Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

22
Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM

Transcript of Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Page 1: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Constant V/f Control

Eng. Alfonso Monroy Olascoaga

Ph. D. Pedro Ponce Cruz

ITESM-CCM

Page 2: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Equivalent circuit model

• The stationary equivalent circuit model per phase for the induction motor is shown in the figure.

Page 3: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Equivalent circuit model

• The equations that describe the operation of the induction motor are

11111 )( EIjXRV )(21 cm IIII

2221 )( IjXRE e

res

Page 4: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Power flow in an induction motor

• The power flow in an induction motor can be appreciated in the next figure

Page 5: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Par ()

Vel ()

Par Máximo (m)

Par de referencia

Vel. síncrona (s)

Curva Característica del Motor de Inducción

Deslizamiento (S)

Punto de operación

S

Torque Maximum torque (Tm)Operation point

Reference torque

Synchronous speed (s)

Slip (s)

Torque-speed profile

Speed

Page 6: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Par Máximo (m)

Par de referencia

Par ()

Vel. síncrona (s)

Vel ()

S

Deslizamiento (S)

Punto de operación

Curva Característica Variando Voltaje

Maximum torque (Tm)

Reference torque

Synchronous speed (s)

Slip (s)

Speed

TorqueOperation point

Torque-speed profile under input voltage variation

Page 7: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Vel. síncrona (s)

Deslizamiento (S)

Punto de operación

Par de referencia

Par ()

S

Par Máximo (m)

Vel ()

SS

Curva Característica variando Frecuencia

Maximum torque (Tm)

Reference torque

Torque

Synchronous speed (s)

Slip (s)

Operation point

Torque-speed profile under input frequency variation

Page 8: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

• In order to obtain de approximated equivalent circuit model, we have to assume:

V1=(R1+jX1)I1+E1 E1

I1>>Im+Ic

Im+Ic k

Rc 0

Approximated equivalent circuit model

Page 9: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Approximated equivalent circuit model

• Under the last assumptions, the approximated equivalent circuit model may be drawn as follows

R1 jX1 R2/s jX2

jXmV1 E1

Page 10: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Constant V/f control principle

• From the expressions of emf and magnetic flux

= max sin(et).

E1 = max e cos(et) = max 2f1 cos(et)

• Its RMS value is

dt

dE

1

max

11

2

2 fE

Page 11: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Constant V/f control principle

• From the assumption number one:

• It is possible to maintain a constant flux, if the relation V1/f1 does not change:

11 EV

max1max1

12

2 kf

fV

max1

1 kf

V

Page 12: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Boost voltage

• At low speeds, the assumption (R1 + jX1)I1=0 is not valid.

• The voltage drop in the stator copper must be considered.

• A voltage compensation is needed in low speed operation.

• The voltage depends on the load conditions.

Page 13: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Voltaje [V]

Frecuencia [Hz]

Voltaje Boost Relación lineal

Compensación Relación no lineal

Compensación Líneal

Flujo (M)

Voltage

[V]

Boost voltage

Linear relation

Non-linear relation

Lineal compensation

Flux

Frequency [Hz]

compensation

Boost voltage

Page 14: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Sinusoidal pulse width modulation

Page 15: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Closed loop operation

• If accuracy is needed in the speed control, a closed loop scheme must be used.

speed reference V/f control Induction

PI controller

motor

Page 16: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Results (open loop)

• Current waveforms and harmonics content at 2396 rpm (left) and 2980 rpm (right).

Page 17: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Results (open loop)

• Current and voltage waveforms at 3000 rpm

Page 18: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Results (closed loop)

• No load start (2500 rpm)

Page 19: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Results (closed loop)

• Speed change (819-3000 rpm) at constant load torque (1.7 Nm)

Page 20: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Results (closed loop)

• Torque change (1.9 - .2 Nm) at constant speed (3100 rpm)

Page 21: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Advantages

• Open loop operation

• Simple control algorithm

• Good closed loop operation

• Great for high speed and constant torque applications

Page 22: Constant V/f Control Eng. Alfonso Monroy Olascoaga Ph. D. Pedro Ponce Cruz ITESM-CCM.

Disadvantages

• Boost voltage needed

• Poor load speed operation

• Control scheme designed for steady state operation