Constrained spreading of a molecular brush

1
Engineered Molecular Fluidics NSF NIRT Grant 0609087 PIs: S.S. Sheiko 1 , K. Matyjaszewski 2 , M. Rubinstein 1 , O. Velev 3 1 University of North Carolina at Chapel Hill, 2 Carnegie Mellon University, 3 North Carolina State University Constrained spreading of a molecular brush m NS 1/2 m > NS 1/2 – un-stretched molecule (same as spreading of linear chain) 1/N NS < m < NS 1/2 – stretched backbone, un-stretched side chains NS NS/m 2 1/(NS) m < S -1/4 – saturated lower layer and appearance of the cap (NS) 1/3 < m < NS – stretched backbone and side chains (NS) 1/3 (NS/m) 1/ 2 /m 1 S -1/4 S -1/4 < m < (NS) 1/3 – fully stretched backbone and H ~ S -1/2 NS/m 3 NS 7/4 Tension energy per backbone monomer F bb /(mkT) Concept and methodology N b L m b d H Nb A H SNb kT F 2 2 2 2 3 3 3 Free energy per side chain @ constant volume HhL=Nb 3 h L d spreading disjoining backbone stretching side chain stretching N m d L As alternative to (a) closed-channel systems, we study (b) open structures, where monolayer masses, residing on a substrate, are moved and configured by an external force. Advantages • smaller volume and direct accessibility • dynamically configurable flow control • rapid heat exchange • substrate-mediated mixing, orientation, and shape of macromolecules Electric field manipulation of thin films EOF - + + + - - - - - + + + - - - - Forw ard bias reverse bias 100 μm Liquid reservoir Film spread mica N o bias Forw ard bias Forw ard bias mica mica M olecularw aterequilibrium film Liquid reservoir Film spread Thin wetting film spreading by electro-osmosis 0 5 10 15 20 25 30 35 40 0 100 200 300 400 500 600 700 800 M en is c u s D isp lace m en t ( m) T im e (sec) 25 V /cm 50 V /cm 75 V /cm 100 V /cm 200 V /cm 300 V /cm 0 50 100 150 200 250 300 0 20 40 60 80 100 120 S p e e d o f M e n is c u s ( m /se c ) E le c tric F ie ld (V/cm ) 0 100 200 300 400 0 1000 2000 3000 4000 5000 M o b ility (( m 2 /Vsec) E le c tric F ie ld (V/cm ) eof μ eof : standard electroosmotic mobility ε : permittivity ~ (80)·(8.85 × 10 -12 F/m) ζ : zeta potential of mica ~ - 80 mV η : viscosity ~ 9x10 -4 Pa·sec = 5.7 x 10 4 μm 2 / V·sec mica Dye droplet mica Nano film spread Time Film spread Manipulating of molecular fluorophore in a thin film Flow-induced molecular fractionation Reservo ir Film Flow 0 100 200 300 400 0.00 0.05 0.10 0.15 0.20 0.25 F ractio n M o lecu lar L en g th (n m ) D istance from D rop 350 m 400 m 440 m 460 m 480 m 500 m 100 200 300 400 500 40 60 80 100 120 A ve ra g e L e n g th (nm ) D istan ce F ro m D ro p , m Mike Barrett, Frank Sun, and David Shirvaniants Jairus Kleinert, Sejong Kim Katya Zhulina and Gregory Randall Molecular conformation within 2-D asymmetric mixtures 10 0 10 1 10 2 10 3 10 4 10 5 30 40 50 60 70 N B R A ,nm N A = 1240 N A = 1160 N A = 1080 N A = 1000 N A = 920 N A = 840 N A = 760 N B =11 N B =322 N B =102 N B =24 N B =1766 N B =8813 Phys. Rev. Lett. 99 , 137801 (2007) Andrey Dobrynin and Frank Sun heterogeneous substrates R A 3/4 5/4 − 1/4 Molecular visualization: - size, shape, and ordering, - diffusion, mixing, and reactions constrained unconstrained

description

Dye droplet. mica. Nano film spread. mica. d. h. Film spread. L. - PowerPoint PPT Presentation

Transcript of Constrained spreading of a molecular brush

Page 1: Constrained spreading of a molecular brush

Engineered Molecular FluidicsNSF NIRT Grant 0609087

PIs: S.S. Sheiko1, K. Matyjaszewski2, M. Rubinstein1, O. Velev3

1University of North Carolina at Chapel Hill, 2Carnegie Mellon University, 3North Carolina State University

Constrained spreading of a molecular brush

mNS1/2

m > NS1/2 – un-stretched molecule (same as spreading of linear chain)

1/N

NS < m < NS1/2 – stretched backbone, un-stretched side chains

NS

NS/m21/(NS)

m < S-1/4 – saturated lower layer and appearance of the cap

(NS)1/3 < m < NS – stretched backbone and side chains

(NS)1/3

(NS/m)1/2/m1

S-1/4

S-1/4 < m < (NS)1/3 – fully stretched backbone and H ~ S-1/2

NS/m3NS7/4

Tension energy per backbone monomer Fbb/(mkT)

Concept and methodology

Nb

L

mb

d

H

NbA

H

SNb

kT

F2

2

2

2

3

33

Free energy per side chain @ constant volume HhL=Nb3

hL

d

spreading disjoining backbonestretching

side chainstretching

N

md

L

As alternative to (a) closed-channel systems, we study (b) open structures, where monolayer masses, residing on a substrate, are moved and configured by an external force.

Advantages• smaller volume and direct accessibility • dynamically configurable flow control • rapid heat exchange • substrate-mediated mixing, orientation, and shape of macromolecules

Electric field manipulation of thin films

EOF

-++ +

----

-++ +----

Forward bias

reverse bias

100 μm

Liq

uid

rese

rvo

ir

Film spread

mica

No bias

Forward bias

Forward bias

mica

mica

Molecular water equilibrium film

Liquid reservoir

Film spread

Thin wetting film spreading by electro-osmosis

0 5 10 15 20 25 30 35 40

0

100

200

300

400

500

600

700

800

Me

nis

cus

Dis

pla

ce

men

t (

m)

Time (sec)

25 V/cm 50 V/cm 75 V/cm 100 V/cm 200 V/cm 300 V/cm

0 50 100 150 200 250 3000

20

40

60

80

100

120

Sp

eed

of

Men

iscu

s (

m/s

ec)

Electric Field (V/cm)

0 100 200 300 4000

1000

2000

3000

4000

5000

Mo

bili

ty (

(m

2/ V

se

c)

Electric Field (V/cm)

eof

μeof : standard electroosmotic mobility

ε : permittivity ~ (80)·(8.85 × 10-12 F/m)

ζ : zeta potential of mica ~ - 80 mV

η : viscosity ~ 9x10-4 Pa·sec

= 5.7 x 104 μm2/ V·sec

mica

Dye droplet

mica

Nano film spread

Time

Film spread

Manipulating of molecular fluorophore in a thin film

Flow-induced molecular fractionation

Reservoir

Film

Flow

0 100 200 300 400

0.00

0.05

0.10

0.15

0.20

0.25

Fra

cti

on

Molecular Length (nm)

Distance from Drop 350 m 400 m 440 m 460 m 480 m 500 m

100 200 300 400 500

40

60

80

100

120

Av

era

ge

Le

ng

th (

nm

)

Distance From Drop, m

Mike Barrett, Frank Sun, and David ShirvaniantsJairus Kleinert, Sejong Kim

Katya Zhulina and Gregory Randall

Molecular conformation within 2-D asymmetric mixtures

100 101 102 103 104 105

30

40

50

60

70

NB

RA ,n

m

NA = 1240

NA = 1160

NA = 1080

NA = 1000

NA = 920

NA = 840

NA = 760

NB=11 NB=322

NB=102

NB=24 NB=1766

NB=8813

Phys. Rev. Lett. 99, 137801 (2007)

Andrey Dobrynin and Frank Sun

heterogeneous substrates

RA

𝑅𝐴≈ 𝑏𝑁𝐴3/4𝑁5/4𝑁𝐵−1/4

Molecular visualization: - size, shape, and ordering, - diffusion, mixing, and reactions

constrained

unconstrained