Constructive Nonlinear Dynamics in Process Systems Engineering … · 2019. 8. 15. · Constructive...

36
Constructive Nonlinear Dynamics in Process Systems Engineering Wolfgang Marquardt and Martin Mönnigmann Process Systems Engineering RWTH Aachen University ESCAPE-14, Lisbon, May 16-19, 2004

Transcript of Constructive Nonlinear Dynamics in Process Systems Engineering … · 2019. 8. 15. · Constructive...

  • Constructive Nonlinear Dynamicsin

    Process Systems Engineering

    Wolfgang Marquardt and Martin Mönnigmann

    Process Systems EngineeringRWTH Aachen University

    ESCAPE-14, Lisbon, May 16-19, 2004

  • 1Constructive Nonlinear Dynamics in Process Systems Engineering

    Nonlinear Analysis of Chemical Process Systems

    • Chemical reactorsBilous & Amundsen (1955), van Heerden (1958),Aris & Amundsen (1958), Razon & Schmitz (1987), ...Altimari et al. (2004)

    • Distillation columnsPetlyuk & Avet'yan (1971), Michelsen & Villadsen (1979), Kienle & Marquardt (1991), Jacobsen & Skogestad (1991), Bekiaris et al. (1993), Kienle et al. (1994), ..., Li et al. (2004)

    • Reactive distillation columnsPisarenko et al. (1987), Jacobs & Krishna (1993),Nijhuis et al. (1993), Ciric & Miao (1994), ...

    • Reactor-Separator processes with recycleBildea & Dimian (1998), Kiss & Bildea (2002, 2003),Zeyer et al. (2003), Balasubramanian et al. (2003), ... , Bildea et al. (2004), Schmidt & Jacobsen (2004)

  • 2Constructive Nonlinear Dynamics in Process Systems Engineering

    Example: Ammonia Reactor

    Zeit [min]

    Tem

    pera

    tur [

    C]

    1916:first industrial process(Bosch, BASF)

    1997:global production>100 mio t/year

    Nonlinear modelwith temperature coupling

    Simulatedtemperature waves

    Understandingnonlinear dynamics

    >80 years later

    Influence of preheateron root locus

    Morud, Skogestad(1998)

    Large scaleindustrial process

    Temperature recordings ofindustrial ammonia reactor

  • 3Constructive Nonlinear Dynamics in Process Systems Engineering

    Example: Decanting Reactor

    D

    Phase IPhase II C

    A

    DB E

    EF

    B

    E

    ++

    +

    +

    C

    A, B : Educts

    D : Main productC : Catalyst

    E, F : By-product

    Liquid/LiquidReactor

    ComplexNonlinear Dynamics

    H: HopfHV: HysteresisDL: Double LimitBL: Boundary LimitDH: Degenerate HopfHH: Hopf-HopfDZ: Double ZeroBH: Boundary Hopf HL: Hopf-Limit

    Coolant average temperature Θm[-]

    Coo

    ling

    capa

    city

    ∆ [−

    ]

    Phase I : A, B, C Phase II : B, D, E

    B, C, D, E, FLC

    Phase II

    TC

    (b) periodicoscillations

    (as one example)

    Luss et al.(1998)

    (a) multiple steady states

    Rea

    ctor

    tem

    pera

    ture

    Θ [−

    ]

    Coolant average temperature Θm[-]

    „simple" process

  • 4Constructive Nonlinear Dynamics in Process Systems Engineering

    Example: Heteroazeotropic Rectification

    0 40 800.8

    0.85

    0.9

    0.95

    D [ml/h]120

    xB,E ExperimentSimulation

    A

    B

    Column with decanterethanole / water / cyclohexane

    DF

    xB,E

    0

    333

    338

    343

    348

    Tem

    pera

    tur [

    K]

    20 40 60 80 Zeit [h]

    T8

    T4

    T1

    A B A

    353

    • SimulationMagnussen et al. (1979)

    • TheoryPetlyuk and Avet'yan (1971)Bekiaris et al. (1996)

    • Experimental verificationMüller and Marquardt (1997)

  • 5Constructive Nonlinear Dynamics in Process Systems Engineering

    Example: Reactor-Separator Recycle ProcessKiss and Bildea (2002, 2003)

    • unique steady-state for isothermalstand-alone reactor

    • feasibility constraint, Da > Dacr,for isothermal reactor-separatorrecycle process

    stand alone CSTR

    CSTR-seperator-recylce

    Rea

    ctio

    nco

    nver

    sion

    Damkoehler number

    Dacr

    Rea

    ctio

    nco

    nver

    sion

    Damkoehler number

    Monomerfeed

    Recycle

    TC

    Sepa

    ratio

    n

    CC

    CC

    Product

    Coolant

    CC

    Initiatorfeed

    PFR

    Multiplicity for non-isothermal polymerization process wit PFR-separator recycle

  • 6Constructive Nonlinear Dynamics in Process Systems Engineering

    Bifurcation Analysis

    continuation

    stability analysis

    (steady-state) simulation

    continuation and local stability analysis

    singularity analysis and unfolding

    ||x||

    pi

    pj

    • large-scale DAE systems• two-parameter continuation• stability analysis via test functions• ...but ...• only few parameters• not part of process modelling software• not constructive

    analytical and numerical techniques ... dynamicsimulation

  • 7Constructive Nonlinear Dynamics in Process Systems Engineering

    From Analysis to Synthesis

    Ramirez & Gani (2004)

    Process synthesis

    Find (process structure,) designparameters and operating point such that

    - profit is maximized

    - quality and safety constraintsare fulfilled

    How to considerNonlinear Dynamics?

    ),(0),(0..

    ),(max,

    αα

    αφα

    xgxfts

    xx

    ≤=

    Nonlinear programming problem

    Synthesis

    Analysis

  • 8Constructive Nonlinear Dynamics in Process Systems Engineering

    Conceptual Problem Formulation (1)

    • model of open-loop or closed loop process system with given structure

    - large-scale system of (index one) DAEs- time-varying inputs u(t), references r(t), or disturbances d(t)- process, equipment, model ... parameters, subject to uncertainty

    • simplifying assumptions

    - only differential equations (for this presentation)- u(t), r(t), d(t) vary much slower than plant dynamics

    0)0(,),( xxxfx == η&

    ... a parametric dynamic process model

  • 9Constructive Nonlinear Dynamics in Process Systems Engineering

    Conceptual Problem Formulation (2)

    Steady-state process design by optimization

    • parameter space with different types of regions• regions separated by critical manifolds• a design is a point in parameter space

    • formulate and solve optimizationproblem with cost function, processmodel and inequality constraints(feasibility, stability etc.)

    • optimal solution: η = η∗, x=x*

    ),(0..

    ),(min,

    η

    ηφη

    xfts

    xx

    =

    unstable

    stable

    η1

    η2

    feasible

    infeasibleη1

    η2 η1

    η2P

    (i) stability boundary

    (ii) feasibility boundary

    (i) + (ii)

  • 10Constructive Nonlinear Dynamics in Process Systems Engineering

    Optimization Problem Formulations

    Optimization with respect to cost function φ, model and ...

    without stability or feasibility constraints

    ),(0..

    ),(min,

    η

    ηφη

    xfts

    xx

    =

    η1

    η2

    optimum

    feasible but not stable

    with stability or feasibility constraints

    Pxfts

    xx

    ∈=

    ηη

    ηφη

    ),(0..

    ),(min,

    η1

    η2P

    optimum

    stable and feasible, but not robust to parametric

    uncertainty

    PRxfts

    xx

    ⊆= ),(0..

    ),(min,

    η

    ηφη

    with robust stability and feasibility constraints

    stable, feasible and robust to parametric

    uncertainty

    η1 = α2

    η2 = α2

    P

    R optimum

    profit loss

  • 11Constructive Nonlinear Dynamics in Process Systems Engineering

    Leveraging the Profit Loss

    • Quantification of loss

    – to specific parametric uncertainty,

    – to specific stability or feasibility constraint

    • Reduction of the loss by structural modifications

    – implementation or modification of feedback control system

    – modification of the process structure

    • Reduction of the loss by reduction of parametric uncertainty

  • 12Constructive Nonlinear Dynamics in Process Systems Engineering

    Parameterization of Uncertainty ... a deterministic rather than a stochastic setting

    Approximated robustness box • Ellipsoid overestimates

    parametric uncertainty• Kreisselmeier-Steiner function

    underestimatesparametric uncertainty

    • Biegler, Rooney (2001)

    ∆α2

    ∆α1

    α1

    r

    α2specialization and approximation

    Robustness manifold• arbitrary connected smooth manifold• r normal to both, the critical and the

    robustness manifold• high computational effort

    rα2

    α1

  • 13Constructive Nonlinear Dynamics in Process Systems Engineering

    Parametric Distance to a Critical Manifold

    x

    α1 α2α1

    α2

    α2(0)

    α1(0)

    ∆α1

    ∆α2

    • Normal vector to nearest saddle-node and Hopf bifurcation points (Dobson, 1993)

    • Normal vector to general critical manifolds, simplificationof defining equations (Mönnigmann & Marquardt, 2002)

  • 14Constructive Nonlinear Dynamics in Process Systems Engineering

    Normal Vector Equation SystemsSaddle-node bifurcation

    augmented system

    vfrvvvf

    f

    T

    T

    x

    α−=−=

    ==

    010

    00

    Hopf bifurcation

    augmented system

    )2()2()1()1(

    )2()2()1()1(

    )1()2()2()1(

    )2()2()1()1(

    )1(2

    )2(1

    )1()2(

    )2(2

    )1(1

    )2()1(

    )2()1(

    )1()2(

    )2()1(

    000

    100000000

    wfvwfvufrwfvwfvuf

    wvwvwvwv

    wwvvfwwvvf

    wwww

    wwfwwf

    f

    xT

    xTT

    xxT

    xxTT

    x

    TT

    TT

    Tx

    Tx

    T

    T

    x

    x

    ααα

    γγωγγω

    ωω

    ++−=++=

    −=−+=

    +++=−+−=

    ==

    −=+=

    =

    2n +2m+ 2n + 1Feasiblityconstraint

    2n + m + 12n + 2Isola

    4n + m + 43n + 3Cusp

    6n + m + 43n + 2Hopf

    2n + m + 12n + 1Saddle node

    normal vectorsystem

    augmentedsystem

  • 15Constructive Nonlinear Dynamics in Process Systems Engineering

    Optimization under Uncertainty – the General Case

    number and types of critical manifolds:• feasibility constraints (e.g. safety, quality, equipment ...)• stability boundaries (Hopf and saddle-node bifurcations)• performance constraints (eigenvalue sectors)• higher codimension bifurcations

    (cusp, isola, non-transversal Hopf, ... bifurcations)

    KkIi

    l

    mrl

    rl

    rxF

    xf

    x

    i

    ii

    iieqi

    iiiik

    eqeq

    eqeq

    lx ieqeq

    ∈=≥

    +=

    =

    =

    )(

    )(

    ,,10

    ),,(0

    ),(0

    ,max

    )(

    )()(

    )()()(

    )()()()(

    )()(

    )()(

    ,, )()()(

    K

    ααα

    α

    αφα

    cost function

    normal vector r(i) to critical manifold i

    normal distance between designand critical manifold i

    steady state (x(eq), α(eq) )

    minimal normal back-off

  • 16Constructive Nonlinear Dynamics in Process Systems Engineering

    Complicated Real Situations

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ��

    ��

    ����

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

    ����

    ����

    ??

    ?

    location of critical manifolds usually unknown a priori

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ��

    ��

    test function may fail to detect crossing of critical manifold

    critical manifolds have to be detected as the optimization proceeds

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ��

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇ

    ��

    1

    2

    ����

    ������

    ÇÇÇÇÇÇ

    ÇÇÇÇÇÇ

    ÇÇÇÇÇÇ

    ÇÇÇÇÇÇ

    ÇÇÇÇÇÇ

    1

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ��

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ ��

    2

    1

    (i) (ii)

    different critical manifolds may result in more than one normal vector constraint

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ��

    ��

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    2

    1

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

    ��

    ��

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    ÇÇÇÇ

    2

    1

    (i) (ii)

  • 17Constructive Nonlinear Dynamics in Process Systems Engineering

    Overview on Algorithm

    (i) initialization

    (ii) update set of locally closest points

    initialization with steady state which is feasible and has desired nonlinear dynamic properties

    (a) find locally closest points and corresponding normal vector of known critical manifolds(b) remove normal vector constraints for which distance exceeds specified value

    run optimization with active normal vector constraintssearch for new critical points along the linear connection between starting and end point of optimization

    return to step (ii) if new critical point is found

    check for critical points with interval arithmetics in the robustness region

    optimal and steady state is found – parametrically robust with respect to feasiblity and nonlinear dynamics constraints

    add new critical point

    to set of critical points

    (iii) optimization

    (iv) analysis

    (v) rigorous search

    robust optimum found

    new critical point?yes

    yes

    no

    new critical point?

    no

  • 18Constructive Nonlinear Dynamics in Process Systems Engineering

    Software Implementation – the Status

    Augmented process model involves higher order derivatives of process model equations (normal vector constraints)

    • process model is coded in MAPLE (Monagan et al. 2000)

    • normal vector constraints are calculated by symbolic differentiation with MAPLE (Monagon et al. 2000) to augment process model

    • first order derivates for numerical solution of NLP calculated by automatic differentiation with ADIFOR (Bischof et al. 1998)

    • optimization by standard NLP solverso should use feasible path solver (e.g. FSQP, Lawrence &

    Tits (2001)) to properly apply test functionso using NPSOL (Gill et al., 1986) and apply test functions along

    the linear connection between starting and end point

    • rigorous search with interval mathematics (Belitz et al., 2004) limited to small models, alternatively carefully selected test points

  • 19Constructive Nonlinear Dynamics in Process Systems Engineering

    Applications: Three Problem Classes

    • design under uncertaintyContinuous fermenter

    (Mönnigmann & Marquardt, 2002)Continuous vinylacetate polymerization

    (Mönnigmann & Marquardt, 2003)

    • controller tuning and robustness analysisCSTR with unmodelled dynamics

    (Hahn et al. 2003, Gerhard et al., 2004)

    • integration of design and controlMSMPR crystallizer

    (Grosch et al., 2003)Reaction section of HDA plant

    (Mönnigmann & Marquardt, 2004)

    Halemane & Grossmann (1982)Swaney & Grossmann (1986) Kokossis & Floudas (1994)Bahri et al. (1996) ...

    Ackermann (1980)Cibrario & Levine (1991)Giona & Paladino (1994) ...

    Brengel &Seider (1992)Lewin & Bogle (1996)Mohideen et al. (1996, 1997)Bahri et al. (1997) ...

  • 20Constructive Nonlinear Dynamics in Process Systems Engineering

    Applications: Three Problem Classes

    design under uncertainty- open-loop process system- operating point & equipment parameters- stability & feasibility- process & model uncertainty

    controller tuning and robustness analysis- closed-loop process system- control system design parameters - stability (and performance) in a large

    region of operating conditions- process & model uncertainty

    integration of design and control- closed-loop process system - operating point, equipment parameters

    & control system parameters- stability & feasibility- process & model uncertainty

  • 21Constructive Nonlinear Dynamics in Process Systems Engineering

    Design Under Uncertainty: Fermenter (1)

    φ = cost of the substrate− profit from produced cells

    uncertain parameters• Damköhler Number Da = µ(SF) V/F • substrate feed concentration SF

    degrees of freedom• SF, Da

    robustness w.r.t. stability boundaries

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    ÉÉÉÉÉÉÉÉÉ

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    2 3 4 5 6 7

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    ÉÉÉ

    Hopf saddle–nodeSF [kmol m–3]

    F [kg s–1]

    0.8

    two stability boundaries:Hopf and saddle-node bifurcations

    Fermenter(Agrawal et al., 1982)

    state variablesS, substrate concentrationX, biomass concentration

    F, SF

    S, X

    V

  • 22Constructive Nonlinear Dynamics in Process Systems Engineering

    Design under Uncertainty: Fermenter (2)

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.5 0.6 0.7 0.8 0.9 1

    stableunstable

    Hopfsaddle-node

    Da

    x1

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5 0.6 0.7

    saddle-nodeHopf

    Da

    SF

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.5 0.6 0.7 0.9 10.8 Da

    φ

    Optimization• without normal

    constraints• with normal

    vector constraints for robust stability

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5 0.6 0.7 0.8Da

    SF

  • 23Constructive Nonlinear Dynamics in Process Systems Engineering

    Design Under Uncertainty: VA Polymerization (1)

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0 50 100 150 200residence time [min]

    20406080

    100120140160180

    temperature

    0 50 100 150 200residence time[min]

    stableinstableoptimal

    saddle-node

    Hopf

    500

    conc

    entra

    tion

    of in

    itiat

    or[m

    ol/l]

    VA Polymerisation(Teymour & Ray, 1992)

    state variablesM, monomer conc.I, initiator conc.P, polymer conc.T, reactor temperature

    F, IF, MF

    M, I, P, T

    V

    • small model• experimentally validated• critical (stability) manifoldsare known

  • 24Constructive Nonlinear Dynamics in Process Systems Engineering

    Design Under Uncertainty: VA Polymerization (1)

    VA Polymerisation(Teymour & Ray, 1992)

    state variablesM, monomer conc.I, initiator conc.P, polymer conc.T, reactor temperature

    F, IF, MF

    M, I, P, T

    V

    • small model• experimentally validated• critical (stability) manifoldsare known

    φ = profit from polymer− cost of initiator− cost of monomer− cost of solvent

    uncertain parameters• residence time θ = V/F • initiator feed concentration IF

    degrees of freedom• F, IF, MF, θ

    robustness w.r.t• stability boundaries (Hopf and

    saddle-node)• feasibility constraints

    (avoid boiling, T≤100°C)

  • 25Constructive Nonlinear Dynamics in Process Systems Engineering

    Robust Design: Stability and Feasibility (2)

    residence time [min]

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0 50 100 150 200

    20406080

    100120140160180

    temperature

    0 50 100 150 200residence time [min]

    stableinstableoptimal

    saddlenode

    Hopf

    conc

    . of i

    nitia

    tor [

    mol

    /l]

    saddle-node bifurcation only

    20406080

    100120140160180

    temperature

    0 50 100 150 200residence time[min]

    stableinstableoptimal

    saddlenode

    Hopf

    temp.constr.

    residence time [min]0 50 100 150 200

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    conc

    .on

    of In

    itiat

    or [m

    ol/l]

    saddle-node and Hopf bifurcationsand temperature bound

  • 26Constructive Nonlinear Dynamics in Process Systems Engineering

    Applications: Three Problem Classes

    design under uncertainty- open-loop process system- operating point & equipment parameters- stability & feasibility- process & model uncertainty

    controller tuning and robustness analysis- closed-loop process system- control system design parameters - stability (and performance) in a large

    region of operating conditions- process & model uncertainty

    integration of design and control- closed-loop process system - operating point, equipment parameters

    & control system parameters- stability & feasibility- process & model uncertainty

  • 27Constructive Nonlinear Dynamics in Process Systems Engineering

    Tuning and Robustness Analysis: CSTR (1)

    CSTR, exothermic 1st order reaction A -> B, with unmodeledcooling jacket dynamics(Hahn et al. 2003)

    • linearizing feedback (and PID) temperature control, parameter ε

    • unmodeled dynamics in inner cascade control loop (TC2) parameterized by 2nd order dynamics

    TC1

    Coolant

    TC2

    Tc

    q, CAF, Tf

    CA, T

    state variablesCA, conc. of AT, reactor temp.

    max φ = yield of product B

    find control parameters to guarantee stability for all set-points Tsp

    non-transversal Hopf (NTH) manifoldsplits parameter space into • region with stable behavior for all

    values of Tsp• region with unstable behavior for

    some values of Tsp

    uncertain parameters• feed rate q• time constant εv of unmodeled

    dynamics

    degrees of freedom: Tsp, q, ε

  • 28Constructive Nonlinear Dynamics in Process Systems Engineering

    Tuning and Robustness Analysis: CSTR (2)

    unstable for some values of Tspwithout normal vector constraints

    0 510

    15

    q /∆

    q

    εv/ ∆εv 300 350 4000

    0.5

    C A

    Tsp

    stableunstableHopf

    setp

    oint

    tem

    pera

    ture

    Tsp

    Control parameter ε

    stable forall Tsp

    unstable

    nontransversalHopf

    stable for all values of Tspwith normal vector constraints

    0 510

    15

    q /∆

    q

    εv/ ∆εv 300 350 4000

    0.5

    CA

    Tsp

  • 29Constructive Nonlinear Dynamics in Process Systems Engineering

    Applications: Three Problem Classes

    design under uncertainty- open-loop process system- operating point & equipment parameters- stability & feasibility- process & model uncertainty

    integration of design and control- closed-loop process system - operating point, equipment parameters

    & control system parameters- stability & feasibility- process & model uncertainty

    controller tuning and robustness analysis- closed-loop process system- control system design parameters - stability (and performance) in a large

    region of operating conditions- process & model uncertainty

  • 30Constructive Nonlinear Dynamics in Process Systems Engineering

    Integrated Design & Control: MSMPR Crystallizer (1)

    F=τ • V

    c0 ε = suspension density

    ideal controlT, V

    Kp, Ti

    F=τ • V

    c0 ε = suspension density

    ideal controlT, V

    F=τ • V

    c0 ε = suspension density

    ideal controlT, V

    Kp, Ti

    discretized population balance, solute balance, controller

    PI control of suspension density εvia feed concentration c0

    state variables mi,momentsc, concentrationεi, suspension

    density 990 992 994 996 998 10000

    0.5

    1

    1.5

    2

    2.5

    3x 10-3

    c0 [kg/m3]

    m3 stableunstable

    τ=1h τ=2h

    τ=3h

    990 992 994 996 998 10000

    1

    2

    3

    4

    c0 [kg/m3]

    τ [h]

    σ = 0 1/h

    σ = -0.1 1/h

    σ = -0.5 1/h

    unstable

    stable

    stability boundaryperformance constr.

    open-loop behaviorMSMPR crystallizer(Jerauld, Doherty, 1982)

  • 31Constructive Nonlinear Dynamics in Process Systems Engineering

    Integrated Design & Control: MSMPR Crystallizer (1)

    max φ = mass production rate

    find design and controller tuning that guarantee dynamic performance

    uncertain parameters• residence time τ• feed concentration c0 (open loop)

    degrees of freedom• τ, Kp, Ti

    use normal vector constraints on eigenvalue bounds to enforce performance

    MSMPR crystallizer(Jerauld, Doherty, 1982)

    F=τ • V

    c0 ε = suspension density

    ideal controlT, V

    Kp, Ti

    F=τ • V

    c0 ε = suspension density

    ideal controlT, V

    F=τ • V

    c0 ε = suspension density

    ideal controlT, V

    Kp, Ti

    discretized population balance, solute balance, controller

    PI control of suspension density εvia feed concentration c0

    state variables mi,momentsc, concentrationεi, suspension

    density

  • 32Constructive Nonlinear Dynamics in Process Systems Engineering

    Integrated Design & Control: MSMPR Crystallizer (2)

    Optimization of the closed-loop process with guaranteed performance

    990 995 1000 1005 1010 10150.20.5

    1

    1.5

    2

    2.5

    c0 [kg/m3]

    τ[h

    ]

    0 300.0364

    0.0366

    0.0368

    0.037

    0.0372

    t [h]

    m3

    [-]σ = -0.1 1/hnon-performant

    performant

    performance constraintconstraintsrobustness ellipse

    σο = −0.2 h

    σο = 0 h

    productivity – open-loop stable φ = 12.0 kg/m3/h− closed-loop φ = 46.0 kg/m3/h

  • 33Constructive Nonlinear Dynamics in Process Systems Engineering

    Integrated Design & Control – HDA Process (1)

    HDA process (Douglas, 1988)

    Reaction section & simplified separation section

    • 8 units• 5 PI controllers• large-scale model

    - 100 differential eqs.- 370 algebraic eqs.

    • 12 uncertain parameters• no knowledge on nonlinear

    dynamics

    compressorpurge

    purge

    mixer

    heat exchanger

    furnace

    toloueneH2

    TC

    TC

    TC

    LC

    PC

    fuel

    flash splitter methane

    benzene

    dyphenyltolouene

    reactor

  • 34Constructive Nonlinear Dynamics in Process Systems Engineering

    Integrated Design & Control – HDA Process (2)

    2.0

    2.1

    2.2

    2.3

    benzene prod. rate [kmol/min]

    3.6

    3.7

    3.8

    3.9

    –1.20

    –1.15

    –1.10

    –1.05

    –4.00

    –3.90

    –3.80

    –3.70

    3.6

    3.7

    3.8

    3.9

    4.0

    4.1

    4.2

    30 60 90 120 150 180

    3.3

    3.4

    3.5

    3.6

    3.7

    �������������

    [kJ/min]

    ������������ [kJ/min] ���

    ��������

    [kJ/min]

    0

    ��������� [kJ/min] ���������� [kJ/min]

    30 60 90 120 150 1800time [min] time [min]

    30 60 90 120 150 1800

    30 60 90 120 150 1800

    30 60 90 120 150 1800

    30 60 90 120 150 1800

    Optimization

    min φ = Total annual costs =∑annual capital costs+ operating costs

    + costs of chemicals

    uncertain process design & control parameters

    parametric robustness w.r.t. performance, bounds on eigenvalues, σ0 ≤ 30 min

    step response at optimal steady state, 10% increase of toluene feed rate

  • 35Constructive Nonlinear Dynamics in Process Systems Engineering

    Summary and Future Perspectives

    Constructive Nonlinear Dynamics: from science to engineering

    • a unifying framework for the treatment of parametric uncertainty in process and control system design

    • computationally feasible even for large-scale processes

    • necessary extensions– time domain performance constraints– fast inputs– structural decisions and non-smooth models– processes with optimizing controllers– improvement of numerical methods

    • software further development– large-scale problems– part of process modeling environments

    applicationsin

    design & controlof

    process systems,vehicles, ...

    Constructive Nonlinear Dynamicsin Process Systems EngineeringExample: Ammonia ReactorExample: Decanting ReactorExample: Heteroazeotropic RectificationExample: Reactor-Separator Recycle ProcessBifurcation AnalysisFrom Analysis to SynthesisConceptual Problem Formulation (1)Conceptual Problem Formulation (2)Optimization Problem FormulationsLeveraging the Profit LossParameterization of UncertaintyParametric Distance to a Critical ManifoldNormal Vector Equation SystemsOptimization under Uncertainty – the General CaseComplicated Real SituationsOverview on AlgorithmSoftware Implementation – the StatusApplications: Three Problem ClassesApplications: Three Problem ClassesDesign Under Uncertainty: Fermenter (1)Design under Uncertainty: Fermenter (2)Design Under Uncertainty: VA Polymerization (1)Design Under Uncertainty: VA Polymerization (1)Robust Design: Stability and Feasibility (2)Applications: Three Problem ClassesTuning and Robustness Analysis: CSTR (1)Tuning and Robustness Analysis: CSTR (2)Applications: Three Problem ClassesIntegrated Design & Control: MSMPR Crystallizer (1)Integrated Design & Control: MSMPR Crystallizer (1)Integrated Design & Control: MSMPR Crystallizer (2)Integrated Design & Control – HDA Process (1)Integrated Design & Control – HDA Process (2)Summary and Future Perspectives