Cooper asin Source Rock Atlas · 2016-05-26 · Australian Petroleum Source Rock Mapping Project...

1
Australian Petroleum Source Rock Mapping Project Geoscience Australia recently commenced work on a multi-year study of Australian petroleum source rocks to improve understanding of the petroleum resource potential of Australia’s sedimentary basins. The Permian source rocks of the Cooper Basin, Australia’s premier onshore hydrocarbon producing province (Figure 1; Goldstein et al., 2012), are the first to be assessed for this project. Quantification of the spatial distribution and petroleum generation potential of these source rocks is critical for understanding both the conventional and unconventional hydrocarbon prospectivity of the basin. COOPER BASIN QUEENSLAND SOUTH AUSTRALIA NEW SOUTH WALES Tibooburra Thargomindah Quilpie Yamma Yamma Depression Windorah Trough Thompson Depression Arrabury Trough Nappamerri Trough Wooloo Trough Allunga Trough Weena Trough Merrimelia Ridge Ulle n b ury D epre s sion Wi n d o r ah Ant i c lin e C h a n d o s A n t icl i n e Harkaway D u r h a mD o w ns A nt ic li n e M o u nt H o w itt An t i cl i ne Jacks o n- N acc o wla h - P e pit a T rend Innamincka Ridge Della - Nappacoongee Ridge Packsaddle Ridge Gidgealpa Ridge Murteree Ridge Patchawarra Trough Tinga Tingana Ridge Mettika Embayment Anticline 144° 142° 140° 26° 28° WA NT SA QLD NSW VIC TAS COOPER BASIN 15-9437-1 0 100 km Pre-Permian basement depth (m) 100 -4500 Depocentre Basin boundary Anticline/ridge Triassic Permian Carnian 240 245 250 255 260 265 270 275 280 285 290 295 300 305 Pennsylvanian Middle APP1 APP4.1 APP3.3 APP3.2 APP3.1 Moscovian Olenekian Anisian Ladinian Source rock Oil discovery Gas discovery Gidgealpa Group COOPER BASIN WARBURTON BASIN ? Kasimovian Gzhelian Asselian Sakmarian Artinskian Kungurian Roadian Wordian Capitanian Wuchiapingian Changhsingian Induan APT4.1 APT3 APT2 APT1 APP6 APP5 APP4.2 APP2 Cisuralian Guadalupian Lopingian Early 15-9437-2 Late Cambrian Ordovician Carbon- iferous APP 4.3 Nappamerri Group 100 m Wimma Sst Mmb 150 m Panning Member Arrabury Fm Toolachee Formation 280 m Callamurra Member 130 m Tirrawarra Sst 70 m Merrimelia Fm 350 m Roseneath Shale 240 m Epsilon Formation 190 m Patchawarra Formation 680 m Murteree Shale 90 m Daralingie Formation SP zones Tinchoo Formation 100 m Period Epoch Stage Stratigraphy Lithology Fluviodeltaic Lacustrine Age (Ma) Post-Nappamerri unconformity Fluviodeltaic, lacustrine with peat swamp at base Fluviolacustrine, floodplain, minor deltaic Proglacial outwash, braided fluvial Terminoglacial, proglacial, glaciolacustrine, aeolian Lacustrine Daralingie unconformity Floodplain, lacustrine, paleosols, moderate/sinuosity fluvial channels Braided fluvial channel belt and floodplain Sinuous meandering streams. Fluviolacustrine Meandering fluvial, deltaic in part Depositional environment Figure 1. a) Cooper Basin structural architecture and b) stratigraphy. Both from Hall et al. (2015) and Carr et al. (2016). Source Rock Mapping and Generation Potential Source rock distribution, thickness, present-day amount of total organic carbon (TOC), quality (Hydrogen Index) and maturity were mapped across the basin (Figure 2), together with original source quality maps prior to the on-set of generation (Hall et al., 2015, 2016a). Results of the source rock property mapping and basin-specific kinetics (Mahlstedt et al., 2015) are integrated with 1D burial and thermal history models and a 3D basin model to create a regional multi-1D petroleum system model for the basin (Figure 3a; Hall et al., 2016b). The modelling outputs quantify both the spatial distribution and total maximum possible yield for six source rock units in the basin, with coal and shale lithologies distinguished where necessary (Figures 3b and 4a). N 15-9437-4 Cooper Basin depth (m) TRIASSIC Nappamerri Group Toolachee Formation Daralingie Formation Epsilon Formation Patchawarra Formation Merrimelia Formation Murteree Shale Roseneath Shale Gidgealpa Group Thompson Depression Windorah Trough Arrabury Depression Patchawarra Trough Weena Trough Nappamerri Trough Ullenbury Depression 0 75 km (approx) PERMIAN Tirrawarra Sandstone -2000 -3000 -4000 COOPER BASIN SOUTH AUSTRALIA QUEENSLAND NEW SOUTH WALES Quilpie Tibooburra Thargomindah 142° 139° 26° 29° 15-9437-5 0 100 km Oil field Gas field Gidgealpa Group extent Basin boundary Total hydrocarbon generated (MMboe/km 2 ) 200 0 Figure 3. a) 3D perspective image of the 3D basin model. Green vertical lines: 1D burial and thermal history models. b) Map of the combined modelled volume of hydrocarbons generated from all Permian source rocks. Petroleum systems modelling work was conducted using the Trinity-Genesis-KinEx software suite (www.zetaware.com). Capturing Uncertainty Monte Carlo simulations were used to quantify the uncertainty associated with hydrocarbon yields (Figure 4a) and to highlight the sensitivity of results to each input parameter (Figure 4b). 200 600 1600 400 800 1000 1200 1400 0 P90 P50 P10 Daralingie Fm Shale/Coaly Shale Roseneath Shale Epsilon Fm Coal Patchawarra Coal Epsilon Fm Shale/Coaly Shale Murteree Shale Patchawarra Fm Shale/Coaly Shale a. Toolachee Fm Shale/Coaly Shale Daralingie Fm Toolachee Fm Coal Maximum theoretical hydrocarbon yield (bboe) 15-9437-8 200 600 1800 400 800 1000 1200 1400 0 Maximum theoretical hydrocarbon yield (bboe) P90 P10 1600 Source kinetics Source TOC Source HI Fetch area b. Source depth Thermal gradient Source thickness 15-9437-9 Figure 4. a) Theoretical hydrocarbon yield by source rock. b) Tornado plot for Patchawarra Fm shale and coaly shale source rocks showing the impact of input data uncertainty on hydrocarbon generation. Conclusions The principal source rocks are the Permian coal and carbonaceous shales of the Gidgealpa Group, with highest potential yields from the Patchawarra Formation coals. The broad extent of the Cooper Basin’s Permian source kitchen and its large total generation potential (P50 scenario >2x10 3 bboe) highlights the basin’s significance as a world-class hydrocarbon province. The systematic workflow applied here demonstrates the importance of integrated geochemical and petroleum systems modelling studies as a predictive tool for understanding the petroleum resource potential of Australia’s sedimentary basins. Cooper Basin Source Rock Atlas 1 Geoscience Australia; 2 Department of State Development, South Australia; 3 Geological Survey of Queensland. Lisa Hall 1 , Tehani Palu 1 , Chris Boreham 1 , Dianne Edwards 1 , Tony Hill 2 , Alison Troup 3 , Paul Henson 1 For Further Information: Lisa Hall Email: [email protected] Ph: +61 2 6249 9009 Web: www.ga.gov.au GA 16-9558 | GeoCat 84575 © Commonwealth of Australia (Geoscience Australia) 2016. This material is released under the Creative Commons Attribution 4.0 International Licence. http://creativecommons.org/licenses/by/4.0/legalcode 15-9437-3 (B) NET THICKNESS - SHALE AND/ OR COALY SHALE (TOC < 50%) (A) NET THICKNESS - COAL (TOC 50%) (C) ORGANIC RICHNESS (TOC) - SHALE AND/OR COALY SHALE (D) SOURCE TYPE AND MATURITY (a) TOOLACHEE FORMATION (f) PATCHAWARRA FORMATION (e) MURTEREE SHALE (d) EPSILON FORMATION (c) ROSENEATH SHALE (b) DARALINGIE FORMATION (E) MATURITY 0 200 km 0 - 0.5 0.6 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 7 7 - 10 10 - 15 15 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 100 (C) TOC (%) Immature: < 0.75 Early oil: 0.75 - 0.9 Peak oil: 0.9 - 1 Late oil: 1.0 - 1.3 Wet gas: 1.3 - 2 Dry Gas: 2 - 3.5 Overmature: > 3.5 (E) Maturity (% Ro) Formation boundary Basin boundary (A & B) Net thickness by lithofacies (m) High (>100 m) Low (0) (D) 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° No coal present in this formation No coal present in this formation 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° 141° 25° 29° No remaining hydrocarbon generation potential ! ( Remaining hydrocarbon generation potential ! ( Figure 2. Cooper Basin petroleum source rock mapping results for the following formations: a) Toolachee Formation, b) Daralingie Formation, c) Roseneath Shale, d) Epsilon Formation, e) Murteree Shale and f) Patchawarra Formation. Column A: net coal thickness maps. Column B: net shale and/or coaly shale thickness maps. Column C: present day maps of total organic carbon (TOC) for coals and coaly shale source units. Note coals (TOC > 50%) are excluded. Column D: Hydrogen Index (HI) versus maturity (Tmax) plots showing the variation in source rock quality and kerogen type by formation. Column E: source rock maturity. From Hall et al. (2015, 2016a, b). Acknowledgements Thanks to everyone who provided support and internal review at various stages of this project, including 3D Geo, Steve Abbott, Elinor Alexander, Adam Bailey, Zhiyong He, Amber Jarratt, Russell Korsch, Steve le Poidevin, Andrew Murray, John Morton, Bob Nicoll, Jim Preston, Bruce Radke, Martin Smith, Andrew Stacey and Liuqi Wang. Also thanks to Bianca Reese and Silvio Mezzomo for their help with figure production and Marie Lake for poster design. This poster is published with the permission of the CEO, Geoscience Australia. References Carr, L.K., Korsch, R.J., Palu. T.J. & Reese, B., 2016. Onshore Basin Inventory: the McArthur, South Nicholson, Georgina, Wiso, Amadeus, Warburton, Cooper and Galilee basins, central Australia. Record 2016/04. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/ Record.2016.004. Goldstein, B., Menpes, S., Hill, A., Wickham, A., Alexander, E., Jarosz, M., Pepicelli, D., Malavazos, M, Staritski, K., Taliangis, P., Coda, J., Hill, D. & Webb, M., 2012. Roadmap for Unconventional Gas Projects in South Australia. South Australia Department for Manufacturing, Innovation, Trade, Resources and Energy, Energy Resources Division, 267 pp. http://www.statedevelopment.sa.gov.au/resources/unconventional‑gas‑projects. Hall, L.S., Hill, A.J., Troup, A., Korsch, R., Radke, B., Nicoll, R.S., Palu, T., Wang, L. & Stacey, A., 2015. Cooper Basin Architecture and Lithofacies: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 1. Record 2015/31. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/ Record.2015.031. Hall, L.S., Boreham, C.J., Edwards, D.S., Palu, T.J., Buckler, T., Hill, A. & Troup, A., 2016a. Cooper Basin Source Rock Geochemistry: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 2. Record 2016/06. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/ Record.2016.0x06. Hall, L.S., Palu, T.J., Boreham, C.J., Edwards, D.S., Hill, A.J. & Troup, A., 2016b. Cooper Basin Petroleum Systems: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 3. Record 2016/in prep. Geoscience Australia, Canberra. Mahlstedt, N., di Primio, R., Horsfield, B. & Boreham, C.J., 2015. Multi-component Kinetics and Late Gas Potential of Selected Cooper Basin Source Rocks. Record 2015/19, Geoscience Australia, Canberra, http://dx.doi.org/10.11636/Record.2015.019. A full list of reports and data packages relevant to the Cooper Basin prospectivity study and the Australian Source Rock Mapping Project can be found at http://www.ga.gov.au/about/what‑we‑do/projects/energy.

Transcript of Cooper asin Source Rock Atlas · 2016-05-26 · Australian Petroleum Source Rock Mapping Project...

Page 1: Cooper asin Source Rock Atlas · 2016-05-26 · Australian Petroleum Source Rock Mapping Project Geoscience Australia recently commenced work on a multi-year study of Australian petroleum

Australian Petroleum Source Rock Mapping ProjectGeoscience Australia recently commenced work on a multi-year study of Australian petroleum source rocks to improve understanding of the petroleum resource potential of Australia’s sedimentary basins. The Permian source rocks of the Cooper Basin, Australia’s premier onshore hydrocarbon producing province (Figure 1; Goldstein et al., 2012), are the first to be assessed for this project. Quantification of the spatial distribution and petroleum generation potential of these source rocks is critical for understanding both the conventional and unconventional hydrocarbon prospectivity of the basin.

COOPER BASIN

QUEENSLAND

SOUTHAUSTRALIA

NEW SOUTH WALES

Tibooburra

Thargomindah

Quilpie

YammaYamma

DepressionWindorah

Trough

ThompsonDepression

Arrabury Trough

NappamerriTrough

Wooloo TroughAllunga Trough

Weena Trough

MerrimeliaRidge

Ullenbury Depression

Windorah

Anticline

ChandosA

nticline

Harkaway

DurhamDowns Anticline

Mou

ntHo

witt

Antic

line

Jackson - Naccowlah - Pepita TrendInnamincka Ridge

Della -Nappacoongee

Ridge

PacksaddleRidge

Gidgealpa Ridge

Murteree Ridge

Patchawarra Trough

Tinga Tingana Ridge

Mettika Embayment

Anticline

144°142°140°

26°

28°

WA

NT

SA

QLD

NSWVIC

TAS

COOPERBASIN

15-9437-1

0 100 km

Pre-Permian basement depth (m)100

-4500

DepocentreBasin boundary

Anticline/ridge

Tria

ssic

Perm

ian

Carnian

240

245

250

255

260

265

270

275

280

285

290

295

300

305 Pennsylvanian

Middle

APP1

APP4.1APP3.3

APP3.2

APP3.1

Moscovian

Olenekian

Anisian

Ladinian

Source rockOil discovery Gas discovery

Gid

geal

pa G

roup

CO

OPE

R B

ASIN

WARBURTON BASIN

?

Kasimovian

Gzhelian

Asselian

Sakmarian

Artinskian

Kungurian

Roadian

Wordian

Capitanian

Wuchiapingian

ChanghsingianInduan

APT4.1

APT3

APT2APT1APP6

APP5

APP4.2

APP2

Cisuralian

Guadalupian

Lopingian

Early

15-9437-2

Late

CambrianOrdovician

Car

bon-

ifero

us

APP4.3

Nap

pam

erri

Gro

up

100 mWimma Sst Mmb

150 mPanning Member Arrabury

Fm

Toolachee Formation280 m

Callamurra Member

130 m

Tirrawarra Sst 70 m

MerrimeliaFm 350 m

RoseneathShale 240 m

Epsilon Formation 190 m

PatchawarraFormation

680 m

Murteree Shale 90 m

DaralingieFormation

SPzones

Tinchoo Formation100 m

Period Epoch Stage Stratigraphy Lithology

Fluviodeltaic

Lacustrine

Age(Ma)

Post-Nappamerri unconformity

Fluviodeltaic, lacustrine withpeat swamp at base

Fluviolacustrine,floodplain,

minor deltaic

Proglacial outwash,braided fluvial

Terminoglacial, proglacial,glaciolacustrine, aeolian

Lacustrine

Daralingie unconformity

Floodplain, lacustrine, paleosols,moderate/sinuosity fluvial channels

Braided fluvial channelbelt and floodplain

Sinuous meanderingstreams.

Fluviolacustrine

Meandering fluvial,deltaic in part

Depositionalenvironment

Figure 1. a) Cooper Basin structural architecture and b) stratigraphy. Both from Hall et al. (2015) and Carr et al. (2016).

Source Rock Mapping and Generation PotentialSource rock distribution, thickness, present-day amount of total organic carbon (TOC), quality (Hydrogen Index) and maturity were mapped across the basin (Figure 2), together with original source quality maps prior to the on-set of generation (Hall et al., 2015, 2016a). Results of the source rock property mapping and basin-specific kinetics (Mahlstedt et al., 2015) are integrated with 1D burial and thermal history models and a 3D basin model to create a regional multi-1D petroleum system model for the basin (Figure 3a; Hall et al., 2016b). The modelling outputs quantify both the spatial distribution and total maximum possible yield for six source rock units in the basin, with coal and shale lithologies distinguished where necessary (Figures 3b and 4a).

N

15-9437-4

Cooper Basin depth (m)

TRIASSIC Nappamerri Group

Toolachee Formation

Daralingie Formation

Epsilon Formation

Patchawarra Formation

Merrimelia Formation

Murteree Shale

Roseneath Shale

Gid

geal

pa G

roup

Thompson Depression

WindorahTrough

ArraburyDepression

PatchawarraTrough

WeenaTrough

NappamerriTrough

UllenburyDepression

0 75 km (approx)

PERMIAN

Tirrawarra Sandstone

-2000

-3000

-4000COOPER BASIN

SOUTHAUSTRALIA

QUEENSLAND

NEW SOUTH WALES

Quilpie

Tibooburra

Thargomindah

142°139°

26°

29°

15-9437-5

0 100 km

Oil field

Gas field

Gidgealpa Group extentBasin boundary

Total hydrocarbon generated (MMboe/km2)200

0

Figure 3. a) 3D perspective image of the 3D basin model. Green vertical lines: 1D burial and thermal history models. b) Map of the combined modelled volume of hydrocarbons generated from all Permian source rocks. Petroleum systems modelling work was conducted using the Trinity-Genesis-KinEx software suite (www.zetaware.com).

Capturing UncertaintyMonte Carlo simulations were used to quantify the uncertainty associated with hydrocarbon yields (Figure 4a) and to highlight the sensitivity of results to each input parameter (Figure 4b).

200 600 1600400 800 1000 1200 14000

P90 P50 P10

Daralingie Fm Shale/Coaly Shale

Roseneath Shale

Epsilon Fm Coal

Patchawarra Coal

Epsilon Fm Shale/Coaly Shale

Murteree Shale

Patchawarra Fm Shale/Coaly Shale

a.

Toolachee Fm Shale/Coaly Shale

Daralingie Fm

Toolachee Fm Coal

Maximum theoretical hydrocarbon yield (bboe)

15-9437-8

200 600 1800400 800 1000 1200 14000Maximum theoretical hydrocarbon yield (bboe)

P90 P10

1600

Source kinetics

Source TOC

Source HI

Fetch area

b.

Source depth

Thermal gradient

Source thickness

15-9437-9

Figure 4. a) Theoretical hydrocarbon yield by source rock. b) Tornado plot for Patchawarra Fm shale and coaly shale source rocks showing the impact of input data uncertainty on hydrocarbon generation.

ConclusionsThe principal source rocks are the Permian coal and carbonaceous shales of the Gidgealpa Group, with highest potential yields from the Patchawarra Formation coals. The broad extent of the Cooper Basin’s Permian source kitchen and its large total generation potential (P50 scenario >2x103 bboe) highlights the basin’s significance as a world-class hydrocarbon province. The systematic workflow applied here demonstrates the importance of integrated geochemical and petroleum systems modelling studies as a predictive tool for understanding the petroleum resource potential of Australia’s sedimentary basins.

Cooper Basin Source Rock Atlas1 Geoscience Australia; 2 Department of State Development, South Australia; 3 Geological Survey of Queensland. Lisa Hall1, Tehani Palu1, Chris Boreham1, Dianne Edwards1, Tony Hill2, Alison Troup3, Paul Henson1

For Further Information: Lisa HallEmail: [email protected]: +61 2 6249 9009 Web: www.ga.gov.au

GA 16-9558 | GeoCat 84575 © Commonwealth of Australia (Geoscience Australia) 2016. This material is released under the Creative Commons Attribution 4.0 International Licence. http://creativecommons.org/licenses/by/4.0/legalcode

15-9437-3

(B) NET THICKNESS - SHALE AND/OR COALY SHALE (TOC < 50%)

(A) NET THICKNESS - COAL(TOC ≥ 50%)

(C) ORGANIC RICHNESS (TOC)- SHALE AND/OR COALY SHALE (D) SOURCE TYPE AND MATURITY

(a) T

OO

LAC

HEE

FO

RM

ATIO

N(f)

PAT

CH

AWA

RR

A FO

RM

ATIO

N(e

) MU

RTE

REE

SH

ALE

(d) E

PSIL

ON

FO

RM

ATIO

N(c

) RO

SEN

EATH

SH

ALE

(b) D

AR

ALI

NG

IE F

OR

MAT

ION

(E) MATURITY

0 200 km

0 - 0.5

0.6 - 1

1 - 2

2 - 3

3 - 4

4 - 5

5 - 7

7 - 10

10 - 15

15 - 20

20 - 30

30 - 40

40 - 50

50 - 60

60 - 70

70 - 100

(C) TOC (%)Immature:< 0.75

Early oil:0.75 - 0.9

Peak oil:0.9 - 1

Late oil:1.0 - 1.3

Wet gas:1.3 - 2

Dry Gas:2 - 3.5

Overmature:> 3.5

(E) Maturity (% Ro)

Formation boundaryBasin boundary

(A & B) Net thickness by lithofacies (m)High (>100 m)

Low (0)

(D)

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

No coal presentin this formation

No coal presentin this formation

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

141°

25°

29°

No remaining hydrocarbongeneration potential

!(

Remaining hydrocarbongeneration potential

!(

Figure 2. Cooper Basin petroleum source rock mapping results for the following formations: a) Toolachee Formation, b) Daralingie Formation, c) Roseneath Shale, d) Epsilon Formation, e) Murteree Shale and f) Patchawarra Formation. Column A: net coal thickness maps. Column B: net shale and/or coaly shale thickness maps. Column C: present day maps of total organic carbon (TOC) for coals and coaly shale source units. Note coals (TOC > 50%) are excluded. Column D: Hydrogen Index (HI) versus maturity (Tmax) plots showing the variation in source rock quality and kerogen type by formation. Column E: source rock maturity. From Hall et al. (2015, 2016a, b).

AcknowledgementsThanks to everyone who provided support and internal review at various stages of this project, including 3D Geo, Steve Abbott, Elinor Alexander, Adam Bailey, Zhiyong He, Amber Jarratt, Russell Korsch, Steve le Poidevin, Andrew Murray, John Morton, Bob Nicoll, Jim Preston, Bruce Radke, Martin Smith, Andrew Stacey and Liuqi Wang. Also thanks to Bianca Reese and Silvio Mezzomo for their help with figure production and Marie Lake for poster design.

This poster is published with the permission of the CEO, Geoscience Australia.

ReferencesCarr, L.K., Korsch, R.J., Palu. T.J. & Reese, B., 2016. Onshore Basin Inventory: the McArthur, South Nicholson, Georgina, Wiso, Amadeus, Warburton, Cooper and Galilee basins, central Australia. Record 2016/04. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2016.004.

Goldstein, B., Menpes, S., Hill, A., Wickham, A., Alexander, E., Jarosz, M., Pepicelli, D., Malavazos, M, Staritski, K., Taliangis, P., Coda, J., Hill, D. & Webb, M., 2012. Roadmap for Unconventional Gas Projects in South Australia. South Australia Department for Manufacturing, Innovation, Trade, Resources and Energy, Energy Resources Division, 267 pp. http://www.statedevelopment.sa.gov.au/resources/unconventional‑gas‑projects.

Hall, L.S., Hill, A.J., Troup, A., Korsch, R., Radke, B., Nicoll, R.S., Palu, T., Wang, L. & Stacey, A., 2015. Cooper Basin Architecture and Lithofacies: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 1. Record 2015/31. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2015.031.

Hall, L.S., Boreham, C.J., Edwards, D.S., Palu, T.J., Buckler, T., Hill, A. & Troup, A., 2016a. Cooper Basin Source Rock Geochemistry: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 2. Record 2016/06. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2016.0x06.

Hall, L.S., Palu, T.J., Boreham, C.J., Edwards, D.S., Hill, A.J. & Troup, A., 2016b. Cooper Basin Petroleum Systems: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 3. Record 2016/in prep. Geoscience Australia, Canberra.

Mahlstedt, N., di Primio, R., Horsfield, B. & Boreham, C.J., 2015. Multi-component Kinetics and Late Gas Potential of Selected Cooper Basin Source Rocks. Record 2015/19, Geoscience Australia, Canberra, http://dx.doi.org/10.11636/Record.2015.019.

A full list of reports and data packages relevant to the Cooper Basin prospectivity study and the Australian Source Rock Mapping Project can be found at http://www.ga.gov.au/about/what‑we‑do/projects/energy.