Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields...

28
Control of quantum two-level systems

Transcript of Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields...

Page 1: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

Control of quantum two-level systems

Page 2: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 2

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

How to control a qubit?

10.3 Control of quantum two-level systems ….. General concept

Does the answer depend on specific realization? No, only its implementation

Qubit is pseudo spin General concept exists Independent of qubit realization Methods from nuclear magnetic resonance (NMR)

Nuclear magnetic resonance Method to explore the magnetism of nuclear spins Important application Magnetic resonance imaging (MRI) in medicine MRI exploits the different nuclear magnetic signatures of different tissues

Page 3: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 3

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. General concept

early suggestions H. Carr (1950) and V. Ivanov (1960)

Brief MRI history

1972 MRI imaging machine proposed by R. Damadian (SUNY)

1973 1st MRI image by P. Lauterbur (Urbana-Champaign)

Late 1970ies Fast scanning technique proposed by P. Mansfield (Nottingham)

2003 Nobel Prize in Medicine for P. Lauterbur and P. Mansfield

Page 4: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 4

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. NMR techniques

Overview: Important NMR techniques

Basic idea Rotate spins by static or oscillating magnetic fields

Static fields parallel to quantization axis free precession changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis change population changes πœƒ on Bloch sphere

Important protocols Rabi population oscillations Relaxation measurement 𝑇1 Ramsey fringes 𝑇2

⋆ Spin echo (Hanh echo) 𝑇2

⋆ corrected for reversible dephasing

Page 5: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 5

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3. Control of quantum two-level systems ….. Quantum two-level system

Arbitrary TLS 𝐻 =1

2

𝐻11 𝐻12𝐻21 𝐻22

is Hermitian matrix

𝐻11, 𝐻22 ∈ ℝ and 𝐻21 = 𝐻12⋆

we choose 𝐻11 > 𝐻22

Hamiltonian of a quantum two-level system (TLS)

Symmetrize Subtract global energy offset 𝐻11+𝐻22

4Γ— 1

𝐻 =1

2

πœ– Ξ” βˆ’ 𝑖Δ

Ξ” + 𝑖Δ βˆ’πœ–=

πœ–

2𝜎 𝑧 +

Ξ”

2𝜎 𝑦 +

Ξ”

2𝜎 π‘₯

πœ– ≑𝐻11 βˆ’ 𝐻22

2> 0 Ξ”, Ξ” ∈ ℝ

Natural or physical basis πœ‘+ , |πœ‘βˆ’βŸ©

𝐻 0 =1

2

πœ– 00 βˆ’πœ–

=πœ–

2𝜎 𝑧

𝐻 πœ‘Β± = Β±πœ–

2

Page 6: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 6

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. Quantum two-level system

Diagonalization of 𝑯 𝐻 =

1

2

πœ– Ξ” βˆ’ 𝑖Δ

Ξ” + 𝑖Δ βˆ’πœ–

tan πœƒ ≑Δ2+Ξ” 2

πœ– with 0 ≀ πœƒ ≀ πœ‹

tanπœ‘ ≑Δ

Ξ” with 0 ≀ πœ‘ ≀ 2πœ‹

Eigenvalues detπœ– βˆ’ 2𝐸± Ξ” βˆ’ 𝑖Δ

Ξ” + 𝑖Δ βˆ’πœ– βˆ’ 2𝐸±= 0

πœ– βˆ’ 2𝐸± βˆ’πœ– βˆ’ 2𝐸± βˆ’ Ξ” βˆ’ 𝑖Δ Ξ” + 𝑖Δ = 0

𝐸± = ±1

2πœ–2 + Ξ”2 + Ξ” 2 ≑ Β±

1

2β„πœ”q

Eigenvectors |Ξ¨+⟩ = +π‘’βˆ’π‘–πœ‘ 2 cosπœƒ

2πœ‘+ + 𝑒+π‘–πœ‘ 2 sin

πœƒ

2|πœ‘βˆ’βŸ©

|Ξ¨βˆ’βŸ© = βˆ’π‘’βˆ’π‘–πœ‘ 2 sinπœƒ

2πœ‘+ + 𝑒+π‘–πœ‘ 2 cos

πœƒ

2|πœ‘βˆ’βŸ©

𝐻 Ψ± = E±|Ψ±⟩

C. Cohen-Tannoudji, B. Diu, and F. LaloΓ«, Quantum Mechanics Volume One, Wiley-VCH

Basis Ξ¨+ , |Ξ¨βˆ’βŸ© energy eigenbasis (because 𝐻 has energy units)

transition energy

conveniently expressed in

frequency units

Page 7: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 7

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. Quantum two-level system

Visualization on Bloch sphere

tan πœƒ ≑Δ2+Ξ” 2

πœ– with 0 ≀ πœƒ ≀ πœ‹

tanπœ‘ ≑Δ

Ξ” with 0 ≀ πœ‘ ≀ 2πœ‹

|𝛹+⟩ = +π‘’βˆ’π‘–πœ‘ 2 cosπœƒ

2πœ‘+ + π‘’π‘–πœ‘ 2 sin

πœƒ

2|πœ‘βˆ’βŸ©

Basis rotation on Bloch sphere!

𝒙

𝒛

|π‹βˆ’βŸ©

|𝝋+⟩

|𝜳+⟩

|πœ³βˆ’βŸ©

𝝋

𝜽

Vectors |π›Ήβˆ’βŸ© and |𝛹+⟩ define new quantization axis

𝐻 =πœ–2+Ξ”2+Ξ” 2

2𝜎 𝑧 in basis π›Ήβˆ’ , |𝛹+⟩

|π›Ήβˆ’βŸ© and |𝛹+⟩ become new poles

|π›Ήβˆ’βŸ© = βˆ’π‘’βˆ’π‘–πœ‘ 2 sinπœƒ

2πœ‘+ + π‘’π‘–πœ‘ 2 cos

πœƒ

2|πœ‘βˆ’βŸ©

π’š

Page 8: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 8

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. Qubit Control: Fictitious spin Β½

Fictitious spin Β½ in fictitious magnetic field 𝑩

𝐻 ↑ = βˆ’π›Ύβ„ 𝑩 β‹… 𝑺 = βˆ’π›Ύβ„

2

𝐡𝑧 𝐡π‘₯ βˆ’ 𝑖𝐡𝑦𝐡π‘₯ + 𝑖𝐡𝑦 βˆ’π΅π‘§

𝛾 is the gyromagnetic ratio

𝐡 = 𝐡π‘₯ , 𝐡𝑦 , 𝐡𝑧𝑇

is the magnetic field vector

Analogy to spin Β½ in static magnetic field

Fictitous spin in fictitious 𝑩-field quantum TLS ↑ πœ‘+ ↓ πœ‘βˆ’ ↑ 𝒖 Ξ¨+ ↓ 𝒖 Ξ¨βˆ’ (𝒖 denotes the quantization axis along which 𝐻 ↑ is diagonal) ℏ 𝛾 𝑩 E+ βˆ’ Eβˆ’ = β„πœ”π‘ž

Polar angles of 𝑩 πœƒ, πœ‘ βˆ’π›Ύβ„π΅π‘§ πœ– βˆ’π›Ύβ„π΅π‘₯ Ξ” βˆ’π›Ύβ„π΅π‘¦ Ξ”

Any quantum TLS has a β€œbuilt-

in” static magnetic field

↓ NMR situation!

Orientation with respect to the quantization axis

depends on πœ–, Ξ”, Ξ”

Page 9: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 9

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Free precession

Free precession

free evolution corresponds to free

precession about the 𝒛-axis

Also called Larmor precession

In absence of decoherence, only 𝝋 𝒕 evolves linearly with time 𝑑

In the energy eigenbasis g , |e⟩ , the qubit state vector |𝛹0⟩ is parallel to built-in field for 𝛹0 = |g⟩ antiparallel to the built-in field for 𝛹0 = |e⟩ Built-in field points along 𝑧-axis on Bloch sphere

𝒙

𝒛

|𝐠⟩

|𝐞⟩

π‹πŸŽ

|𝜳𝟎⟩

When qubit state vector |𝛹0⟩ is not parallel or antiparallel to built-in field

|𝜳(𝒕)⟩

𝝋(𝒕)

𝛹 = cosπœƒ

2e + π‘’π‘–πœ‘ sin

πœƒ

2g

𝜽𝟎

π’š

Page 10: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 10

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Free precession

Larmor precession – formal calcualtion

Energy eigenbasis 𝐻 =β„πœ”π‘ž

2𝜎 𝑧 fictitious field aligned along quantization axis

𝒙

𝒛

|𝐠⟩

|𝐞⟩

π‹πŸŽ

𝜽𝟎

|𝜳𝟎⟩

|𝜳(𝒕)⟩

𝝋(𝒕)

Time-independent problem Develop into stationary states

𝛹 𝑑 = e 𝛹0 π‘’βˆ’π‘–πœ”q𝑑/2|e⟩ + g 𝛹0 π‘’π‘–πœ”q𝑑/2|g⟩

𝛹0 = cosπœƒ02

e + π‘’π‘–πœ‘0 sinπœƒ02

g

𝛹 𝑑 = π‘’βˆ’π‘–πœ”q𝑑/2 cosπœƒ02|e⟩ + π‘’π‘–πœ‘0π‘’π‘–πœ”q𝑑/2 sin

πœƒ02|g⟩

= cosπœƒ02|e⟩ + 𝑒𝑖(πœ‘0+πœ”q𝑑) sin

πœƒ02|g⟩

𝝋(𝒕)

𝛹 = cosπœƒ

2e + π‘’π‘–πœ‘ sin

πœƒ

2g

π’š

Page 11: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 11

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. Qubit Control: Rabi Oscillations

Rotating drive field

Consider the qubit state vector |π›ΉβŸ© expressed in energy eigenbasis g , |e⟩

Apply a drive field with amplitude β„πœ”d rotating about the 𝒛-axis at frequency πœ”

𝐻 𝑑 =ℏ

2

πœ”q πœ”dπ‘’βˆ’π‘–πœ”π‘‘

πœ”dπ‘’π‘–πœ”π‘‘ βˆ’πœ”q

𝒙

𝒛

𝐻 ↑ = βˆ’π›Ύβ„

2

𝐡𝑧 𝐡π‘₯ βˆ’ 𝑖𝐡𝑦𝐡π‘₯ + 𝑖𝐡𝑦 βˆ’π΅π‘§

𝑩𝒛 = β„πŽπͺ

πŽπ’• 𝑩𝒙 π‘©π’š

0 πœ”d 0

πœ‹ 4 πœ”d 2 πœ”d 2

πœ‹ 2 0 πœ”d

3πœ‹ 4 βˆ’πœ”d 2 πœ”d 2

πœ‹ βˆ’πœ”d 0

5πœ‹ 4 βˆ’πœ”d 2 βˆ’πœ”d 2

3πœ‹ 2 0 βˆ’πœ”d

7πœ‹ 4 πœ”d 2 βˆ’πœ”d 2

π’š

Page 12: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 12

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. Qubit Control: Rabi Oscillations

Driven quantum TLS

𝐻 𝑑 =ℏ

2

πœ”q πœ”dπ‘’βˆ’π‘–πœ”π‘‘

πœ”dπ‘’π‘–πœ”π‘‘ βˆ’πœ”q

=β„πœ”q

2𝜎 𝑧 +

β„πœ”d

2𝜎 +𝑒

+π‘–πœ”π‘‘ + 𝜎 βˆ’π‘’βˆ’π‘–πœ”π‘‘

Drive rotating about arbitrary equatorial axis on the Bloch sphere

𝐻 d =β„πœ”d

2𝜎 +𝑒

+𝑖 πœ”π‘‘+πœ‘ + 𝜎 βˆ’π‘’βˆ’π‘– πœ”π‘‘+πœ‘

without loss of generality we choose πœ‘ = 0

≑ 𝐻 0 ≑ 𝐻 d

Operators 𝜎 βˆ’ ≑ e g and 𝜎 + ≑ e g create or annihilate an excitation in the TLS

Here, our physics convention is not very intuitive, but consistent!

𝜎+ =0 01 0

πœŽβˆ’ =0 10 0

Matrix representation and

Page 13: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 13

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. Qubit Control: Rabi Oscillations

Time evolution of driven quantum TLS 𝐻 𝑑 =

ℏ

2

πœ”q πœ”dπ‘’βˆ’π‘–πœ”π‘‘

πœ”dπ‘’π‘–πœ”π‘‘ βˆ’πœ”q

Qubit state 𝛹 𝑑 = π‘Že 𝑑 e + π‘Žg 𝑑 g

obeys SchrΓΆdinger equation

𝑖d

dπ‘‘π‘Že 𝑑 =

πœ”q

2π‘Že(𝑑) +

πœ”d

2π‘’βˆ’π‘–πœ”π‘‘π‘Žg(𝑑)

𝑖d

dπ‘‘π‘Žg 𝑑 =

πœ”d

2π‘’π‘–πœ”π‘‘π‘Že(𝑑) βˆ’

πœ”q

2π‘Žg(𝑑)

𝑖ℏd

d𝑑𝛹 𝑑 = 𝐻 𝛹 𝑑

Time-dependent Difficult to solve Move to rotating frame!

SchrΓΆdinger equation looses explicit time dependence

𝑖d

d𝑑𝑏e 𝑑 =

πœ”q βˆ’ πœ”

2𝑏e(𝑑) +

πœ”d

2𝑏g(𝑑)

𝑖d

d𝑑𝑏g 𝑑 =

πœ”d

2𝑏e(𝑑) βˆ’

πœ”q βˆ’ πœ”

2𝑏g(𝑑)

𝑏e 𝑑 ≑ π‘’π‘–πœ”π‘‘ 2 π‘Že 𝑑

𝑏g 𝑑 ≑ π‘’βˆ’π‘–πœ”π‘‘ 2 π‘Žg 𝑑

Page 14: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 14

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Formal treatment Effective Hamiltonian 𝐻 describing the same dynamics as 𝐻 (𝑑)

𝑖ℏd

d𝑑𝛹 𝑑 = 𝐻 𝛹 𝑑

𝛹 𝑑 ≑ 𝑏e 𝑑 e + 𝑏g 𝑑 g

𝑖d

d𝑑𝑏e 𝑑 =

πœ”q βˆ’ πœ”

2𝑏e(𝑑) +

πœ”d

2𝑏g(𝑑)

𝑖d

d𝑑𝑏g 𝑑 =

πœ”d

2𝑏e(𝑑) βˆ’

πœ”q βˆ’ πœ”

2𝑏g(𝑑)

Interpretation of the rotating frame 𝐻 𝑑 =

ℏ

2

πœ”q πœ”dπ‘’βˆ’π‘–πœ”π‘‘

πœ”dπ‘’π‘–πœ”π‘‘ βˆ’πœ”q

The frame rotates at the angular speed 𝝎 of the drive Driving field appears at rest Drive can be in resonance with Larmor precession frequency πœ”q

Away from resonance |πœ” βˆ’ πœ”q| ≫ 0

red terms dominate no 𝐠 ↔ |𝐞⟩ transitions induced by drive Near resonance πœ” β‰ˆ πœ”q

blue terms dominate 𝐠 ↔ |𝐞⟩ transitions induced by drive

H =ℏ

2

βˆ’Ξ”πœ” πœ”d

πœ”d Ξ”πœ”

with Ξ”πœ” ≑ πœ” βˆ’ πœ”q

Page 15: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 15

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Expand into stationary states

Dynamics of the effective Hamiltonian

H =ℏ

2

βˆ’Ξ”πœ” πœ”d

πœ”d Ξ”πœ”

Ξ”πœ” ≑ πœ” βˆ’ πœ”q

Diagonalize H =βˆ’β„ Ξ”πœ”2 + πœ”d

2

2𝜎 𝑧

Initial state 𝜳𝟎 = 𝐠 (energy ground state)

𝛹 𝑑 = 𝛹 βˆ’ 𝛹 0 𝑒+𝑖𝑑2 Ξ”πœ”2+πœ”d

2

𝛹 βˆ’ + 𝛹 + 𝛹 0 π‘’βˆ’π‘–π‘‘2 Ξ”πœ”2+πœ”d

2

𝛹 +

tan πœƒ = βˆ’πœ”d

Ξ”πœ”

tanπœ‘ = 0

|𝛹 +⟩ = + cosπœƒ

2e + sin

πœƒ

2|g⟩

|𝛹 βˆ’βŸ© = βˆ’ sinπœƒ

2e + cos

πœƒ

2|g⟩

|Ξ¨+⟩ = +π‘’βˆ’π‘–πœ‘ 2 cosπœƒ

2πœ‘+ + 𝑒+π‘–πœ‘ 2 sin

πœƒ

2|πœ‘βˆ’βŸ©

|Ξ¨βˆ’βŸ© = βˆ’π‘’βˆ’π‘–πœ‘ 2 sinπœƒ

2πœ‘+ + 𝑒+π‘–πœ‘ 2 cos

πœƒ

2|πœ‘βˆ’βŸ©

New eigenstates

𝛹 𝑑 = cosπœƒ

2𝑒+𝑖𝑑2 Ξ”πœ”2+πœ”d

2

𝛹 βˆ’ + sinπœƒ

2π‘’βˆ’π‘–π‘‘2 Ξ”πœ”2+πœ”d

2

𝛹 +

Page 16: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 16

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Probability π‘·πž to find TLS in |𝐞⟩

Ξ”πœ” ≑ πœ” βˆ’ πœ”q

𝑃e ≑ e 𝛹 𝑑 2 = e 𝛹 𝑑2=

|𝛹 +⟩ = + cosπœƒ

2e + sin

πœƒ

2|g⟩

|𝛹 βˆ’βŸ© = βˆ’ sinπœƒ

2e + cos

πœƒ

2|g⟩

= sinπœƒ

2cos

πœƒ

2π‘’βˆ’π‘–π‘‘2 Ξ”πœ”2+πœ”d

2

βˆ’ 𝑒+𝑖𝑑2 Ξ”πœ”2+πœ”d

22

𝛹 𝑑 = cosπœƒ

2𝑒+𝑖𝑑2

Ξ”πœ”2+πœ”d2

𝛹 βˆ’ + sinπœƒ

2π‘’βˆ’π‘–π‘‘2

Ξ”πœ”2+πœ”d2

𝛹 +

= sin πœƒ sin𝑑 Ξ”πœ”2 +πœ”d

2

2

2

𝑃e =πœ”d2

Ξ”πœ”2 + πœ”d2 sin

2𝑑 Ξ”πœ”2 + πœ”d

2

2

tan πœƒ = βˆ’πœ”d

Ξ”πœ”

Driven Rabi oscillations TLS population oscillates under transversal drive

Page 17: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 17

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Rabi Oscillations on the Bloch sphere

Ξ”πœ” ≑ πœ” βˆ’ πœ”q

𝛹 𝑑 = cosπœƒ

2𝑒+𝑖𝑑2

Ξ”πœ”2+πœ”d2

𝛹 βˆ’ + sinπœƒ

2π‘’βˆ’π‘–π‘‘2

Ξ”πœ”2+πœ”d2

𝛹 +

𝑃e =πœ”d2

Ξ”πœ”2 + πœ”d2 sin

2𝑑 Ξ”πœ”2 + πœ”d

2

2

tan πœƒ = βˆ’πœ”d

Ξ”πœ”

On resonance 𝝎 = 𝝎πͺ

Rotating frame cancels Larmor precession

State vector 𝛹 𝑑 has no πœ‘-evolution

𝛹 𝑑 = cosπœ”d𝑑

2g + 𝑖 sin

πœ”d𝑑

2e

Rotation about π‘₯-axis

𝒙

𝒛

𝜳 𝟎 = |𝐠⟩

|𝜳 (𝒕)⟩

π’š πŽππ’•

Finite detuning 𝚫𝝎 > 𝟎 Additional precession at π›₯πœ”

Population oscillates faster Reduced oscillation amplitude

Page 18: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 18

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Rabi Oscillations – Graphical representation 𝑃e =

πœ”d2

Ξ”πœ”2 + πœ”d2 sin

2𝑑 Ξ”πœ”2 + πœ”d

2

2

On resonance 𝝎 = 𝝎πͺ

Detuning 𝚫𝝎 = πŸ‘πŽπ

First experimental demonstration with superconducting qubit Y. Nakamura et al., Nature 398, 786 (1999)

π‘·πž

𝒕

𝟏

π‘·πž

𝒕

𝟏

𝟎. 𝟏

Page 19: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 19

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Oscillating vs. rotating drive – Microwave pulses 𝑃e =

πœ”d2

Ξ”πœ”2 + πœ”d2 sin

2𝑑 Ξ”πœ”2 + πœ”d

2

2

On resonance (𝝎 = 𝝎πͺ) π‘·πž

𝒕

𝟏

2πœ‹/πœ”

2πœ”d

Oscillating drive 2β„πœ”d cosπœ”π‘‘ = β„πœ”d 𝑒+iπœ”π‘‘ + π‘’βˆ’iπœ”π‘‘

in frame rotating with +πœ” the π‘’βˆ’iπœ”π‘‘ -component rotates fast with βˆ’2πœ” For πœ”d β‰ͺ πœ” this fast contribtion averages out on the timescale of the slowly rotating component Rotating wave approximation

Page 20: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 20

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Important drive pulses on the Bloch sphere

𝒙

𝒛

𝐠

π’š

𝒙

𝒛

|𝐠⟩

π’š

𝝅-pulse (πœ”dΔ𝑑 = πœ‹) g ↔ |e⟩ flips, refocus phase evolution

𝝅/𝟐-pulse (πœ”dΔ𝑑 = πœ‹/2) Rotates into equatorial plane and back

𝐞

𝒆 βˆ’ π’Š π’ˆ

𝟐

2πœ‹/πœ”

2β„πœ”d

Δ𝑑

𝒆 + π’Š π’ˆ

𝟐

Page 21: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 21

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Rabi Oscillations in presence of decoherence 𝑃e =

πœ”d2

Ξ”πœ”2 + πœ”d2 sin

2𝑑 Ξ”πœ”2 + πœ”d

2

2

𝚫𝝎 =0 π‘·πž

𝒕

𝟏

Effect of decoherence (qualitative approach) Loss of coherent properties to environment at a constant rate Ξ“dec = 2πœ‹/𝑇dec β€œChange of coherence” (time derivative) proportional to β€œamount of coherence”

Exponential decay of coherent property with factor π’†βˆ’πšͺππžπœπ’•

πŸπ… = π’†βˆ’

𝒕

π‘»ππžπœ Argument holds well for population decay (energy relaxation, 𝑇1) Loss of phase coherence more diverse depending on environment (exponential, Gaussian, or power law) Experimental timescales range from few ns to 100 ΞΌs

𝟎. πŸ“ 𝟎. πŸ“ 𝟏 + π’†βˆ’πŸ

π‘»ππžπœ

Decay envelope

Page 22: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 22

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Rabi decay time 𝑃e =

πœ”d2

Ξ”πœ”2 + πœ”d2 sin

2𝑑 Ξ”πœ”2 + πœ”d

2

2

𝚫𝝎 =0 π‘·πž

𝒕

𝟏

𝟎. πŸ“ 𝟎. πŸ“ 𝟏 + π’†βˆ’πŸ

π‘»ππžπœ

Complicated interplay between 𝑇1, 𝑇2βˆ—, and the drive

At long times, small oscillations persist Nevertheless useful order-of-magnitude check for 𝑇dec Important tool for single-qubit gates To determine 𝑇1, 𝑇2

βˆ—, 𝑇2 correctly, more sophisticated protocols are required energy relaxation measurements, Ramsey fringes, spin echo

Page 23: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 23

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Energy relaxation on the Bloch sphere

𝒙

𝒛

|𝐠⟩

𝝋

𝜽

𝜳 𝜽,𝝋

π’š

Environment induces energy loss

State vector collapses to g Implies also loss of phase information Intrinsically irreversible

𝑇1-time rate Ξ“1 =2πœ‹

𝑇1

Golden Rule argument

Ξ“1 ∝ 𝑆 πœ”q

𝑆 πœ” is noise spectral density High frequency noise Intuition: Noise induces transitions

Quantum jumps

Single-shot, quantum nondemotiton measurement yields a discrete jump to g at a random time

Probability is equal for each point of time

Exponential decay with π‘’βˆ’

𝑑

𝑇1

Page 24: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 24

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Dephasing on the Bloch sphere Environment induces random phase changes

Ξ“2 ∝ 𝑆 πœ” β†’ 0 , 𝑇2 =2πœ‹

Ξ“2

Low-frequency noise is detuned No energy transfer

1/𝑓-noise 𝑆 πœ” ∝1

πœ”

Example: Two-level fluctuator bath To some extent reversible

Decay laws π‘’βˆ’

𝑑

𝑇2, π‘’βˆ’

𝑑

𝑇2

2 ,

𝑑

𝑇2

𝛽

𝒙

𝒛

|𝐠⟩

|𝐞⟩

π‹πŸŽ π’š

𝜳 𝜽𝟎, π‹πŸŽ

|𝜳(𝒕)⟩

𝒙

π’š

𝜽𝟎

Visualization Phase πœ‘ becomes

more and more unknown with time

Classical probility, no superposition!

Phase coherence lost when arrows are distributed over whole equatorial plane

Page 25: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 25

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

Rotating frame & no detuning (Ξ”πœ” = πœ” βˆ’ πœ”q = 0) β†’ no π‘₯𝑦-evolution

x

y 1

0

x

y 1

0

x

y 1

0

x

y 1

0

x

y 1

0

Qubit dynamics – Relaxation

10.3 Control of quantum two-level systems

….. Qubit Control: Energy Relaxation

πš«π’•

𝝅 Measurement Init

π‘»πŸ

π‘·πž

πš«π’•

𝟏

π’†βˆ’πŸ

Page 26: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 26

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

x

y y y y

free evolution time

x

y 1

0

x

y 1

0

x

y 1

0

10.3 Control of quantum two-level systems

….. Qubit Control: Ramsey fringes

Qubit dynamics – Ramsey fringes (π‘»πŸβ‹† )

x

y

πš«π’•π’™π’š

𝝅/𝟐 Measurement Init

𝝅/𝟐

πš«π’•π’™π’š π‘»πŸβ‹†

𝚫𝝎 = 𝟎

π‘·πž

𝟏

𝟎. πŸ“ 𝟎. πŸ“ 𝟏 + π’†βˆ’πŸ

𝚫𝝎 > 𝟎 Beating Δ𝑇 = 2πœ‹/Ξ”πœ” π‘»πŸ

⋆ βˆ’πŸ = πŸπ‘»πŸβˆ’πŸ + π‘»πŸ

βˆ’πŸ Energy decay always present!

Page 27: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 27

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

free evolution time

x

y 1

0

x

y 1

0

10.3 Control of quantum two-level systems

….. Qubit Control: Spin echo

Qubit dynamics – Spin echo (π‘»πŸπ‘¬β‹† )

πš«π’•π’™π’š/𝟐

𝝅/𝟐 Measurement Init

𝝅/𝟐

πš«π’•π’™π’š π‘»πŸπ‘¬β‹†

𝚫𝝎 = 𝟎 π‘·πž

𝟎. πŸ“ 𝟎. πŸ“ 𝟏 βˆ’ π’†βˆ’πŸ

𝝅

Refocussing time

πš«π’•π’™π’š/𝟐

x

y

x x x x

y

x x x x

y x

y 1

0

Refocussing pulse reverses low-frequency phase dynamics π‘»πŸπ‘¬

⋆ > π‘»πŸβ‹†

Page 28: Control of quantum two-level systemsΒ Β· changes πœ‘ on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems ...

AS-Chap. 10 - 28

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, Β© W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Ramsey vs. Spin echo sequence

Ramsey vs. spin echo sequence

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F(Ο‰

t/2)

Ο‰t/2

Ramsey filter FR

spin echo filter FE

Spin echo cancels the effect of low-frequency noise in the environment

Pulse sequences act as filters! Environment described by noise spectral density 𝑆(πœ”)

𝑭𝐑 πœ”π‘‘ =sin2

πœ”π‘‘2

πœ”π‘‘2

2

𝑭𝐄 πœ”π‘‘ =sin4

πœ”π‘‘4

πœ”π‘‘4

2

Decay envelope ∝ π‘’βˆ’π‘‘2 S πœ” 𝐹R,E

πœ”π‘‘

2π‘‘πœ”

+βˆžβˆ’βˆž

Spin echo sequence

Filters low-frequency noise for πœ”π‘‘ β†’ 0 πœ”π‘‘ β‰ˆ 2 Noise field fluctuates synchronously with πœ‹-pulse No effect

Sequence length 𝑑 is important!