'Control Room Outside Air Intake Radiation Monitor ...

16
- - - - ) g. . , * .- ... . . . . 9 % f - . CONTROL ROOM OUTSIDE AIR INTAKE RADIATION MONITOR ! l SETPOINT CALCULATION 1 (HP-CALC-93-004) l .I ! CALCULATED BY:.td.d!..f..d.C.?[...DATE:.22?;.Tl!.?22 ' REVIEWED BY:..Rdd.>5.i.CMb.......DATE:..Y. .* 73 9507050396 950628 DR ADOCK 05000392 PDR

Transcript of 'Control Room Outside Air Intake Radiation Monitor ...

Page 1: 'Control Room Outside Air Intake Radiation Monitor ...

- - - -

)g. -

.,

*

.-... . . ..

9

%

f

- .

CONTROL ROOM OUTSIDE AIR INTAKE

RADIATION MONITOR!l

SETPOINT CALCULATION 1

(HP-CALC-93-004)l

.I!

CALCULATED BY:.td.d!..f..d.C.?[...DATE:.22?;.Tl!.?22 '

REVIEWED BY:..Rdd.>5.i.CMb.......DATE:..Y..* 73

9507050396 950628DR ADOCK 05000392PDR

Page 2: 'Control Room Outside Air Intake Radiation Monitor ...

. _ _ --__ _ _-

.. .-. . , . .

e- .

.

'

CONTROL ROOM OUTSIDE AIR INTAKE MONITOR |

SETPOINT CALCULATION;

,

!

=======================_ =sz--- ---- =------ -- :- - _ - - - ==-

CONTENTS Page==========_======e-- - - <- --- =-==-- -- : s=------ - =- - ________

,

|

Purpose........................................................ .. 1 ;

Summary .......................................................... 2

References ....................................................... 2.

t

Input cri teri a and As sumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2!

Me thod of An a l y s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 +

Calculations and Results.......................................... 6

Attachments....................................................... 7 :,

Figure (1) Control Room Envelope VentilationConfiguration Model (1page)

Attachment (A) Control Room Outside Air Intake Monitor setpointBased on the MPC limits. (2page)

,

Attachment (B) Control Room Outside Air Intake Monitor setpointBased on the DAC Occupational Value limits (2 page) i

- - - - - - - - __==_====____-____- m - - - - - - - . _ z-

PURPOSE:

To determine a new high alarm setpoint for the Main Control RoomEnvelope Airborne Radiation monitors at the Outside Air Intakes (OAI).There are Four normal Control Room Outside Air Intake (CROAI) radiation

high alarm (ARM-IRE-0200.1, -0200.2, -0200.5 and -0200.6).The currentmonitors

12.3-3 and Technical (Specification 3.3.3.1, Table 3.3-6, item 2b.< 2 x Background ) is based on the FSAR Tablesetpoint

Exceeding the current setpoint has caused the Control Room VentilationSystem to isolate and Control Room Emwergency Filtration Unit (EIISIdentifier VI-AHU), an ESF, to automatically start . Since 1984, thesespurious Control Room Emergency Filtration System actuations werereported to the NRC in 22 LERs which had an indeterminate root cause forthe origin of the spike that apparently caused the CROAI radiationmonitor to alarm. Commitment i A20059 is currently open to determine a ;

conclusive cause for these events. |

)

i

i

i

Page 3: 'Control Room Outside Air Intake Radiation Monitor ...

c.

.

. '. N',.

.

SUPMARY:

This calculation contains a new high alarm setpoint for the ControlRoom Outside Air Intake (CROAI) radiation monitors (ARM-IRE-0200.1-0200.2, -0200.5 and -0200.6). ThenewsetpointfortheCROAImonItorsis 8.07E-06 uCi/cc based on the radioactive material concentrationsinside the Control Room will not exceed HPC limits specified in 10CFR20Appendix B, Table 1, Column 1. Incaseofthenewregulationwhichwillbe implemented on January,1994, the new setpoint is 5.45E-05 uCi/ccbased on the DAC occupational value limits specified in the new 10CFR20,Appendix B, Table 1, Column 3. The newly calculated setpoint willreplace the current setpoint ( 2 X Background ) after obtaining anapproval from the NRC for a Technical Specification Change Request. Thecurrent low setpoint may be the root cause for the majority of the pastESF automatically start events which were reported to NRC in 22 LERs.

REFERENCES:

1) 10CFR20, Appendix B.

2) Waterford 3 Final Safety Analysis Report (FSAR) Chapters 6.4 and11.3.

3) LER 92-005-00, submitted to the NRC in July 8,1992.

4) Commitment #A20059,anActionItemidentifiedintheWaterford3letter # W3F1-92-0179 dated July 8, 1992 for LER 92-005 whichrefered to the previous LERs in the Similar Events section.

INPUT CRITERIA AND ASSUMPTIONS 1

1) The Gross Control Room Envelope Free Volume (FSAR section 6.4.2.2)is:

Vcr = 220,000 Ft3= 220,000 Ft3 * (m3 /35.3145 Ft3 ) * (1.0E+06 cc/m3)= 6.23E+09 cc

2) Assumed that the radionuclide input activity rate at outside airintake (OAI) is proportional to the total gaseous release rate (Ci/yr)under normal conditions . The radinnuclides intake activities are.

obtained from the FSAR, Chapter 11.3 , Tables 11.3-5 and 11.3-6 " SourceTenns (No Continuous Gas Stripping of Volume Control Tank) Noble Gasesand Iodines-Gaseous Release Rate in Curies per Year"and are included inpage 1 of Attachments (A) and (B). Also, intake activities are obtainedfrom the FSAR, Chapter 11.3, Tables 11.3-8 " Average Annual AirborneRadionuclide Concentrations in uCi/cc" and are included in page 2 ofAttachments (A) and (B).

2

._. _- __

Page 4: 'Control Room Outside Air Intake Radiation Monitor ...

_.

s-. . . .

.

'

.

3) The Maximum Permissible Concentrations (MPCs) of th'e radioactive imaterials in the control room air will not exceed the limits specified jin the 10CFR20, Appendix B , Table 1, Column 1 for the Restricted Areas.According to the new regulation which will be im lemented on January 1, i

1994 the newly Derived Air Concentrations (DACs Occupational Values |

arelistedinthe10CFR20,AppendixB, Table 1,Clumn3. The MPC andDAC limits for the listed radionuclides are included in the Attachments(A) and (B) respectively

4) The ventilation rates as listed in the FSAR Chapter 6.4 and Figures6.4-1 and 6.4-2 are:

.

a) Outside Air Intake (Plenum) = 13070 cfm

Portion of the Plenum flow to the Control Room (nonnal 0. A.I).= 2200 cfm

b) Control Room Enve' ope Outside Exhaust Ventilation Rate (normallyopen) = 2000 cfm ,

c) Control Room Envelope Recirc. flow rateminimum = 37030 cfmmaximum = 39230 cfn

5) The Radionuclides Activity Removal Rate from the Control Room isconsidered equal to the sum of:

a Recirculation Rate;b Radioactive Decay Rate; andc Exhaust Ventilation Rate.

In this Calculation, we assumed no credit for the Recirculation Rate andconsidered that the Decay Rate is much smaller than the ExhaustVentilation Rate. Thus, the Radioactivity Removal Rate is assumed to beequal the Exhaust Ventilation Rate which is the only overwhelmingremoval mechanism. Therefore, the Radioactivity Removal Rate (R) fromthe Control Room envelope is

R = Exhaust Vent. Rate / Gross Control Room Envelope Volume= 2000 (cfm) / 220,000 (Ft3)= 9.09E-03 (Min-1)

METHOD OF ANALYSIS:

~

1) The Control Room Envelope Ventilation Configuration Model is shown inTo calculate the maximum activity rate for each

F1gure(1)deinsidethecontrolroom,thefollowingequationisused:.

radionucli

Acri(t) = {Ai(CROAI) /R }* {1-exp(-R*t)} Eq. (1)

Where:Acri(t) = the activity rate of a radionuclide (i) at time (t)

in the Control Room amosphere;Ai(CROAI) = the initial activity input rate of a radionuclide

(i) to the Control Room amosphere from the outsideair intake;

3

Page 5: 'Control Room Outside Air Intake Radiation Monitor ...

__

. ..

-. . . .

.

e

R = the radioactivity removal rate as defined above; andt = the time from the initial activity input.

Also, equation (1) can be modified to calculate the concentration of a ,

radionuclide (i) in the control room as follows:Ccri(t) = {Ai(CR0AI)/(R * Ver}} * {1-exp(-R*t)} Eq. (2)

Where:Ccri(t) = Acri(t) / Vcr

Therefore, the control room radioactive concentration of an isotope (i)must not exceed its 10CFR20 limit (MPC or DAC) .

Ccri < MPCi :or

Ccri < DACi) ing equations are also applied for the new 10CFR20The follow(Note:limit substituting the MPC limits by the DAC occupational value limits).

JAcri/(R * Vcr)} * {1-exp(-R*t)}(< MPCi Eq. (3)((Acri/MPC1)/(R*Vcr}}*{1-exp-R*t)}<1

Thus, for a mixture of radionuclides, the above equation (3) will begiven as follows:

{(sum (Acri/MPCi)/(R * Vcr}} * {1-exp(-R*t)} < 1 Eq.(4)

At saturation (i.e. R*t >> 1) which happens in several few hours, Eq (4)can be revised to:

{ sum (Acri/MPCi) )/(R * Vcr}} < 1

sum (Acri/MPCi) < R * Vcr Eq. (5)

Accordirig the assumption (2), the radionuclide input Activity at theOutside Air Intake (OAI)/yr) under no*1nal conditions (FSAR Tables 11.3-5

1s assumed to be proportional to the totalgaseous release rate (Ci |and 11.3-6), i.e.

|

8.0E+03/8.0E+03 IAcr Xe-133) =Acr Xe-133 *

Acr Kr-85) = Acr Xe-133 5.6E+02/8.0E+03 i*

Acr I-131) = Acr Xe-133 2.0E-02/8.0E+03*,

iand similarly for the other radionuclides which are listed in the FSAR, ,

'

Tables 11.3-5 and 11.3-6.

Acr(i) = Acr(Xe-133) * A(i)/A(Xe-133)sum (Acri) = Acr(Xe-133) * Sum (Ai)/A(Xe-133) Eq. (6)

|

!.

Page 6: 'Control Room Outside Air Intake Radiation Monitor ...

.- . - _ _ _ _ _-

,

.

'

. .. .-

.; .

'

.

~

From Equations (5) and (6), the control room activity rate for Xe-133is calculated as follows:

Acr(Xe-133) * sum (Ai/MPCi)/A(Xe-133) = R * Vcr

Acr(Xe-133) = R * Vcr * A(Xe-133) / { sum (Ai/MPCi)}

And similarly(for the other radionuclides, the final equation for aradionuclide i) in uCi/ min is:Acr(i) = R * Vcr * A (i) / { sum (Ai/MPCi)} Eq. (7)

Where:- Acr(i) = Activity rate of a radionuclide (i) inside the

Control Room .. uCi/ min );R = Removal rate = .09E-03 min-1 );

Vcr = Control Room Volume = 6. 3E+09 cc ;A(i) = Activity input rate ( Ci/yr) (F AR T bles 11.3-5 &6);

sum (Ai/MPCi) = 1.1E+09 ( Ci-cc/uCi-yr ){Page 1, Attachment (A)}

Thus, the Activity Rate of a radionuclide inside the Control Room,which will not exceed its HPC limit ,at the(i)ime of Saturation ist

calculated by the following equation:

Acr(i) = {9.09E-03 * 6.23E+09'/1.1E+09} * A(i)

Acr(i) = 5.15E-02 * A(i) uti/ min Eq. (8)

In case of the new regulation, Equation (7) is rewritten as follows:

Acr(i) = R * Vcr * A (i) / { sum (Ai/DACi)} Eq. (9)

Where:sum (Ai/DACi) =1.63E+08 Ci-cc/uCi-yr {Page 1, Attachment (B)},

Other items are defined above .

Thus, the Activity Rate for a radionuclide (i) inside the Control Roomwhich will not exceed its DAC occupational value limit at the time ofSaturation is calculated as follows:

Acr(i) = {9.09E-03 * 6.23E+09 /1.63E+08} * A(i)

., = 3.47E-01 * A(i) uCi/ min Eq. (10)

2) To confirm the above methodolo y, substituting the Activity Ir:put

Ai/MPCi) and su(m)(Ai/Dby the values from FSAR Table 11.3-8,Rate A(i in equations 7 andvalues are 2.73E-05 and 3.42E-06the sum

(unitless), respectively and are i cluded in page 2 of Attachments (A)and (B). Therefore, equations (8) and (10) are given as follows:

1

5

Page 7: 'Control Room Outside Air Intake Radiation Monitor ...

''.;. .,

.

.

Acr(i)) = 2.07E+12 * A(i)= {9.09E-03 * 6.23E+09 /2.73E-05} * A(i)Acr(i

uti/ min Eq. (8a)

and;Acr(i) = {9.09E-03 * 6.23E+09 /3.42E-06} * A(i)

= 1.66E+13 * A(i) uCi/ min Eq. (10a)

3) To calculate the Activity Rate at the monitor location Ad(i), theActivity Rate in the Control Room is meltiplied by the ratio of theOutside Air Intake (OAI) in plenum (13070 cfm) to the portion of plenumflow to Control Room at normal 0AI (2.200 cfm).

Ad(i) = Acr(i) * (13070/2200) Ci/ min= Acr(i) * 5.941 u Eq. (11) ;

The radionuclide Concentration at the monitor location in uCi/cc is4)lculated as follows:ca

Cd(i) = {Ad(i) uCi/ min /[ Flow (cfm)} * 35.3145 ft3/m3/le6 cc/m3]where:

1The Outside Air Intake Flow = 13070 cfm i

'

Cd(i) = [Ad(i) * 3.53145E-05 ft3/cc] / 13070 cfm

= 2.70E-09 * Ad(= 2.70E-09 * Acr ) * 5.941= 1.60E-08 * Acr ) uCi/cc Eq. (12)

,'

5) The sum of the Cd(i) for the radionuclide mixture is the projected |setpoint for the CR0AI monitors.]

ICALCULATIONS AND RESULTS;

Using the activity input rate A(i from the FSAR Tables 11.3-5 and11.3-6 in Equation (3) [or Equation)(10) , the radionuclides activityrates inside the the Control Room, Acr(i]) are calculated. Equations |

and)concen(trations Cd i12)areusedtocalculatethecorrespondingactivitiesAd(i)) |(11 andcolumn is the High Ala(rm) Setpoint for the CROAI monitors which will n(ot

'at the monitor location. The sum of the Cd 1

exceed the limits inside the Control Room Envelope as specified in10CfR20 Appendix B ( MPC for the Restricted Areas or DAC forOccupatIonalAreas). The calculation results are included in page 1 ofAttachments (A) and (B).

To confirm this results, the activity input rate A(i) from FSAR Table11.3-8 is used in Equations (8a 10a)}. Thus, the |

Acr(i), Ad(i) and Cd(i) values a)re[or Eequation (d are presented incalculated anpage 2 of Attachments (A) and (B).

6

.

Page 8: 'Control Room Outside Air Intake Radiation Monitor ...

- .;!- . -

. . < . - <.

,

i'

,

i

5

The Projected Setpoint for the CROAI Monitors are:

a) Based on the current 10CFR20 MPC limits: j

Setpoint = 8.07E-06 *SF= 8.07E-06*0.75 ,

!

'| Setpoint = 6.05E-06 uCi/cc | f

r

b) Based on the new 10CFR20 DAC occupational values:

Setpoint = 5.45E-05 *SF= 5.45E-05 *0.75

,

!

| Setpoint = 4.09E-05 uCi/cc | !

I

J

!

ATTACHMENTS:!

=- -- __ __ u===r ----- =-=============== r--- -

Figure (1) Control Room Envelope Ventilation Configuration Model

Attachment (A) Control Room Outside Air Intake Monitor setpointBased on the MPC limits.

Attachment (B) Control Room Outside Air Intake Monitor setpointBased on the DAC Occupational Value limits.

================-------- ===_______&==r---:-- ==-- - _===ss,- -

.

.

!

7

. _ _

Page 9: 'Control Room Outside Air Intake Radiation Monitor ...

L :.

'. ; .-

.,.

:-

i

,

FIGURE ( 1 )

CONTROL ROOM ENVELOPE

VENTILATION

CONFIGURATION MODEL

_ _ _ _ .

Page 10: 'Control Room Outside Air Intake Radiation Monitor ...

_

,

' . '. . .

.

.

.

,

i

,

^2p00CFM A

EXHAUST '

DETECTOR MAINLOCATION 20,430 CONTROI y

]u CFW ROOM

OUTSIDE CONTROL F )

AIR INTAKE l ROOMPLENUMy y _ NORMAL OAI- y +.

(13,070 CFM) L (2,200 CFM) { l

l ( i'

'ELSEWHERE16600 : IN CONTROL 9,CFM ROOM

[g ICNVELOPE

V RECIRC.

'|OTIIER 1

.

AREAS 37030 CFM I

!

-

Page 11: 'Control Room Outside Air Intake Radiation Monitor ...

a es

I."

. .,

~

.

ATTACHMENT ( A ),

CONTROL ROOM OUTSIDE AIR INTAKE

RADIATION MONITOR

BASED ON THE MPC LIMITS:

,

h

Page 12: 'Control Room Outside Air Intake Radiation Monitor ...

__

i' '

4 .

- ' . * -.

'

.

l I

Attachment (A) Page 1

I

CONTROL ROOM OUTSIDE AIR INTAKE MONITOR- -. -

BASED ON THE MPC LIMIT S j_

,

$

!:

Al Acr(i) Ad(i) Cd(i) }FSAR at at at ;

Nuclide Tables MPC Al/MPCI Control Detector Detector ,

11.3-5&6 Room(CUyear) (uCl/cc) (uCi/ min) (uCl/ min) (uCl/cc) ;

}

Kr-85m 7.00E+00 6.00E-06 1.17E+06 3.60E-01 2.14E+00 5.78E-09 !

Kr-85 5.60E+02 1.00E-05 5.60E+07 2.88E+01 1.71 E+02 4.63E-07I

Kr-87 2.00E+00 1.00E-06 2.00E+06 1.03E-01 6.12E-01 1.65E-09

Kr-88 1.00E+01 1.00E-06 1.00E+07 5.15E-01 3.06E+00 8.26E-09

Xe-131m 7.40E+01 2.00E-05 3.70E+06 3.81E+00 2.26E+01 6.12E-08 |

Xe-133m 5.50E+01 1.00E-05 5.50E+06 2.83E+00 1.68E+01 4.55E-08 .

Xe-133 8.00E+03 1.00E-05 8.00E+08 4.12E+02 2.45E+03 6.61E-06 |

Xe-135 2.70E+01 4.00E-06 S.75E+06 1.39E+00 8.26E+00 2.23E-08 ;

l-131 1.90E-02 9.00E-09 2.11E+06 9.78E-04 5.81E-03 1.57E-11

1-133 2.00E-02 3.00E-08 6.67E+05 1.03E-03 6.12E-03 1.65E 11 !

H3 1.00E+03 5.00E-06 2.00E+08 5.15E+01 3.06E+02 8.26E-07 i

Mn-54 4.70E-03 4.00E-08 1.18E+05 2.42E-04 1.44E-03 3.88E-12 :

!

Fe-59 1.60E-03 5.00E 08 3.20E+04 8.24E-05 4.89E-04 1.32E-12

5.00' -08 3.20E+05 8.24E-04 4.89E-03 1.32E-11dCo-58 1.60E-02Co-60 7.30E-03 9.00E-09 8.11E+05 3.76E-04 2.23E-03 6.03E-12

Sr-89 3.40E-04 4.00E-08 8.50E+03 1.75E-05 1.04E-04 2.81E-13

~ '.20E-05 5.00E-09 1.24E+04 3.19E-06 1.90E-05 5.12E-146Sr 90Cs-134 4.70E-03 4.00E-08 1.18E+05 2.42E-04 1.44E-03 3.88E-12

Cs-137 7.80E-03 6.00E-0G 1.30E+05 4.02E-04 2.39E-03 6.45E-12

Ar 41 2.50E+01 2.00E-06 1.25E+07 1.29E+00 7.65E+00 ' 2.07E-08

C-14 8.00E+00 4.00E-06 2.00E+06 4.12E-01 2.45E+00 6.61E-09

Total I i i 1.10E+091 i 8.07E-06

i

Thus-The Concentration flow at the Detector location to give

MPC in the Control Room dunng NORMAL Operationswill not exceed I l !

8.07E-06|uCi/cc ,

|

|

t

.__

Page 13: 'Control Room Outside Air Intake Radiation Monitor ...

, .

.. ,. -

,

I

Attachment (A) Page 2|

I

CONTROL ROOM OUTSIDE AIR INTAKE MONITORl I I I

BAS _ED ON THE MPC LIMIT |5_ _._

!

I

Al Acr(i) Ad(i) Cd(i)

FSAR at at at

Nuclide Table MPC Ai/MPCI Control Detector Detector ,

11 3-8 Room

(uCl/cc) (uCl/cc) (uCl/ min) (uCL/ min) (uCVcc)

Kr-85m 2.10E-13 6.00E-06 3.50E-08 4.36E-01 2.59E+00 6.99E-09

Kr-85 1.72E-11 1.00E-05 1.72E-06 3.57E+01 2.12E+02 5.73E-07

Kr-87 6.02E-14 1.00E-06 6.02E-08 1.25E-01 7.42E-01 2E-09

Kr-88 3.01E-13 1.00E-06 3.01E-07 6.24E-01 3.71E+00 1 E-08

Xe-131m 2.22E-12 2.00E 05 1.11E-07 4.61E+00 2.74E+01 7.39E-08

Xe-133m 1.66E-12 1.00E-05 1.66E-07 3.44E+00 2.05E+01 5.53E-08

Xe-133 2.41E-10 1.00E-05 2.41E-05 5.00E+02 2.97E+03 8.02E-06

Xe-135 8.13E-13 4.00E-06 2.03E-07 1.69E+00 1.00E+01 2.71E-08 ;

l-131 5.42E-16 9.00E-09 6.02E-08 1.12E-03 6.68E-03 1.8E-11

1-133 6.02E-16 3.00E-08 2.01E-08 1.25E-03 7.42E-03 2E-11 i

Mn-54 1.41E-16 4.00E-08 3.53E-09 2.92E-04 1.74E-03 4.69E-12

Fe-59 4.82E-17 5.00E-08 9.64E-10 1.00E-04 5.94E-04 1.6E-12 ;

Co-58 4.82E-16 5.00E-08 9.64E-09 1.00E-03 5.94E-03 1.6E-11

Co-60 2.20E-16 9.00E-09 2.44E-08 4.56E-04 2.71E-03 7.33E-12

Sr-89 1.02E-17 4.00E-08 2.55E-10 2.12E-05 1.26E-04 3.4E-13

Sr-90 1.87E-18 5.00E-09 3.74E-10 3.88E-06 2.30E-05 6.23E-14

Cs 134 1.41 E-16 4.00E-08 3.53E-09 2.92E-04 1.74E-03 4.69E-12

Cs-137 2.35E-16 6.00E-08 3.92E-09 4.87E-04 2.90E-03 7.82E-12

Ar-41 7.53E-13 2.00E-06 3.77E-07 1.56E+00 9.28E+00 2.51 E-08

C-14 2.41E-13 4.00E-06 6.03E-08 5.00E-01 2.97E+00 8.02E-09

-Total i t i 2.73E-05l I i 8.81E-06

i

Thus:The Concentration flow at the Detector location to give

~

MPC in the Control Room during NORMAL Operationswill not exceed | | |

8.81E-06|uci/cc |

Page 14: 'Control Room Outside Air Intake Radiation Monitor ...

~

:. .

-

...

-

.

ATTACHMENT (B)|

CONTROL ROOM OUTSIDE AIR INTAKE

'

RADIATION MONITOR|

I

BASED ON THE DAC OCCUPATIONAls VALUES ;

i

.

Page 15: 'Control Room Outside Air Intake Radiation Monitor ...

'i

b .;

.!,'

-

. ;

i

Attachment (B) Page!

I l

CONTROL ROOM OUTSIDE AIR INTAKE MONITOR- ..

_ _ _.

BASED ON THE DAC OCCUPATIONAL VALUES |_ _

__ _

,

Al Acr(i) Ad(i) Cd(i)

FSAR at at at ,

Nuclide Tables DAC Al/DAC Control Detector Detector

11.3-5&B Roomi (Ci/ year) (uCi/cc) (uCi/ min) (uCi/ min) (uCl/cc)

l

Kr-85m 7.00E+00 2.00E 05 3.50E+05 2.43E+001 1.44E+01 3.9E-08

Kr-85 5.60E+02 1.00E-04 5.60E+06 1.95E+02 1.16E+03 3.12E-06

Kr-87 2.00E+00 5.00E-06 4.00E+05 6.95E-01 4.13E+00 1.12E-08

Kr-88 1.00E+01 2.00E-06 5.00E+06 3.47E+00 2.06E+01 5.58E-08

Xe-131m 7.40E+01 4.00E-04 1.85E+05 2.57E+01 1.53E+02 4.13E-07

Xe-133m 5.50E+01 - 1.00E-04 5.50E+05 1.91E+01 1.14E+02 3.07E-07

Xe-133 8.00E+03 1.00E-04 8.00E+07 2.78E+03 1.65E+04 4.46E-05

Xe-135 2.70E+01 1.00E-05 2.70E+06 9.38E+00 5.57E+01 1.51E-011-131 1.90E-02 2.00E-08 9.50E+05 6.60E-03 3.92E-02 1.06E-10

1-133 2.00E-02 1.00E-07 2.00E+05 6.95E-03 4.13E-02 1.12E-10

H-3 1.00E+03 2.00E-05 5.00E+07 3.47E+02 2.06E+03 5.58E-06

Mn-54 4.70E-03 3.00E-07 1.57E+04 1.63E-03 9.70E-03 2.62E-11 ,

Fe-59 1.60E-03 2.00E-07 8.00E+03 5.56E-04 3.30E-03 8.92E-12 3

Co-58 1.60E-02 3.00E-07 5.33E+04 5.56E-03 3.30E-02 8.92E-11

Co-60 7.30E-03 1.00E-08 7.30E+05 2.54E-03 1.51E-02 4.07E-11

Sr-89 3.40E-04 6.00E-08 5.67E+03 1.18E-04 7.02E-04 1.9E-12

Sr-90 6.20E-05 2.00E-09 3.10E+04 2.15E-05 1.28E-04 3.46E-13

Cs-134 4.70E-03 4.00E-08 1.18E+05 1.63E-03 9.70E-03 2.62E 11 )'

Cs-137 7.80E-03 6.00E-08 .1.30E+05 2.71E-03 1.61E-02 4.35E-11

Ar-41 2.50E+01 3.00E-06' 8.33E+06 8.69E+00 5.16E+01 1.39E-07

C-14 8.00E+00 1.00E-06 8.00E+06 2.78E+00 1.65E+01 4.46E-08

Total i I t 1.63E+081 1 I 5.45E-05

.

Thus:The Concentration flow at the Detector location to giveDAC in the Control Room during NORMAL Operationswill not exceed I I |

| | 5.45E-051uci/cc |

)

Page 16: 'Control Room Outside Air Intake Radiation Monitor ...

*'

]. .

*** ..

'

.,

l |

I Attachment (B) Page 2

I I

CONTROL ROOM OUTSIDE AIR INTAKE MONITOR- - . .

BASED ON THE DAC OCCUPATIONAL VALUES.

e

Al Acr(i) Ad(i) Cd(i)FSAR at at at

Nuclide Table DAC Ai/DAC Control Detector Detector

11.3-8 I Room

(uCi/cc) | (uCi/cc) (uCi/ min) (uCl/ min) (uCl/cc)'

I !

IKr-85m 2.10E-13I 2.00E-05 1.05E-08 3.48E+00 2.07E+01 5.58E-08

|Kr-85 1.72E-11| 1.00E-04 1.72E-07 2.85E+02l 1.69E+03 4.57E-06

|Kr-87 6.02E-141 5.00E-06 1.20E-08 9.97E-01l 5.92E+00 1.6E-08

' Kr-88 3.01 E-13 2.00E-06 1.51E-07 4.98E+00 2.96E+01 8E-08

Xe-131m 2.22E-12 4.00E-04 5.55E-09 3.68E+01 2.18E+02 5.9E-07

Xe-133m 1.66E-12 1.00E-04 1.66E-08 2.75E+01 1.63E+02 4.41E-07

Xe-133 2.41E-10 1.00E-04 2.41E-06 3.99E+03 2.37E+04 6.41E-05

Xe-135 8.13E-13 1.00E-05 8.13E-08 1.35E+01 8.00E+01 2.16E-07

|-131 5.42E-16 2.00E-08 2.71 E-08 8.97E 03 5.33E 02 1.44E-10

1-133 6.02E-16 1.00E-07 6.02E-09 9.97E-03 5.92E-02 1.6E-10

Mn-54 1.41E-16 3.00E-07 4.70E-10 2.33E-03 1.39E-02 3.75E-11 '

Fe-59 4.82E-17 2.00E-07 2.41 E-10 7.98E-04 4.74E-03 1.28E-11

Co-58 4.82E-16 3.00E-07 1.61E-09 7.98E-03 4.74E-02 1.28E-10

Co-60 2.20E-16 1.00E-08 2.20E-08 3.64E-03 2.16E-02 5.85E-11

Sr-89 1.02E-17 6.00E-08 1.70E-10 1.69E-04 1.00E-03 2.71 E-12

Sr-90 1.87E-18 2.00E-09 9.355-10 3.10E-05 1.84E-04 4.97E-13Cs-134 1.41 E-16 4.00E-08 3.53E-09 2.33E-03 1.39E-02 3.75E-11

Cs-137 2.35E-16 : 6.00E-08 3.92E-09 3.89E-03 2.31E-02 6.25E-11^

Ar-41 7.53E-13 3.00E-06 2.51 E-07 1.2SE+01 7.41E+01 2E-07C-14 2.41E-13 1.00E-00 2.41E-07 3.99E+00 2.37E+01 6.41E-08

iTotal i i i 3.42E-061 1 I 7.03E-05

Thus:The Concentration flow at the Detector location to giveDAC in the Control Room during NORMAL Operationswill not exceed | | |

| | 7.03E-05|uCt/cc |