Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne...

12
Conceptual Design of Mixed- Conceptual Design of Mixed- spectrum Supercritical spectrum Supercritical Water Reactor Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory Argonne National Laboratory

Transcript of Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne...

Page 1: Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

Conceptual Design of Mixed-Conceptual Design of Mixed-spectrum Supercritical Water spectrum Supercritical Water

ReactorReactor

T. K. KimT. K. Kim

Argonne National LaboratoryArgonne National Laboratory

Page 2: Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

2Argonne National LaboratoryArgonne National Laboratory

Challenges of SCWR design in NeutronicsChallenges of SCWR design in Neutronics

• Axial power shape controlAxial power shape control– Large coolant density variation axiallyLarge coolant density variation axially

– Smaller control rod worthSmaller control rod worth

• Radioactive waste control Radioactive waste control – Fast spectrum of SCWR can burn higher actinides Fast spectrum of SCWR can burn higher actinides

• Neutronics code systemNeutronics code system– Multi-group, 3 dimensional, T/H coupling systemMulti-group, 3 dimensional, T/H coupling system

– HTC correlation in supercritical conditionsHTC correlation in supercritical conditions

• Other issuesOther issues– Proliferation resistance and economyProliferation resistance and economy

Page 3: Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

3Argonne National LaboratoryArgonne National Laboratory

Mixed Spectrum SCWR ConceptMixed Spectrum SCWR Concept

• Advanced spectrum control is needed to Advanced spectrum control is needed to maximize merits of SCWRmaximize merits of SCWR

• Mixed-spectrum supercritical water reactorMixed-spectrum supercritical water reactor– Separation fast and thermal spectrum radiallySeparation fast and thermal spectrum radially

• Smaller power peaking factor and easier reactivity Smaller power peaking factor and easier reactivity controlcontrol

– Multi-purposed reactorMulti-purposed reactor• Maximize thermal efficiency and economy of SCWR Maximize thermal efficiency and economy of SCWR

concept without additional design featuresconcept without additional design features

• Electric production and actinide Burning in fast Electric production and actinide Burning in fast spectral corespectral core

Page 4: Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

4Argonne National LaboratoryArgonne National Laboratory

MSMS22 core core

Outer core

Coolant inlet

Core plate

Coolant outlet

Control rod

Inner core

Thermal shield

> 0.1 g/cm3~ 0.7 g/cm3 ~ 0.7 g/cm3

~ 0.2 g/cm3

Void assembly

Inner core fuel assembly (397)

High enriched fuel

Low enriched fuel

Instrument tube

Control rod tube

20.76

Outer core fuel assembly (271)

High enriched fuel

Low enriched fuel

Instrument tube

Control rod tube

20.76

Low enriched fuel

High enriched fuel

Control rod

Page 5: Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

5Argonne National LaboratoryArgonne National Laboratory

Comparison of SCWR AssembliesComparison of SCWR Assemblies

Inner core fuel assembly (397)

High enriched fuel

Low enriched fuel

Instrument tube

Control rod tube

20.76

Water rod

(Moderator)

Control rod

Stagnant water

Coolant

Fuel rod

23.18

22.18

Fuel

Control blade

Solid rod

Moderator

Coolant

MSMS2 2 assemblyassembly

SCLWR-HSCLWR-H and INEELand INEEL

SCLWR-H old SCLWR-H old

Page 6: Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

6Argonne National LaboratoryArgonne National Laboratory

Comparison of SCWR DesignsComparison of SCWR Designs

    

SCLWR-H SCLWR-H 1)1)

  SCFR-H SCFR-H 1)1)

  INEEL INEEL 2)2)

  

MSMS22

PWRPWR

Inner coreInner core Outer coreOuter core

Thermal power, MWThermal power, MW 35863586 38933893 30223022 34003400 34113411

Number of fuel assemblyNumber of fuel assembly

Active height, cmActive height, cm

Power density, MW/mPower density, MW/m33

Fuel materialFuel material

Cladding materialCladding material

Fuel radius, cmFuel radius, cm

Cladding thickness, cmCladding thickness, cm

Fuel pitch, cmFuel pitch, cm

P/D of fuel cellP/D of fuel cell

Assembly ShapeAssembly Shape

Number of fuel rodsNumber of fuel rodsAssembly pitch, cmAssembly pitch, cm

211211

420.00420.00

102.58102.58

UOUO22

Ni-AlloyNi-Alloy

0.40000.4000

0.04000.0400

0.95000.9500

1.081.08

hexagonalhexagonal

258258

21.3421.34

278278

320.00320.00

206.02206.02

MOXMOX

Ni-AlloyNi-Alloy

0.44000.4400

0.05200.0520

1.01001.0100

1.031.03

hexagonalhexagonal

198198

15.6615.66

121121

427.00427.00

69.0769.07

UOUO22

ODS steelODS steel

0.44700.4470

0.06300.0630

1.10001.1000

1.081.08

squaresquare

300300

29.1029.10

7373

280.00280.00

131.75131.75

MOXMOX

Ni-AlloyNi-Alloy

0.44000.4400

0.04000.0400

1.00001.0000

1.041.04

hexagonalhexagonal

378378

20.7120.71

204204

280.00280.00

113.15113.15

MOXMOX

Ni-AlloyNi-Alloy

0.40950.4095

0.05720.0572

1.20001.2000

1.291.29

    hexagonalhexagonal

252252

20.7120.71

193193

366.00366.00

104.00104.00

UOUO22

ZrZr

0.40950.4095

0.05720.0572

1.25001.2500

1.341.34

squaresquare

264264

21.5021.50

Inlet temperature (in/out), Inlet temperature (in/out), ooCC 280/508280/508 280/526280/526 280/500280/500 387/553387/553 280/387280/387 300/332300/332

Coolant mass flow rate, kg/sCoolant mass flow rate, kg/s 18161816 16941694 15611561 19001900 1722217222

Coolant velocity (in/out) ,m/secCoolant velocity (in/out) ,m/sec   2.5 / 2.12.5 / 2.1 3.2 / 29.5 3.2 / 29.5    1.4 / 12.51.4 / 12.5 12.6 / 41.6 12.6 / 41.6  0.7 / 2.0 0.7 / 2.0  4.6 / 5.24.6 / 5.2

1. High Temperature Supercritical thermal reactor (O. Oka, "Design Concept of Once-Through Cycle Supercritical-Pressure Light Water Reactors," SCR-2000, Tokyo (2000)

2. INEEL design (tentative)

Page 7: Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

7Argonne National LaboratoryArgonne National Laboratory

WIMS8/SOLTRAN Code SystemWIMS8/SOLTRAN Code System

• WIMS8 used for lattice calculationsWIMS8 used for lattice calculations

• Zonal cross sections are functionalized by state parameters, Zonal cross sections are functionalized by state parameters,

• SOLTRAN used for core calculationsSOLTRAN used for core calculations

– Interface current nodal formulation of diffusion and simplified PInterface current nodal formulation of diffusion and simplified P22 equation in multi-dimensional hex-Z and X-Y-Z geometryequation in multi-dimensional hex-Z and X-Y-Z geometry

– Multi-group, microscopic depletionMulti-group, microscopic depletion

– Single-phase heat balance equation for T/H feedbackSingle-phase heat balance equation for T/H feedback

– HTC is updated by DB-, Modified DB-, and Jackson’s correlationsHTC is updated by DB-, Modified DB-, and Jackson’s correlations

Page 8: Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

8Argonne National LaboratoryArgonne National Laboratory

MSMS22 Core Analysis (1) Core Analysis (1)• BurnerBurner

– Inner core : MOXInner core : MOX• Th/TRU/U = 32.5/15/32.5 %Th/TRU/U = 32.5/15/32.5 %

• Fissile fraction = 11%Fissile fraction = 11%

– Outer core : MOX Outer core : MOX • Th/Pu/U = 3/8/89 %Th/Pu/U = 3/8/89 %

• Fissile fraction = 6.5%Fissile fraction = 6.5%

• ConverterConverter

– Inner core : MOXInner core : MOX• Th/Pu/U = 3/8/89 %Th/Pu/U = 3/8/89 %

• Fissile fraction = 6.5%Fissile fraction = 6.5%

– Outer core : MOX Outer core : MOX • Th/Pu/U = 3/8/89 %Th/Pu/U = 3/8/89 %

• Fissile fraction = 6.5%Fissile fraction = 6.5%Inner Core(73)

Outer Core(204)

Thermal shield(36)

Void assembly(18)

Page 9: Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

9Argonne National LaboratoryArgonne National Laboratory

MSMS22 Core Analysis (2) Core Analysis (2)

Power sharing, %

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

Burnuer-BOC Burnuer-EOC Converter-BOC Converter-EOC

Power Sharing (%)

Inner

Outer

Axial power distribution

0.0

0.5

1.0

1.5

2.0

2.5

0 40 80 120 160 200 240 280

Axial height (cm)

Normalized power

Burner-inner Burner-outer Converter-inner Converter-outer

Axial cladding susrface temperature

550

600

650

700

750

800

850

900

950

0 40 80 120 160 200 240 280

Axial height (cm)

Cladding temperature (K)

Burner-inner Burner-outer Converter-inner Converter-outer

HTC = Jackson’s correlation 2.392

1.155 2.262

1.130

2.111

1.094

1.810

1.008

1.898

1.035

1.035

1.898

1.623

0.957

1.623

0.957

1.212

0.895

1.311

0.908

0.931

1.373

1.373

0.931

1.311

0.908

0.918

1.230

0.962

1.301

1.344

0.994

1.011

1.367

1.011

1.367

0.994

1.344

0.962

1.301

0.781

1.014

0.843

1.104

1.161

0.883

0.906

1.193

0.914

1.204

0.906

1.193

0.883

1.161

0.843

1.104

0.610

0.796

0.693

0.896

0.961

0.745

0.776

1.000

0.791

1.018

0.791

1.018

0.776

1.000

0.745

0.961

0.693

0.896

0.339

0.471

0.494

0.658

0.738

0.563

0.602

0.782

0.622

0.806

0.629

0.813

0.622

0.806

0.602

0.782

0.658

0.494

0.494

0.658

Burner

Converter

Page 10: Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

10Argonne National LaboratoryArgonne National Laboratory

Comparison of Axial Power and Comparison of Axial Power and TemperatureTemperature

0

0.5

1

1.5

2

2.5

3

3.5

4

0 70 140 210 280 350 420

Axial height(cm)

Normalized power

Burner-inner

Burner-outer

SCLWR-H

SCWR

500

550

600

650

700

750

800

850

0 70 140 210 280 350 420

Axial height(cm)

Coolant temperature, K

Burner-inner

Burner-outer

SCLWR-H

SCWR

Axial power distribution

Axial cladding surface temperature distribution

Axial coolant temperature distribution

550

600

650

700

750

800

850

0 70 140 210 280 350 420

Axial height(cm)

Cladding surface temperature

Burner-inner

Burner-outer

SCLWR-H

Page 11: Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

11Argonne National LaboratoryArgonne National Laboratory

Comparison of MSComparison of MS22 Cores Cores

• BurnerBurner– Heterogeneous core (higher TRU and fissile content in inner Heterogeneous core (higher TRU and fissile content in inner

core)core)

– 40/60 % power sharing in inner/outer cores40/60 % power sharing in inner/outer cores

– Higher power peaking factor in inner core due to higher fissile Higher power peaking factor in inner core due to higher fissile contentcontent

– Cladding temperature of outer core is much lower than criteria Cladding temperature of outer core is much lower than criteria due to lower power peaking factordue to lower power peaking factor

• ConverterConverter– Homogeneous core (same fuel composition of inner and outer Homogeneous core (same fuel composition of inner and outer

cores)cores)

– 25/75 % power sharing in inner/outer cores due to coolant 25/75 % power sharing in inner/outer cores due to coolant density differencedensity difference

– Higher power peaking factor in outer core, which causes higher Higher power peaking factor in outer core, which causes higher cladding surface temperaturecladding surface temperature

Page 12: Conceptual Design of Mixed- spectrum Supercritical Water Reactor T. K. Kim T. K. Kim Argonne National Laboratory.

12Argonne National LaboratoryArgonne National Laboratory

Conclusions and Future WorksConclusions and Future Works

• Conceptual design of MSConceptual design of MS22 core was core was performedperformed– WIMS/SOLTRAN code system was developed for WIMS/SOLTRAN code system was developed for

supercritical water reactor core analysissupercritical water reactor core analysis

– Feasibility of burner and converter with mixed-Feasibility of burner and converter with mixed-spectrum SCWR was evaluated, but design spectrum SCWR was evaluated, but design optimizations are necessaryoptimizations are necessary

• Future worksFuture works– Optimize the core design for burner and converterOptimize the core design for burner and converter

– Fuel cycle analysisFuel cycle analysis

– Evaluation of waste and economicsEvaluation of waste and economics