Container Propulsion

download Container Propulsion

of 20

Transcript of Container Propulsion

  • 7/31/2019 Container Propulsion

    1/20

    Propulsion of 8,000-10,000teu Container Vessel

  • 7/31/2019 Container Propulsion

    2/20

  • 7/31/2019 Container Propulsion

    3/20

    Content

    Introduction.5

    EEDI.and.Major.Ship.and.Main.Engine.Parameters6

    Major.propeller.and.engine..

    parameters.7

    8,000-10,000.teu.container.vessel.8

    Main.Engine.Operating.Costs.. 10

    .250.knots. 10

    Fuel.consumption.and.EEDI. 11

    Operating.costs. 13

    Main.Engine.Operating.Costs. 15

    .240.knots. 15

    Fuel.consumption.and.EEDI. 16

    Operating.costs. 17

    Summary.

  • 7/31/2019 Container Propulsion

    4/20

  • 7/31/2019 Container Propulsion

    5/20

    Propulsion of 8,000-10,000 teu Container Vessel

    Introduction

    The. maximum. size. of. recent. 8,000-

    10,000. teu. container. vessels,. Fig. 1,.

    is. normally. at. the. scantling. draught.

    within.the.deadweight.range.of.95,000-

    120,000. dwt. and. the. ships. overall.

    length.is.about.320-350.m.and.with.a.

    breadth.of.about.43-46.m

    Recent.development.steps.have.made.

    it.possible.to.offer.solutions.which.will.

    enable. significantly. lower. transporta-

    tion. costs.for. container. ships.as. out-

    lined.in.the.following

    One.of.the.goals.in.the.marine.industry.

    today.is. to.reduce.the.impact. of.CO2.

    emissions. from. ships. and,. therefore,.

    to.reduce.the.fuel.consumption.for.the.

    propulsion.of.ships.to.the.widest.pos-

    sible.extent.at.any.load

    This. also. means. that. the. inherent. de-

    sign.CO2.index.of.a.new.ship,.the.so-

    called. Energy. Efficiency. Design. Index.

    (EEDI),. will. be. reduced. Based. on. an.

    average. reference. CO2. emission. from.

    existing. container. vessels,. the. CO2.

    emission. from. new. container. vessels.

    in.gram.per.dwt.per.nautical.mile.must.

    be.equal.to.or.lower.than.the.reference.

    emission. figures. valid. for. the. specific.

    container.vessel

    This. drive. may. often. result. in. opera-

    tion.at.lower.than.normal.service.ship.

    speeds. compared. to. earlier,. resulting.

    in.reduced.propulsion.power.utilisation.

    The.design.ship.speed.at.Normal.Con-

    tinuous. Rating. (NCR),. including. 15%.

    sea.margin,.used.to.be.as.high.as.250-

    260.knots.Today,.the.ship.speed.may.

    be.expected. to.be. lower,. possibly.24.

    knots,.or.even.lower

    A. more. technically. advanced. develop-

    ment. drive. is. to. optimise. the. aftbody.

    and.hull.lines.of.the.ship..including.bul-

    bous. bow,. also. considering. operation.

    in.ballast.condition..making.it.possible.

    to. install. propellers. with. a. larger. pro-

    peller.diameter.and,.thereby,.obtaining.

    higher.propeller.efficiency,.but.at. a.re-

    duced.optimum.propeller.speed

    Fig. 1: An 8,000 teu container vessel

    5Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    6/20

    In. the. past,. normally.K98MC/ME. with.

    nominal.97.r/min.and.K98MC-C/ME-C.

    with.nominal.104.r/min.were.used.This.

    speed.range.can.now.be.reduced

    As. the. two-stroke. main. engine. is. di-

    rectly. coupled. with. the. propeller,. the.

    introduction. of. the. super. long. stroke.

    S90ME-C92.engine.specially.designed.

    for.container.ships.with.even.lower.than.

    the.above-mentioned.usual.shaft.speed.

    will.meet.this.The.main.dimensions.for.

    this.engine.type,.and.for.other.existing.

    container.vessel.engines,.are.shown.in.

    Fig.2

    Based.on.a.case.study.of.an.8,000.teu.

    container.vessel,.this.paper.shows.the.

    influence. on. fuel. consumption. when.

    choosing. the. new. S90ME-C92. en-

    gine. compared.with.existing.container.vessel.engines.The.layout.ranges.of.9.

    and.10S90ME-C92.engines.compared.

    K98ME-C7.1S90ME-C9.2

    12,

    986

    13,

    353

    14,

    642

    1,

    700

    2,

    950

    2,

    950

    4,3704,6205,420

    1,

    700

    1,

    9003

    ,150

    K98ME7.1

    Fig. 2: Main dimensions for an S90ME-C9.2 engine and for other existing container ship engines

    with.existing.9.and.10.K98.engines.are.

    shown.in.Fig.3

    EEDI and Major Ship and Main Engine

    Parameters

    Energy.Efficiency.Design.Index.(EEDI)

    The. Energy. Efficiency. Design. Index.

    (EEDI).is.conceived.as.a.future.manda-

    tory. instrument. to. be. calculated. and.

    made.as.available.information.for.new.

    ships. EEDI.represents. the. amount. of.

    CO2.in.gram.emitted.when.transporting.

    one.deadweight.tonnage.of.cargo.one.

    nautical.mile

    For. container. vessels,. the. EEDI. value.

    is.essentially.calculated.on.the.basis.of.

    70%. of. the. maximum. cargo. capacity.

    in. dwt,.propulsion. power,. ship.speed,.

    SFOC.and. fuel.type.However,. certain.

    correction. factors. are. applicable,. eg.

    for.installed.Waste.Heat.Recovery.sys-

    tems. To. evaluate. the. achieved. EEDI,.

    a. reference. value. for.the. specific.ship.

    type. and. the. specified. maximum. dwt.

    cargo.capacity.is.used.for.comparison

    The. main. engines.75%. SMCR. (Speci-

    fied.Maximum. Continuous. Rating). fig-

    ure.is.as.standard.applied.in.the.calcu-

    lation.of.the.EEDI.figure,.in.which.also.

    the.CO2.emission.from.the.auxiliary.en-

    gines.of.the.ship.is.included

    According. to. the. rules. finally. decided.

    on.15.July.2011,.the.EEDI.of.a.new.ship.

    is.reduced.to.a.certain.factor.compared.

    to.a.reference.value.Thus,.a.ship.built.

    after.2025. is.required.to. have. a. 30%.

    lower.EEDI.than.the.reference.figure

    6 Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    7/20

    Major propeller and engine

    parameters

    In.general,.the.larger.the.propeller.diame-

    ter,.the.higher.the.propeller.efficiency.and.

    the.lower. the.optimum. propeller. speed.

    referring.to.an.optimum.ratio.of.the.pro-

    peller.pitch.and.propeller.diameter

    A.lower. number.of.propel ler.blades,.for.

    example.when.going.from.6.to.5.blades.

    if.possible,.means.approximately. 10%.

    higher. optimum. propeller. speed,. and.

    the. propeller. efficiency. will. be. slightly.increased

    When.increasing.the.propeller.pitch.for.

    a.given.propeller.diameter.with.optimum.

    pitch/diameter. ratio,. the. correspond-

    ing. propeller. speed. may. be. reduced.

    and. the. efficiency. will. also. be. slightly.

    reduced,. of. course. depending. on. the.

    degree.of.the.changed.pitch.The.same.

    is.valid.for.a.reduced.pitch,.but.here.the.

    propeller.speed.may.increase

    The.efficiency.of.a.two-stroke .main.en-

    gine.particularly.depends.on.the.ratio.of.

    the.maximum. (firing).pressure. and.the.mean.effective.pressure.The.higher.the.

    ratio,. the. higher. the. engine. efficiency,.

    ie.the.lower.the.Specific.Fuel.Oil.Con-

    sumption.(SFOC)

    Furthermore,.it.is.a.verified.fact.that.the.

    higher. the. stroke/bore. ratio.of. a. two-

    stroke.engine,.the.higher.the.engine.ef-

    ficiency.This.means,.for.example,.that.

    the. long. stroke. engine. type,. S90ME-

    C92,. may. have. a. higher. eff iciency.

    compared.with.the.short.stroke.engine.

    type.K98

    97 r/min84 r/min 104 r/min

    M3

    12K98ME

    C7.1

    30,000 65 70 75 80 85 90 95 100 105 r/min

    Engine/Propeller speed at SMCR

    40,000

    50,000

    60,000

    70,000

    80,000

    PropulsionSMCR powerkW

    SMCR power and speed are inclusive of:

    15% Sea margin

    10% Engine margin

    5% Propeller light running margin

    5 and 6-bladed FP-propellers

    Constant ship speed coefficient = 0.21

    for 6-bladed propellers

    Tdes

    =13.0 m

    Increased propeller diameterS90ME-C9.2

    M2

    M3

    M3 M2

    M1

    M1

    M = SMCR (24.0 kn)

    M1 = 52,150 kW at 104.0 r/min 9K98ME-C7.1

    M2 = 52,150 kW at 97.0 r/min 9K98ME7.1

    M3 = 50,600 kW at 84.0 r/min 9S90ME-C9.2

    M = SMCR (25.0 kn)

    M1 = 59,880 kW at 104.0 r/min 10K98ME-C7.1

    M2 = 59,880 kW at 97.0 r/min 10K98ME7.1

    M3 = 58,100 kW at 84.0 r/min 10S90ME-C9.2

    S90ME-C9.2

    Bore = 900 mm

    Stroke = 3,260 mm

    Vpist

    = 9.13 m/s

    S/B = 3.622

    MEP = 20 bar

    L1

    = 5,810 kW/cyl. at 84.0 r/min

    Propulsion of 8,000 teu Container Vessel

    26.0 kn

    25.0 kn

    24.0 kn

    23.0 kn

    Dprop=8.8 m 6

    (67.7% Tdes

    )

    Dprop=8.8 m 5

    Dprop=9.2 m 6

    (70.8% Tdes

    )

    Dprop=9.5 m 6

    (73.1% Tdes

    )

    10K98ME

    7.1

    9K98ME7

    .1

    11K98MEC7.1

    10K98ME

    C7.1

    9K98MEC

    7.1

    9S90ME

    C9.2

    10S90ME

    C9.2

    8S90ME

    C9.2

    Fig. 3: Different main engine and propeller layouts and SMCR possibilities (M1, M2, M3 for 25.0 knots and M1, M2, M3, for 24.0 knots) for an 8,000 teu con-

    tainer vessel operating at 25.0 knots and 24.0 knots, respectively.

    7Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    8/20

    Furthermore,. the. application. of. new.

    propeller. design. technologies. moti-

    vates.use. of. main. engines. with. lower.

    rpm. Thus,. for. the. same. propeller. di-

    ameter,. these. propeller. types. are. cal-

    culated.to.have.an.about.6%.improved.

    overall. efficiency. gain. at. about. 10%.

    lower.propeller.speed

    8,000-10,000 teu container vessel

    For. an.8,000. teu. container. ship. used.

    as. an. example ,. the . fol lowing. c ase.

    study.illustrates.the.potential.for.reduc-

    ing.fuel.consumption.by.increasing.the.

    propeller.diameter.and.introducing.the.

    S90ME-C92.as.main.engine.The.ship.

    particulars.assumed.are.as.follows:

    8,000 teu Container Vessel

    Deadweight,.max. dwt. 97,000

    Scantling.draught. m. 145

    Design.draught. m. 130

    Length.overall. m. 3230

    Length.between.pp. m. 3080

    Breadth. m. 428

    Sea.margin. %. 15

    Engine.margin. %. 10

    De si gn.s hi p.s pe ed. k n. 250.an d.240

    Type.of.pr opel ler. . FPP

    No.of.propeller.blades....6.(or.5.if.possible)

    Propeller.diameter. m. target

    Based. on. the. above-stated. average.

    ship. particulars. assumed,. we. have.

    made. a. power. prediction. calculation.

    (Holtrop. &. Mennens. Method). for. dif-

    ferent.design.ship.speeds.and.propel-

    ler. diameters,. and. the. corresponding.

    SMCR. powe r. and. spee d,. point. M,.

    for. propulsion. of. the. container.ship. is.

    found,.see.Fig.3.The.propeller.diam-

    eter. change.for. the.6-bladed. propeller.

    corresponds.approximately.to.the.con-

    stant.ship.speed.factor.=.021.[PM2.=.

    PM1.x.(n2/n1).where.P.=.propulsion.pow-

    er.and.n.=.speed].For.the.same.propel-

    ler.diameter.and.when.going.from.6.to.

    5.blades,.the.optimum.propeller.speed.

    is.increased.and.the.propulsion.power.

    needed. is. slightly. increased,. but. here.

    assumed.more.or.less.unchanged

    Referring. to. the. two. ship. speeds. of.

    250. knots. and. 240. knots,. respec-

    tively,.three.potential.main.engine.types.

    and. pertaining. layout. diagrams. and.

    SMCR. points. have. been. drawn-in. in.

    Fig.3,.and.the.main.engine.operating.costs. have. been. calculated. and. de-

    scribed.below.individually.for.each.ship.

    speed.case

    It.should.be.noted.that.the.ship.speed.

    stated.refers.to.the.design.draught.and.

    to. NCR. =. 90%. SMCR. including. 15%.

    sea.margin.If.based.on.calm.weather,.

    ie.without.sea.margin,.the.obtainable.

    ship.speed.at.NCR.=.90%.SMCR.will.

    be.about.09.knots.higher

    If. based. on. 75%. SMCR. and. 70%. of.

    maximum. dwt,.as. applied. for.calcula-

    tion.of.the.EEDI,.the.ship.speed.will.be.

    about.02. knots.higher,. still. based. on.

    calm. weather. conditions,. ie. without.

    any.sea.margin

    8 Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    9/20

    0

    20,000

    30,000

    10,000

    40,000

    50,000

    60,000

    Relative powerreduction

    %

    Propulsion powerdemand at N = NCR

    kW

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    10K98ME-C7.1N18.8 m 5

    10K98ME7.1N28.8 m 6

    10S90ME-C9.2N39.5 m 6Dprop:

    53,890 kW

    Inclusive of sea margin = 15%

    53,890 kW52,290 kW

    0% 0%

    3.0%

    Propulsion of 8,000 teu Container Vessel 25.0 knotsExpected propulsion power demand at N = NCR = 90% SMCR

    Fig. 4: Expected propulsion power demand at NCR for 25.0 knots

    Main Engine Operating Costs

    25.0 knots

    The. calculated. main. engine. examples.

    are.as.follows:

    250.knots

    1. 10K98ME-C71.

    . M1.=.59,880.kW.x.1040.r/min

    2. 10K98ME71.

    . M2.=.59,880.kW.x.970.r/min

    3. 10S90ME-C92.

    . M3.=.58,100.kW.x.840.r/min

    The. K98. engine. types. have. been. cho-

    sen. as. cases. 1. and. 2. as. these.have.

    been.often.used.in.the.past

    The. main. engine. fuel. consumption.

    and. operating. costs. at. N. =. NCR. =.

    90%. SMCR. have. been. calculated. for.

    the.above. three. main. engine/propeller.

    cases. operating. on. the. relatively. high.ship.speed.of.250.knots,.as.often.used.

    earlier.Furthermore,.the.corresponding.

    EEDI.has.been.calculated.on.the.basis.

    of.the.75%.SMCR-related.figures.(with-

    out.sea.margin)

    Fuel consumption and EEDI

    Fig.4.shows.the.influence.of.the.pro-

    peller. diameter. when. going. from.

    about.88. to.95. m.Thus,. N3.for. the.

    10S90ME-C92. with. a. 95. m. x. 6.

    (number. of. blades). propeller. diameter.

    has. a. propulsion. power. demand. that.

    is.about.30%.lower.compared.with.N1.

    and. N2. valid. for. the. 10K98ME-C71.

    and.10K98ME71,. with.a. propeller. di-

    ameter.of.about.88.m.x.5.and.88.m.x.

    6,.respectively

    9Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    10/20

    Fig.5.shows.the.influence.on.the.main.

    engine.efficiency,.indicated.by.the.Spe-

    cific. Fuel. Oil.Consumption,. SFOC,.for.

    the.three.cases.N3.=.90%.M3.for.the.

    10S90ME-C92.has.an.SFOC.of.1648.

    g/kWh.The.1648.g/kWh.SFOC.of.the.

    N3.for.the.10S90ME-C92.is.40%.low-

    er.compared. with. N1. for. the. derated.

    10K98ME-C71.with.an.SFOC.of.1717.

    g/kWh. This. is. because. of. the. higher.

    stroke/bore.ratio.of.this.S-engine.type

    Engine shaft power

    162

    25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 % SMCR

    163

    164

    165

    166

    167

    168

    169

    170

    171

    172

    173

    174

    175

    176

    177

    SFOCg/kWh

    178

    179

    180

    181

    182

    N3

    N1

    N2

    M3 10S90ME-C9.2

    M2 10K98ME7.1

    M1 10K98ME-C7.1

    9.5 m 6

    8.8 m 6

    8.8 m 5

    Dprop

    Savingsin SFOC

    0%

    0.6%

    4.0%

    IMO Tier llISO ambient conditionsLCV = 42,700 kJ/kg

    Standard high-loadoptimised engines

    M = SMCRN = NCR

    Propulsion of 8,000 teu Container Vessel 25.0 knotsExpected SFOC

    8,000 teu

    Fig. 5: Expected SFOC for 25.0 knots

    10 Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    11/20

    When.multiplying.the.propulsion.power.

    demand. at. N. (Fig. 4). with. the. SFOC.

    (Fig. 5),. the. daily. fuel. consumption. is.

    found. and. is. shown. in. Fig. 6. Com-

    pared.with.N1.for.the.10K98ME-C71,.

    the.total.reduction.of.fuel.consumption.

    of.the. 10S90ME-C92. at.N3. is.about.

    68%

    The. reference. and. the. actual. EEDI. fig-

    ures.have.been.calculated.and.are.

    shown. in. Fig. 7. (E EDIref. =17422. x.

    dwt.-0201,.15.July.2011).As.can.be.seen.

    for.all.three.cases,.the.actual.EEDI.figures.

    are.lower.than.the.reference.figure.Par-

    ticularly,. case. 3. with. 10S90ME-C92.

    has.a.low.EEDI..about.79%.of.the.ref-

    erence.figure

    0

    5

    10

    15

    20

    25

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    120

    120

    Reference and actual EEDICO

    2emissions

    gram per dwt/n mile Actual/Reference EEDI %

    EEDI reference EEDI actual

    Dprop:

    10K98ME-C7.1N1

    8.8 m 5

    10K98ME7.1N2

    8.8 m 6

    10S90ME-C9.2N3

    9.5 m 6

    18.62

    15.67

    84%

    18.62

    15.59

    84%

    18.62

    14.62

    79%

    Propulsion of 8,000 teu Container Vessel 25.0 knotsEnergy Efficiency Design Index (EEDI), Re 70% of maximum dwt75% SMCR: 25.2 kn without sea margin

    8,000 teu

    Fig. 7: Reference and actual Energy Efficiency Design Index (EEDI) for 25.0 knots

    t/24h

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    Relative saving offuel consumption

    Fuel consumptionof main engine

    %

    IMO Tier llISO ambient conditionsLCV = 42,700 kJ/kg

    222.0t/24h

    10K98ME-C7.1N1

    8.8 m 5

    220.7t/24h

    10K98ME7.1N2

    8.8 m 6

    206.8t/24h

    10S90ME-C9.2N3

    9.5 m 6

    0% 0.6%

    6.8%

    Dprop:

    Propulsion of 8,000 teu Container Vessel 25.0 knotsExpected fuel consumption at N = NCR = 90% SMCR

    8,000 teu

    Fig. 6: Expected fuel consumption at NCR for 25.0 knots

    11Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    12/20

    Fig. 8: Total annual main engine operating costs for 25.0 knots

    0

    10

    20

    30

    35

    5

    15

    25

    10K98ME-C7.1N1

    8.8 m5

    MaintenanceLub. oil

    Fuel oil

    10K98ME7.1N2

    8.8 m6

    10S90ME-C9.2N3

    9.5 m6

    0

    4

    8

    12

    14

    2

    6

    10

    1

    5

    9

    13

    3

    7

    11

    IMO Tier llISO ambient conditions280 days/yearNCR = 90% SMCRFuel price: 500 USD/t

    Annual operating costsMillion USD/Year

    Relative savingin operating costs

    %

    Dprop:

    0%0.6%

    6.8%

    Propulsion of 8,000 teu Container Vessel 25.0 knotsTotal annual main engine operating costs

    8,000 teu

    Operating costs

    The. total. main. engine. operating. costs.

    per.year,.operating.at.N.=.90%.SMCR.

    in.280.days/year,.and.fuel.price.of.500.

    USD/t,.are.shown.in.Fig.8.The.lube.oil.

    and.maintenance.costs.are.shown.too.

    As. can. be. seen,. the. major. operating.

    costs.originate.from.the.fuel.costs.and.

    are.about.97%

    The. relative. savings. in. operating. costs.

    in.Net.Present.Value.(NPV),.see.Fig.9,.

    with.the.10K98ME-C71.used.as.basis.

    with. the. propeller. diameter. of. about.

    88.m.x.5,.indicates.an.NPV.saving.for.

    the.10S90ME-C92.engine.after.some.

    years. in. service. After. 25. year. in. op-

    eration,.the.saving.is.about.380.million.

    USD. for. N3.with.10S90ME-C92. with.

    the.SMCR.speed.of.840.r/min.and.pro-

    peller.diameter.of.about.95.m.x.6

    Million USD

    LifetimeYears

    0

    20

    40

    10

    30

    50

    0 510

    10 15 20 25 30

    Saving in operating costs(Net Present Value)

    IMO Tier ll

    ISO ambient conditions

    N = NCR = 90% SMCR

    280 days/year

    Fuel price: 500 USD/t

    Rate of interest and discount: 6% p.a.

    Rate of inflation: 3% p.a.

    N2 8.8 m610K98ME7.1N1 8.8 m510K98ME-C7.1

    N3 9.5 m610S90ME-C9.2

    Propulsion of 8,000 teu Container Vessel 25.0 knotsRelative saving in main engine operating costs (NPV)

    8,000 teu

    Fig. 9: Relative saving in main engine operating costs (NPV) for 25.0 knots

    12 Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    13/20

    0

    20,000

    30,000

    10,000

    40,000

    50,000

    60,000

    Relative powerreduction

    %

    Propulsion powerdemand at N = NCR

    kW

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    9K98ME-C7.1N18.6 m 5

    9K98ME7.1N28.6 m 6

    9S90ME-C9.2N39.2 m 6Dprop:

    Inclusive of sea margin = 15%

    46,935 kW 46,935 kW45,540 kW

    0% 0%

    3.0%

    Propulsion of 8,000 teu Container Vessel 24.0 knotsExpected propulsion power demand at N = NCR = 90% SMCR

    8,000 teu

    Fig. 10: Expected propulsion power demand at NCR for 24.0 knots

    Main Engine Operating Costs

    24.0 knots

    The. calculated. main. engine. examples.

    are.as.follows:

    1. 9K98ME-C71.

    . M1.=.52,150.kW.x.1040.r/min

    2. 9K98ME71.

    . M2.=.52,150.kW.x.970.r/min

    3. 9S90ME-C92.

    . M3.=.50,600.kW.x.840.r/min

    The. K98. engine. types. have. been. cho-

    sen.as.cases.1.and.2.as.these.have.

    been.most.often.used.in.the.past

    The.main.engine.fuel.consumption.and.

    operating. costs. at. N. =. NCR. =. 90%.

    SMCR. have. been. calculated. for. the.

    above.three.main.engine/propeller.cas-

    es.operating.on.the.relatively.lower.ship.

    speed.of.240.knots,.which.is.probably.going.to.be.a.more.normal.choice.in.the.

    future,.maybe.even.lower.Furthermore,.

    the. EEDI. has. been. calculated. on. the.

    basis.of.the.75%.SMCR-related.figures.

    (without.sea.margin)

    Fuel consumption and EEDI

    Fig. 10. shows. the . inf lue nc e. of. the.

    propeller. diameter. when. going. from.

    about.86.to.92.m.Thus,.N3.for.the.

    9S90ME-C92.with.a.92.m.x.6.(number.

    of.blades).propeller.diameter.has.a.pro-

    pulsion. power. demand. that. is. about.

    30%.lower.compared.with.the.N1.for.

    the.9K98ME-C71.with.an.about.88.m.

    x.5.propeller.diameter

    13Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    14/20

    Fig.11.shows.the.influence.on.the.main.

    engine.efficiency,.indicated.by.the.Spe-

    cific. Fuel. Oil. Consumption,. SFOC,. for.

    the. three.cases.N3. =.90%. M3. with.

    the.9S90ME-C92. has.a. relatively. low.

    SFOC.of.1638.g/kWh.compared.with.

    the. 1707. g/kWh. for. N1. =. 90%. M1.

    for.the.9K98ME-C71,.ie.an.SFOC.re-

    duction.of.about.40%,.mainly.caused.

    by. the. higher. stroke/bore. ratio. of. the.

    S90ME-C92.engine.type

    Engine shaft power25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 1 00 % SMCR

    161

    162

    163

    164

    165

    166

    167

    168

    169

    170

    171

    172

    173

    174

    SFOCg/kWh

    175

    176

    177

    178

    179

    180

    181

    8.6 m5

    Dprop

    IMO Tier llISO ambient conditionsLCV = 42,700 kJ/kg

    Standard high-loadoptimised engines

    N2

    N3

    N1

    M1 = SMCRN1 = NCR

    M3

    8.6 m6M2 9K98ME7.1

    M1 9K98ME-C7.1

    9S90ME-C9.2 9.2 m6

    Savingsin SFOC

    0%

    0.6%

    4.0%

    Propulsion of 8,000 teu container vessel 24.0 knotsExpected SFOC

    8,000 teu

    Fig. 11: Expected SFOC for 24.0 knots

    14 Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    15/20

    The.daily. fuel. consumpt ion. is.found. by.

    multiplying. the. propulsion. power. de-

    mand.at.N.(Fig.10).with.the.SFOC.(Fig.

    11),. see. Fig. 12. The. total. reduction.

    of. fuel. consumption. of. the. 9S90ME-

    C92.is.about.69%.compared.with.the.

    9K98ME-C71

    The. reference. and. the. actual. EEDI.

    figures. have. been. calculated. and. are.

    shown.in. Fig. 13.(EEDIref. =. 17422. x.

    dwt.-0201,.15.July.2011).As.can.be.

    seen. for. all . three. cases,. the. actual.

    EEDI.figures.are.all.lower.than.the.ref-

    erence.figure.Particularly,.case.3.with.

    9S90ME-C92.has.a.low.EEDI..about.

    71%. of. the. reference. figure,. ie. will.

    almost. meet. the. EEDI. demand. from.

    2025

    t/24h

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    Relative saving offuel consumption

    Fuel consumptionof main engine

    %

    IMO Tier llISO ambient conditionsLCV = 42,700 kJ/kg

    192.3t/24h

    9K98ME-C7.1N1

    8.6 m 5

    191.2t/24h

    9K98ME7.1N2

    8.6 m 6

    179.1t/24h

    9S90ME-C9.2N3

    9.2 m 6

    0% 0.6%

    6.9%

    Dprop:

    Propulsion of 8,000 teu Container Vessel 24.0 knotsExpected fuel consumption at N = NCR = 90% SMCR

    8,000 teu

    Reference and actual EEDICO

    2emissions

    gram per dwt/n mile Actual/Reference EEDI %

    Dprop:

    9K98ME-C7.1N18.6 m 5

    9K98ME7.1N28.6 m 6

    9S90ME-C9.2N39.2 m 6

    Propulsion of 8,000 teu Container Vessel 24.0 knotsEnergy Efficiency Design Index (EEDI), Re 70% of maximum dwt75% SMCR: 24.2 kn without sea margin

    8,000 teu

    0

    5

    10

    15

    20

    25

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    120

    130

    EEDI reference EEDI actual

    18.62

    14.15

    76%

    18.62

    14.07

    76%

    18.62

    13.20

    71%

    Fig. 13: Reference and actual Energy Efficiency Design Index (EEDI) for 24.0 knots

    Fig. 12: Expected fuel consumption at NCR for 24.0 knots

    15Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    16/20

    Operating costs

    The. total. main. engine. operating. costs.

    per.year,.280.days/year,.and.fuel.price.

    of. 500. USD/t,. are. shown. in. Fig. 14.

    Lube. oil. and. maintenance. costs. are.

    also.shown.at.the.top.of.each.column.

    As. can. be. seen,. the. major. operating.

    costs.originate.from.the.fuel.costs.and.

    are.about.97%

    The. relative. savings. in. operating. costs.

    in.Net.Present.Value,.NPV,.see.Fig.15,.

    with.the.9K98ME-C71.with.the.propel-

    ler.diameter.of.about.86.m.x.5.used.

    as.basis,.indicates.an.NPV.saving.after.

    some.years.in.service.for.the.9S90ME-

    C92.engine.After. 25. years. in. opera-

    tion,.the.saving.is.about.33.million.USD.

    for. the. 9S90ME-C92.with. the. SMCR.

    speed.of. 840. r/min.and. propeller. di-

    ameter.of.about.92.m.x.6

    Summary

    Annual operating costsMillion USD/Year

    0

    10

    20

    30

    5

    15

    25

    9K98ME-C7.1N1

    8.6 m 5

    9K98ME7.1N2

    8.6 m 6

    9S90ME-C9.2N3

    9.2 m 6

    IMO Tier llISO ambient conditionsN = NCR = 90% SMCR280 days/yearFuel price: 500 USD/t

    0

    4

    8

    12

    2

    6

    10

    1

    5

    9

    3

    7

    11

    Relative savingin operating costs

    %

    Maintenance

    Lub. oil

    Fuel oil

    Dprop:

    6.8%

    0%0.5%

    Propulsion of 8,000 teu Container Vessel 24.0 knotsTotal annual main engine operating costs

    Fig. 14: Total annual main engine operating costs for 24.0 knots

    16 Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    17/20

    Traditionally,. K-type.engines,. with. rela-

    tively. high.engine.and. thereby.propel-

    ler.speeds,.have.been.applied.as.prime.

    movers. in. the. container. vessels. size.

    bracket.of.8,000-10,000.teu.capacity

    Following. the. efficiency. optimisation.

    trends. in. the. market,. also. with. lower.

    ship. speeds. for. container. ships,. the.

    possibility.of.using.even.larger.propel-

    lers.has.been.thoroughly.evaluated.with.

    a.view.to.using.engines.with.even.lower.

    speeds.for.propulsion

    Container. ships. are. indeed. compat-

    ible.with. propellers. with.larger.propel-

    ler.diameters.than.the.current.designs,.

    and.thus.high.efficiencies.following.an.

    adaptation.of.the.aft.hull.design.to.ac-

    commodate. the. larger. propeller. Even.

    in.cases.where.an.increased.size.of.the.propeller.is.limited,.the.use.of.propellers.

    based. on. the. New. Propeller. Technol-

    ogy.will.be.an.advantage

    The. new. higher. powered. long. stroke.

    S90ME-C92. engine. type. meets. this.

    trend. in. the. market. This. paper. indi-

    cates,.depending.on.the.propeller.diam-

    eter.used,.an.overall.efficiency.increase.

    of.about.7%.when.using.S90ME-C92,.

    compared. with. existing. main. engines.

    applied.so.far

    The. Energy. Efficiency. Design. Index.

    (EEDI). will. also. be. reduced. when. us-

    ing.S90ME-C92.In.order.to.meet.the.

    stricter.given.reference.figure.in.the.fu-

    ture,.the. design. of. the. ship. itself. and.

    the.design.ship.speed.applied.(reduced.

    speed).has.to.be.further.evaluated.by.

    the. shipyards. to. further. reduce. the.EEDI.Among.others,.the.installation.of.

    WHR.may.reduce.the.EEDI.value

    Million USD

    Lifetime

    Years

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 5 305

    10 15 20 25

    Saving in operating costs(Net Present Value)

    IMO Tier ll

    ISO ambient conditions

    N = NCR = 90% SMCR

    280 days/year

    Fuel price: 500 USD/t

    Rate of interest and discount: 6% p.a.Rate of inflation: 3% p.a.

    N3 9.2 m 69S90ME-C9.2

    N2 8.6 m 69K98ME7.1

    N1 8.6 m 59K98ME-C7.1

    Propulsion of 8,000 teu Container Vessel 24.0 knotsRelative saving in main engine operating costs (NPV)

    Fig. 15: Relative saving in main engine operating costs (NPV) for 24.0 knots

    17Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    18/20

    18 Propulsion.of.8,000-10,000.teu.Container.Vessel

  • 7/31/2019 Container Propulsion

    19/20

  • 7/31/2019 Container Propulsion

    20/20

    MAN Diesel & Turbo

    Teglholmsgade.41

    2450.Copenhagen.SV,.Denmark

    Phone. +45.33.85.11.00

    Fax. . +45.33.85.10.30

    info-cph@mandieselturbocom

    wwwmandieselturbocom

    All.data.provided.in.this.document.is.non-binding.This.data.serves.informational.

    purposes.only.and.is.especially.not.guaranteed.in.any.way.Depending.on.the.

    subsequent.specific.individual.projects,.the.relevant.data.may.be.subject.to.

    changes.and.will.be.assessed.and.determined.individually.for.each.project.This.

    will.depend.on.the.particular.characteristics.of.each.individual.project,.especially..

    specific.site.and.operational.conditions.Copyright..MAN.Diesel.&.Turbo.

    5510-0109-01ppr.Aug.2012.Printed.in.Denmark