Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica

29
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica

description

Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica. possible to cool and trap dilute atomic gases. Atoms used: 7 Li 23 Na 87 Rb 1 H He* Yb 6 Li 40 K. Some typical numbers: - PowerPoint PPT Presentation

Transcript of Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica

Page 1: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Condensed matter physics in

dilute atomic gases

S. K. YipAcademia Sinica

Page 2: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

possible to cool and trap dilute atomic gases

Atoms used:

7Li 23Na 87Rb 1H He* Yb6Li 40K

Some typical numbers:

number of atoms 104 106 108

(final) (mostly)

peak density n < 10 14 cm-3

distance between particles ~ 104 A (dilute gas)

size of cloud ~ m

temperatures: down to nK

Page 3: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

nucleus + [ closed electronic shell ] + e _

nucleon N odd atom = boson N even fermion

7Li 23Na 87Rb 1H : Bosons6Li 40K : Fermions

f = I s = I + 1/2hyperfine spin nuclear spin electron spin

mf = - f, - f + 1, …. , f -1, + f (integers for bosons, half-integers for fermions)

_

alkalis

Page 4: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

6Li s = 1/2, i = 1; f = 1/2 , 3/2

Page 5: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Magnetic Trap (most experiments):

magnetic moment - . B ( r )

| B ( r ) | increasing from the center

trapped

not trapped

U

r

typically can trap only one species ( else loss due to collisions ) effectively scalar ( spinless ) particles

Page 6: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

. .... .. .

.

.. ... .. ...

laser

spin degree of freedom remains

Optical Trap:

U ( r ) = - ( ) E2 ( r , )1

2

( ) > 0 if red detunedex

g ( < res )

atoms attracted to strong field region

(c.f. driven harmonic oscillator)

Page 7: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica
Page 8: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Identical particles bosons fermions

many particle wavefunctions:

symmetric antisymmetric

Page 9: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

can occupy the samesingle particle states

at sufficiently low T

macroscopic occupation

Bose-Einstein Condensation

BOSONS:

Page 10: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Macroscopic wavefunction (common to all condensed particles)

(r, t)

(c.f Schrodinger wavefunction)

Supercurrent:

)(2

** mi

J

ie|| 2||J

Phase gradient supercurrent

Page 11: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Quantized vortices:

)(r

well defined at any position r

If || then unique up to 2n

0 0 2

Page 12: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Rotating superfluid:

if = constant, then not rotating (no current)

rotating constant

but circulation quantized quantized vortices

0 2

Page 13: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

[MIT, Science, 292, 476 (2001)]

Page 14: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

FERMIONS:

Page 15: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

FERMIONS

Exclusion principle:

T=0

Particles filled up to Fermi energy

Normal Fermi gas (liquid)

Generally NOT superfluid

Momentum space: Fermi sphere

Single species (can be done in magnetic traps):

Page 16: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

FERMIONS

T=0

Momentum space: Fermi sphere

Two species: need optical trap

still not much interesting unless interacting

Page 17: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

6Li s = 1/2, i = 1; f = 1/2 , 3/2

}

(need optical trap)

Page 18: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Can be superfluid if attractive interaction : Cooper pairing

(Bardeen, Cooper, Schrieffer; BCS)

k -k all k’s near Fermi surface

Underlying mechanism for superconductivity (in perhaps all superconductors)

Page 19: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

How to get strong enough attractive interaction in dilute Fermi gases

Feshbach Resonances:

B

(1 2)

(others)

Bres

Page 20: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Hydridization level repulsion

Page 21: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Hydridization level repulsion

Lowering of energy attractive interaction

Page 22: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

B

Two particles

no coupling:

continuum

closed channel molecule

continuum

Page 23: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

with coupling:

effective attractive interaction between fermions

Bound state

Page 24: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

eventuallyBEC of molecules

effective attractive interaction between fermions

Bound state

BCS pairing

Page 25: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Smooth crossover from BCS pairing to BEC (Leggett 80)

Page 26: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Experimental evidence:

[MIT, Nature, 435, 1047 (2005)]

(resonance)

Page 27: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

New possibilities:

unequal population

[c.f. superconductor in external Zeeman field: pair-breaking ]

Smooth crossover is destroyed ! ( Pao, Wu, Yip; 2006)

uniform superfluid state unstable in shaded region

N

BFhomogenousmixture

Page 28: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Many potential ground states for the shaded region

experiments suggest phase separation near resonance

another likely candidate state: Larkin-Ovchinnikov/ domain-walls (c.f. -junctions in SFS) not yet found

Finite T phase diagram open question

Interesting interacting system even when it is not superfluid (non-Fermi liquid behaviours?)

Page 29: Condensed matter physics  in  dilute atomic gases S. K. Yip Academia Sinica

Many other topics not covered:

atoms in periodic lattice (c.f. solid!)

“random” potential

multicomponent (spin) Bosonic superfluids

low dimensional systems (e.g 1D)

rapidly rotating Bose gas (maximum number of vortices ?)

tunable parameters, often in real time

and many more opportunities!!