumpers 27Synchronous serial20

T

Temperature 7Termination circuit 8, 30

grifo ® ITALIAN TECHNOLOGY

Page D-4 GPC® 184 Rel. 5.10

Timers 7TransZorb™ 4TTL 21

V

Version 1

W

Warranty 1Watch dog 6, 7, 24, 30, 38, 41Weight 7