Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M....

176
Concentration Inequalities for Random Matrices M. Ledoux Institut de Math´ ematiques de Toulouse, France

Transcript of Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M....

Page 1: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Concentration Inequalities for RandomMatrices

M. Ledoux

Institut de Mathematiques de Toulouse, France

Page 2: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

exponential tail inequalities

classical theme in probability and statistics

quantify the asymptotic statements

central limit theorems

large deviation principles

Page 3: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

exponential tail inequalities

classical theme in probability and statistics

quantify the asymptotic statements

central limit theorems

large deviation principles

Page 4: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

exponential tail inequalities

classical theme in probability and statistics

quantify the asymptotic statements

central limit theorems

large deviation principles

Page 5: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

classical exponential inequalities

sum of independent random variables

Sn =1√n

(X1 + · · ·+ Xn)

0 ≤ Xi ≤ 1 independent

P(Sn ≥ E(Sn) + t

)≤ e−t

2/2, t ≥ 0

Hoeffding’s inequality

same as for Xi standard Gaussian

central limit theorem

Page 6: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

classical exponential inequalities

sum of independent random variables

Sn =1√n

(X1 + · · ·+ Xn)

0 ≤ Xi ≤ 1 independent

P(Sn ≥ E(Sn) + t

)≤ e−t

2/2, t ≥ 0

Hoeffding’s inequality

same as for Xi standard Gaussian

central limit theorem

Page 7: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

classical exponential inequalities

sum of independent random variables

Sn =1√n

(X1 + · · ·+ Xn)

0 ≤ Xi ≤ 1 independent

P(Sn ≥ E(Sn) + t

)≤ e−t

2/2, t ≥ 0

Hoeffding’s inequality

same as for Xi standard Gaussian

central limit theorem

Page 8: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration ideas

asymptotic geometric analysis

V. Milman (1970)

Sn =1√n

(X1 + · · ·+ Xn)

F (X ) = F (X1, . . . ,Xn), F : Rn → R Lipschitz

Gaussian sample

independent random variables

Page 9: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration ideas

asymptotic geometric analysis

V. Milman (1970)

Sn =1√n

(X1 + · · ·+ Xn)

F (X ) = F (X1, . . . ,Xn), F : Rn → R Lipschitz

Gaussian sample

independent random variables

Page 10: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration ideas

asymptotic geometric analysis

V. Milman (1970)

Sn =1√n

(X1 + · · ·+ Xn)

F (X ) = F (X1, . . . ,Xn), F : Rn → R Lipschitz

Gaussian sample

independent random variables

Page 11: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration ideas

asymptotic geometric analysis

V. Milman (1970)

Sn =1√n

(X1 + · · ·+ Xn)

F (X ) = F (X1, . . . ,Xn), F : Rn → R Lipschitz

Gaussian sample

independent random variables

Page 12: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration ideas

asymptotic geometric analysis

V. Milman (1970)

Sn =1√n

(X1 + · · ·+ Xn)

F (X ) = F (X1, . . . ,Xn), F : Rn → R Lipschitz

Gaussian sample

independent random variables

Page 13: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

concentration inequalities

Sn =1√n

(X1 + · · ·+ Xn)

F (X ) = F (X1, . . . ,Xn), F : Rn → R 1-Lipschitz

X1, . . . ,Xn independenty standard Gaussian

P(F (X ) ≥ E

(F (X )

)+ t)≤ e−t

2/2, t ≥ 0

0 ≤ Xi ≤ 1 independent, F 1-Lipschitz and convex

P(F (X ) ≥ E

(F (X )

)+ t)≤ 2 e−t

2/4, t ≥ 0

M. Talagrand (1995)

Page 14: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

concentration inequalities

Sn =1√n

(X1 + · · ·+ Xn)

F (X ) = F (X1, . . . ,Xn), F : Rn → R 1-Lipschitz

X1, . . . ,Xn independenty standard Gaussian

P(F (X ) ≥ E

(F (X )

)+ t)≤ e−t

2/2, t ≥ 0

0 ≤ Xi ≤ 1 independent, F 1-Lipschitz and convex

P(F (X ) ≥ E

(F (X )

)+ t)≤ 2 e−t

2/4, t ≥ 0

M. Talagrand (1995)

Page 15: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

concentration inequalities

Sn =1√n

(X1 + · · ·+ Xn)

F (X ) = F (X1, . . . ,Xn), F : Rn → R 1-Lipschitz

X1, . . . ,Xn independenty standard Gaussian

P(F (X ) ≥ E

(F (X )

)+ t)≤ e−t

2/2, t ≥ 0

0 ≤ Xi ≤ 1 independent, F 1-Lipschitz

and convex

P(F (X ) ≥ E

(F (X )

)+ t)≤ 2 e−t

2/4, t ≥ 0

M. Talagrand (1995)

Page 16: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

concentration inequalities

Sn =1√n

(X1 + · · ·+ Xn)

F (X ) = F (X1, . . . ,Xn), F : Rn → R 1-Lipschitz

X1, . . . ,Xn independenty standard Gaussian

P(F (X ) ≥ E

(F (X )

)+ t)≤ e−t

2/2, t ≥ 0

0 ≤ Xi ≤ 1 independent, F 1-Lipschitz and convex

P(F (X ) ≥ E

(F (X )

)+ t)≤ 2 e−t

2/4, t ≥ 0

M. Talagrand (1995)

Page 17: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

concentration inequalities

Sn =1√n

(X1 + · · ·+ Xn)

F (X ) = F (X1, . . . ,Xn), F : Rn → R 1-Lipschitz

X1, . . . ,Xn independenty standard Gaussian

P(F (X ) ≥ E

(F (X )

)+ t)≤ e−t

2/2, t ≥ 0

0 ≤ Xi ≤ 1 independent, F 1-Lipschitz and convex

P(F (X ) ≥ E

(F (X )

)+ t)≤ 2 e−t

2/4, t ≥ 0

M. Talagrand (1995)

Page 18: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

concentration inequalities

Sn =1√n

(X1 + · · ·+ Xn)

F (X ) = F (X1, . . . ,Xn), F : Rn → R 1-Lipschitz

X1, . . . ,Xn independenty standard Gaussian

P(F (X ) ≥ E

(F (X )

)+ t)≤ e−t

2/2, t ≥ 0

0 ≤ Xi ≤ 1 independent, F 1-Lipschitz and convex

P(F (X ) ≥ E

(F (X )

)+ t)≤ 2 e−t

2/4, t ≥ 0

M. Talagrand (1995)

Page 19: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

empirical processes

X1, . . . ,Xn independent with values in (S ,S)

F collection of functions f : S → [0, 1]

Z = supf ∈F

n∑i=1

f (Xi )

Z Lipschitz and convex

concentration inequalities on

P(∣∣Z − E(Z )

∣∣ ≥ t), t ≥ 0

Page 20: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

empirical processes

X1, . . . ,Xn independent with values in (S ,S)

F collection of functions f : S → [0, 1]

Z = supf ∈F

n∑i=1

f (Xi )

Z Lipschitz and convex

concentration inequalities on

P(∣∣Z − E(Z )

∣∣ ≥ t), t ≥ 0

Page 21: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

empirical processes

X1, . . . ,Xn independent with values in (S ,S)

F collection of functions f : S → [0, 1]

Z = supf ∈F

n∑i=1

f (Xi )

Z Lipschitz and convex

concentration inequalities on

P(∣∣Z − E(Z )

∣∣ ≥ t), t ≥ 0

Page 22: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

empirical processes

X1, . . . ,Xn independent with values in (S ,S)

F collection of functions f : S → [0, 1]

Z = supf ∈F

n∑i=1

f (Xi )

Z Lipschitz and convex

concentration inequalities on

P(∣∣Z − E(Z )

∣∣ ≥ t), t ≥ 0

Page 23: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Z = supf ∈F

n∑i=1

f (Xi )

|f | ≤ 1, E(f (Xi )) = 0, f ∈ F

P(|Z −M| ≥ t

)≤ C exp

(− t

Clog

(1 +

t

σ2 + M

)), t ≥ 0

C > 0 numerical constant, M mean or median of Z

σ2 = supf ∈F∑n

i=1 E(f 2(Xi ))

M. Talagrand (1996)

P. Massart (2000)

S. Boucheron, G. Lugosi, P. Massart (2005)

P.-M. Samson (2000) (dependence)

Page 24: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Z = supf ∈F

n∑i=1

f (Xi )

|f | ≤ 1, E(f (Xi )) = 0, f ∈ F

P(|Z −M| ≥ t

)≤ C exp

(− t

Clog

(1 +

t

σ2 + M

)), t ≥ 0

C > 0 numerical constant, M mean or median of Z

σ2 = supf ∈F∑n

i=1 E(f 2(Xi ))

M. Talagrand (1996)

P. Massart (2000)

S. Boucheron, G. Lugosi, P. Massart (2005)

P.-M. Samson (2000) (dependence)

Page 25: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Z = supf ∈F

n∑i=1

f (Xi )

|f | ≤ 1, E(f (Xi )) = 0, f ∈ F

P(|Z −M| ≥ t

)≤ C exp

(− t

Clog

(1 +

t

σ2 + M

)), t ≥ 0

C > 0 numerical constant, M mean or median of Z

σ2 = supf ∈F∑n

i=1 E(f 2(Xi ))

M. Talagrand (1996)

P. Massart (2000)

S. Boucheron, G. Lugosi, P. Massart (2005)

P.-M. Samson (2000) (dependence)

Page 26: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Z = supf ∈F

n∑i=1

f (Xi )

|f | ≤ 1, E(f (Xi )) = 0, f ∈ F

P(|Z −M| ≥ t

)≤ C exp

(− t

Clog

(1 +

t

σ2 + M

)), t ≥ 0

C > 0 numerical constant, M mean or median of Z

σ2 = supf ∈F∑n

i=1 E(f 2(Xi ))

M. Talagrand (1996)

P. Massart (2000)

S. Boucheron, G. Lugosi, P. Massart (2005)

P.-M. Samson (2000) (dependence)

Page 27: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Z = supf ∈F

n∑i=1

f (Xi )

|f | ≤ 1, E(f (Xi )) = 0, f ∈ F

P(|Z −M| ≥ t

)≤ C exp

(− t

Clog

(1 +

t

σ2 + M

)), t ≥ 0

C > 0 numerical constant, M mean or median of Z

σ2 = supf ∈F∑n

i=1 E(f 2(Xi ))

M. Talagrand (1996)

P. Massart (2000)

S. Boucheron, G. Lugosi, P. Massart (2005)

P.-M. Samson (2000) (dependence)

Page 28: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

concentration inequalities

numerous applications

• geometric functional analysis

• discrete and combinatorial probability

• empirical processes

• statistical mechanics

• random matrix theory

Page 29: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

concentration inequalities

numerous applications

• geometric functional analysis

• discrete and combinatorial probability

• empirical processes

• statistical mechanics

• random matrix theory

Page 30: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

concentration inequalities

numerous applications

• geometric functional analysis

• discrete and combinatorial probability

• empirical processes

• statistical mechanics

• random matrix theory

Page 31: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

recent studies of

random matrix and random growth models

new asymptotics

common, non-central, rate (mean)1/3

universal limiting Tracy-Widom distribution

random matrices, longest increasing subsequence,

random growth models, last passage percolation...

Page 32: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

recent studies of

random matrix and random growth models

new asymptotics

common, non-central, rate (mean)1/3

universal limiting Tracy-Widom distribution

random matrices, longest increasing subsequence,

random growth models, last passage percolation...

Page 33: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

recent studies of

random matrix and random growth models

new asymptotics

common, non-central, rate (mean)1/3

universal limiting Tracy-Widom distribution

random matrices, longest increasing subsequence,

random growth models, last passage percolation...

Page 34: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

recent studies of

random matrix and random growth models

new asymptotics

common, non-central, rate (mean)1/3

universal limiting Tracy-Widom distribution

random matrices, longest increasing subsequence,

random growth models, last passage percolation...

Page 35: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

recent studies of

random matrix and random growth models

new asymptotics

common, non-central, rate (mean)1/3

universal limiting Tracy-Widom distribution

random matrices, longest increasing subsequence,

random growth models, last passage percolation...

Page 36: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

multivariate statistical inference

principal component analysis

population (Y1, . . . ,YN)

Yj vectors (column) in RM (characters)

Y = (Y1, . . . ,YN) M × N matrix

sample covariance matrix Y Y t (M ×M)

(independent) Gaussian Yj : Wishart matrix models

Page 37: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

multivariate statistical inference

principal component analysis

population (Y1, . . . ,YN)

Yj vectors (column) in RM (characters)

Y = (Y1, . . . ,YN) M × N matrix

sample covariance matrix Y Y t (M ×M)

(independent) Gaussian Yj : Wishart matrix models

Page 38: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

multivariate statistical inference

principal component analysis

population (Y1, . . . ,YN)

Yj vectors (column) in RM (characters)

Y = (Y1, . . . ,YN) M × N matrix

sample covariance matrix Y Y t (M ×M)

(independent) Gaussian Yj : Wishart matrix models

Page 39: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

multivariate statistical inference

principal component analysis

population (Y1, . . . ,YN)

Yj vectors (column) in RM (characters)

Y = (Y1, . . . ,YN) M × N matrix

sample covariance matrix Y Y t (M ×M)

(independent) Gaussian Yj : Wishart matrix models

Page 40: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

multivariate statistical inference

principal component analysis

population (Y1, . . . ,YN)

Yj vectors (column) in RM (characters)

Y = (Y1, . . . ,YN) M × N matrix

sample covariance matrix Y Y t (M ×M)

(independent) Gaussian Yj : Wishart matrix models

Page 41: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

is Y Y t a good approximation of the

population covariance matrix

E(Y Y t) ?

M finite

1

NY Y t → E(Y Y t) N →∞

M infinite ?

M = M(N) → ∞ N →∞

M

N∼ ρ ∈ (0,∞) N →∞

Page 42: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

is Y Y t a good approximation of the

population covariance matrix

E(Y Y t) ?

M finite

1

NY Y t → E(Y Y t) N →∞

M infinite ?

M = M(N) → ∞ N →∞

M

N∼ ρ ∈ (0,∞) N →∞

Page 43: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

is Y Y t a good approximation of the

population covariance matrix

E(Y Y t) ?

M finite

1

NY Y t → E(Y Y t) N →∞

M infinite ?

M = M(N) → ∞ N →∞

M

N∼ ρ ∈ (0,∞) N →∞

Page 44: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

is Y Y t a good approximation of the

population covariance matrix

E(Y Y t) ?

M finite

1

NY Y t → E(Y Y t) N →∞

M infinite ?

M = M(N) → ∞ N →∞

M

N∼ ρ ∈ (0,∞) N →∞

Page 45: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

is Y Y t a good approximation of the

population covariance matrix

E(Y Y t) ?

M finite

1

NY Y t → E(Y Y t) N →∞

M infinite ?

M = M(N) → ∞ N →∞

M

N∼ ρ ∈ (0,∞) N →∞

Page 46: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

Y = (Y1, . . . ,YN) M × N matrix

Y = (Yij)1≤i≤M,1≤j≤N

Yij independent identically distributed

(real or complex)

E(Yij) = 0, E(Y 2ij ) = 1

Wishart model : Yj standard Gaussian in RM

numerous extensions

Page 47: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

Y = (Y1, . . . ,YN) M × N matrix

Y = (Yij)1≤i≤M,1≤j≤N

Yij independent identically distributed

(real or complex)

E(Yij) = 0, E(Y 2ij ) = 1

Wishart model : Yj standard Gaussian in RM

numerous extensions

Page 48: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

Y = (Y1, . . . ,YN) M × N matrix

Y = (Yij)1≤i≤M,1≤j≤N

Yij independent identically distributed

(real or complex)

E(Yij) = 0, E(Y 2ij ) = 1

Wishart model : Yj standard Gaussian in RM

numerous extensions

Page 49: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

Y = (Y1, . . . ,YN) M × N matrix

Y = (Yij)1≤i≤M,1≤j≤N

Yij independent identically distributed

(real or complex)

E(Yij) = 0, E(Y 2ij ) = 1

Wishart model : Yj standard Gaussian in RM

numerous extensions

Page 50: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

Y = (Y1, . . . ,YN) M × N matrix

Y = (Yij)1≤i≤M,1≤j≤N iid E(Yij) = 0, E(Y 2ij ) = 1

center of interest : eigenvalues 0 ≤ λN1 ≤ · · · ≤ λNM

of Y Y t (M ×M non-negative symmetric matrix)√λNk singular values of Y

λNk =λNkN

eigenvalues of1

NY Y t

spectral measure1

M

M∑k=1

δλNk

asymptotics M = M(N) ∼ ρN N →∞

Page 51: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

Y = (Y1, . . . ,YN) M × N matrix

Y = (Yij)1≤i≤M,1≤j≤N iid E(Yij) = 0, E(Y 2ij ) = 1

center of interest : eigenvalues 0 ≤ λN1 ≤ · · · ≤ λNM

of Y Y t (M ×M non-negative symmetric matrix)

√λNk singular values of Y

λNk =λNkN

eigenvalues of1

NY Y t

spectral measure1

M

M∑k=1

δλNk

asymptotics M = M(N) ∼ ρN N →∞

Page 52: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

Y = (Y1, . . . ,YN) M × N matrix

Y = (Yij)1≤i≤M,1≤j≤N iid E(Yij) = 0, E(Y 2ij ) = 1

center of interest : eigenvalues 0 ≤ λN1 ≤ · · · ≤ λNM

of Y Y t (M ×M non-negative symmetric matrix)√λNk singular values of Y

λNk =λNkN

eigenvalues of1

NY Y t

spectral measure1

M

M∑k=1

δλNk

asymptotics M = M(N) ∼ ρN N →∞

Page 53: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

Y = (Y1, . . . ,YN) M × N matrix

Y = (Yij)1≤i≤M,1≤j≤N iid E(Yij) = 0, E(Y 2ij ) = 1

center of interest : eigenvalues 0 ≤ λN1 ≤ · · · ≤ λNM

of Y Y t (M ×M non-negative symmetric matrix)√λNk singular values of Y

λNk =λNkN

eigenvalues of1

NY Y t

spectral measure1

M

M∑k=1

δλNk

asymptotics M = M(N) ∼ ρN N →∞

Page 54: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

Y = (Y1, . . . ,YN) M × N matrix

Y = (Yij)1≤i≤M,1≤j≤N iid E(Yij) = 0, E(Y 2ij ) = 1

center of interest : eigenvalues 0 ≤ λN1 ≤ · · · ≤ λNM

of Y Y t (M ×M non-negative symmetric matrix)√λNk singular values of Y

λNk =λNkN

eigenvalues of1

NY Y t

spectral measure1

M

M∑k=1

δλNk

asymptotics M = M(N) ∼ ρN N →∞

Page 55: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

sample covariance matrices

Y = (Y1, . . . ,YN) M × N matrix

Y = (Yij)1≤i≤M,1≤j≤N iid E(Yij) = 0, E(Y 2ij ) = 1

center of interest : eigenvalues 0 ≤ λN1 ≤ · · · ≤ λNM

of Y Y t (M ×M non-negative symmetric matrix)√λNk singular values of Y

λNk =λNkN

eigenvalues of1

NY Y t

spectral measure1

M

M∑k=1

δλNk

asymptotics M = M(N) ∼ ρN N →∞

Page 56: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem (1967)

asymptotic behavior of the spectral measure (λN

k = λNk /N)

1

M

M∑k=1

δλNk→ ν Marchenko-Pastur distribution

dν(x) =(

1− 1

ρ

)+δ0 +

1

ρ 2πx

√(b − x)(x − a) 1[a,b]dx

a = a(ρ) =(1−√ρ

)2b = b(ρ) =

(1 +√ρ)2

Page 57: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem (1967)

asymptotic behavior of the spectral measure (λN

k = λNk /N)

1

M

M∑k=1

δλNk→ ν Marchenko-Pastur distribution

dν(x) =(

1− 1

ρ

)+δ0 +

1

ρ 2πx

√(b − x)(x − a) 1[a,b]dx

a = a(ρ) =(1−√ρ

)2b = b(ρ) =

(1 +√ρ)2

Page 58: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem (1967)

asymptotic behavior of the spectral measure (λN

k = λNk /N)

1

M

M∑k=1

δλNk→ ν Marchenko-Pastur distribution

dν(x) =(

1− 1

ρ

)+δ0 +

1

ρ 2πx

√(b − x)(x − a) 1[a,b]dx

a = a(ρ) =(1−√ρ

)2b = b(ρ) =

(1 +√ρ)2

Page 59: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem (1967)

asymptotic behavior of the spectral measure (λN

k = λNk /N)

1

M

M∑k=1

δλNk→ ν Marchenko-Pastur distribution

dν(x) =(

1− 1

ρ

)+δ0 +

1

ρ 2πx

√(b − x)(x − a) 1[a,b]dx

a = a(ρ) =(1−√ρ

)2b = b(ρ) =

(1 +√ρ)2

Page 60: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem (1967)

asymptotic behavior of the spectral measure (λN

k = λNk /N)

1

M

M∑k=1

δλNk→ ν Marchenko-Pastur distribution

dν(x) =(

1− 1

ρ

)+δ0 +

1

ρ 2πx

√(b − x)(x − a) 1[a,b]dx

a = a(ρ) =(1−√ρ

)2b = b(ρ) =

(1 +√ρ)2

Page 61: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem

1

M

M∑k=1

δλNk→ ν on

(a(ρ), b(ρ)

)M ∼ ρN

global regime

large deviation asymptotics of the spectral measure

fluctuations of the spectral measure

M∑k=1

[f(λNk)−∫R f dν

]→ G Gaussian variable

f : R→ R smooth

Page 62: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem

1

M

M∑k=1

δλNk→ ν on

(a(ρ), b(ρ)

)M ∼ ρN

global regime

large deviation asymptotics of the spectral measure

fluctuations of the spectral measure

M∑k=1

[f(λNk)−∫R f dν

]→ G Gaussian variable

f : R→ R smooth

Page 63: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem

1

M

M∑k=1

δλNk→ ν on

(a(ρ), b(ρ)

)M ∼ ρN

global regime

large deviation asymptotics of the spectral measure

fluctuations of the spectral measure

M∑k=1

[f(λNk)−∫R f dν

]→ G Gaussian variable

f : R→ R smooth

Page 64: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem

1

M

M∑k=1

δλNk→ ν on

(a(ρ), b(ρ)

)M ∼ ρN

global regime

large deviation asymptotics of the spectral measure

fluctuations of the spectral measure

M∑k=1

[f(λNk)−∫R f dν

]→ G Gaussian variable

f : R→ R smooth

Page 65: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem

1

M

M∑k=1

δλNk→ ν on

(a(ρ), b(ρ)

)M ∼ ρN

local regime

behavior of the individual eigenvalues

spacings (bulk behavior)

extremal eigenvalues (edge behavior)

Page 66: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem

1

M

M∑k=1

δλNk→ ν on

(a(ρ), b(ρ)

)M ∼ ρN

local regime

behavior of the individual eigenvalues

spacings (bulk behavior)

extremal eigenvalues (edge behavior)

Page 67: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem

1

M

M∑k=1

δλNk→ ν on

(a(ρ), b(ρ)

)M ∼ ρN

local regime

behavior of the individual eigenvalues

spacings (bulk behavior)

extremal eigenvalues (edge behavior)

Page 68: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem

1

M

M∑k=1

δλNk→ ν on

(a(ρ), b(ρ)

)M ∼ ρN

local regime

behavior of the individual eigenvalues

spacings (bulk behavior)

extremal eigenvalues (edge behavior)

Page 69: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN→ b(ρ) =

(1 +√ρ)2

M ∼ ρN

Page 70: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN

→ b(ρ) =(1 +√ρ)2

M ∼ ρN

Page 71: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN→ b(ρ) =

(1 +√ρ)2

M ∼ ρN

Page 72: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem (1967)

asymptotic behavior of the spectral measure (λN

k = λNk /N)

1

M

M∑k=1

δλNk→ ν Marchenko-Pastur distribution

dν(x) =(

1− 1

ρ

)+δ0 +

1

ρ 2πx

√(b − x)(x − a) 1[a,b]dx

a = a(ρ) =(1−√ρ

)2b = b(ρ) =

(1 +√ρ)2

Page 73: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN→ b(ρ) =

(1 +√ρ)2

M ∼ ρN

fluctuations around b(ρ)

complex or real Gaussian (Wishart matrices)

FTW C. Tracy, H. Widom (1994) distribution

K. Johansson (2000), I. Johnstone (2001)

Page 74: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN→ b(ρ) =

(1 +√ρ)2

M ∼ ρN

fluctuations around b(ρ)

complex or real Gaussian (Wishart matrices)

FTW C. Tracy, H. Widom (1994) distribution

K. Johansson (2000), I. Johnstone (2001)

Page 75: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN→ b(ρ) =

(1 +√ρ)2

M ∼ ρN

fluctuations around b(ρ)

complex or real Gaussian (Wishart matrices)

FTW C. Tracy, H. Widom (1994) distribution

K. Johansson (2000), I. Johnstone (2001)

Page 76: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN→ b(ρ) =

(1 +√ρ)2

M ∼ ρN

fluctuations around b(ρ)

complex or real Gaussian (Wishart matrices)

M2/3[λNM − b(ρ)

]→ C (ρ)FTW

FTW C. Tracy, H. Widom (1994) distribution

K. Johansson (2000), I. Johnstone (2001)

Page 77: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN→ b(ρ) =

(1 +√ρ)2

M ∼ ρN

fluctuations around b(ρ)

complex or real Gaussian (Wishart matrices)

M2/3N−1[λNM − b(ρ)N

]→ C (ρ)FTW

FTW C. Tracy, H. Widom (1994) distribution

K. Johansson (2000), I. Johnstone (2001)

Page 78: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN→ b(ρ) =

(1 +√ρ)2

M ∼ ρN

fluctuations around b(ρ)

complex or real Gaussian (Wishart matrices)

M2/3N−1[λNM − b(ρ)N

]→ C (ρ)FTW

FTW C. Tracy, H. Widom (1994) distribution

K. Johansson (2000), I. Johnstone (2001)

Page 79: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN→ b(ρ) =

(1 +√ρ)2

M ∼ ρN

fluctuations around b(ρ)

complex or real Gaussian (Wishart matrices)

M2/3N−1[λNM − b(ρ)N

]→ C (ρ)FTW

FTW C. Tracy, H. Widom (1994) distribution

K. Johansson (2000), I. Johnstone (2001)

Page 80: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

FTW C. Tracy, H. Widom (1994) distribution

(complex) FTW(s) = exp

(−∫ ∞s

(x − s)u(x)2dx

), s ∈ R

u′′ = 2u3 + xu Painleve II equation

density

Page 81: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

FTW C. Tracy, H. Widom (1994) distribution

(complex) FTW(s) = exp

(−∫ ∞s

(x − s)u(x)2dx

), s ∈ R

u′′ = 2u3 + xu Painleve II equation

density

Page 82: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

mean ' −1.77

FTW(s) ∼ e−s3/12 as s → −∞

1− FTW(s) ∼ e−4s3/2/3 as s → +∞

density (similar for real case)

Page 83: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN→ b(ρ) =

(1 +√ρ)2

M ∼ ρN

fluctuations around b(ρ)

complex or real Gaussian (Wishart matrices)

M2/3[λNM − b(ρ)

]→ C (ρ)FTW

FTW C. Tracy, H. Widom (1994) distribution

K. Johansson (2000), I. Johnstone (2001)

Page 84: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Gaussian (Wishart matrices)

completely solvable models

determinantal structure

orthogonal polynomial analysis

asymptotics of Laguerre orthogonal polynomials

C. Tracy, H. Widom (1994)

K. Johansson (2000), I. Johnstone (2001)

Page 85: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Gaussian (Wishart matrices)

completely solvable models

determinantal structure

orthogonal polynomial analysis

asymptotics of Laguerre orthogonal polynomials

C. Tracy, H. Widom (1994)

K. Johansson (2000), I. Johnstone (2001)

Page 86: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Gaussian (Wishart matrices)

completely solvable models

determinantal structure

orthogonal polynomial analysis

asymptotics of Laguerre orthogonal polynomials

C. Tracy, H. Widom (1994)

K. Johansson (2000), I. Johnstone (2001)

Page 87: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Gaussian (Wishart matrices)

completely solvable models

determinantal structure

orthogonal polynomial analysis

asymptotics of Laguerre orthogonal polynomials

C. Tracy, H. Widom (1994)

K. Johansson (2000), I. Johnstone (2001)

Page 88: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Gaussian (Wishart matrices)

completely solvable models

determinantal structure

orthogonal polynomial analysis

asymptotics of Laguerre orthogonal polynomials

C. Tracy, H. Widom (1994)

K. Johansson (2000), I. Johnstone (2001)

Page 89: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extension to non-Gaussian matrices

A. Soshnikov (2001-02)

moment method E(Tr((YY t)p

))L. Erdos, H.-T. Yau (2009-12) (and collaborators)

local Marchenko-Pastur law

T. Tao, V. Vu (2010-11)

Lindeberg comparison method

symmetric matrices

Page 90: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extension to non-Gaussian matrices

A. Soshnikov (2001-02)

moment method E(Tr((YY t)p

))

L. Erdos, H.-T. Yau (2009-12) (and collaborators)

local Marchenko-Pastur law

T. Tao, V. Vu (2010-11)

Lindeberg comparison method

symmetric matrices

Page 91: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extension to non-Gaussian matrices

A. Soshnikov (2001-02)

moment method E(Tr((YY t)p

))L. Erdos, H.-T. Yau (2009-12) (and collaborators)

local Marchenko-Pastur law

T. Tao, V. Vu (2010-11)

Lindeberg comparison method

symmetric matrices

Page 92: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extension to non-Gaussian matrices

A. Soshnikov (2001-02)

moment method E(Tr((YY t)p

))L. Erdos, H.-T. Yau (2009-12) (and collaborators)

local Marchenko-Pastur law

T. Tao, V. Vu (2010-11)

Lindeberg comparison method

symmetric matrices

Page 93: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

(brief) survey of recent approaches to

non-asymptotic exponential inequalities

quantify the limit theorems

spectral measure

extremal eigenvalues

catch the new rate (mean)1/3

from the Gaussian case to non-Gaussian models

Page 94: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

(brief) survey of recent approaches to

non-asymptotic exponential inequalities

quantify the limit theorems

spectral measure

extremal eigenvalues

catch the new rate (mean)1/3

from the Gaussian case to non-Gaussian models

Page 95: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

(brief) survey of recent approaches to

non-asymptotic exponential inequalities

quantify the limit theorems

spectral measure

extremal eigenvalues

catch the new rate (mean)1/3

from the Gaussian case to non-Gaussian models

Page 96: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

(brief) survey of recent approaches to

non-asymptotic exponential inequalities

quantify the limit theorems

spectral measure

extremal eigenvalues

catch the new rate (mean)1/3

from the Gaussian case to non-Gaussian models

Page 97: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

(brief) survey of recent approaches to

non-asymptotic exponential inequalities

quantify the limit theorems

spectral measure

extremal eigenvalues

catch the new rate (mean)1/3

from the Gaussian case to non-Gaussian models

Page 98: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

two main questions and objectives

tail inequalities for the spectral measure

P( M∑

k=1

f (λNk ) ≥ t

)

Page 99: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

two main questions and objectives

tail inequalities for the spectral measure

P( M∑

k=1

f (λNk ) ≥ t

)

Page 100: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem

1

M

M∑k=1

δλNk→ ν on

(a(ρ), b(ρ)

)M ∼ ρN

global regime

large deviation asymptotics of the spectral measure

fluctuations of the spectral measure

M∑k=1

[f(λNk)−∫R f dν

]→ G Gaussian variable

f : R→ R smooth

Page 101: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

two main questions and objectives

tail inequalities for the spectral measure

P( M∑

k=1

f (λNk ) ≥ t

)

tail inequalities for the extremal eigenvalues

P(λNM ≥ b(ρ) + ε

)

Page 102: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

two main questions and objectives

tail inequalities for the spectral measure

P( M∑

k=1

f (λNk ) ≥ t

)

tail inequalities for the extremal eigenvalues

P(λNM ≥ b(ρ) + ε

)

Page 103: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN→ b(ρ) =

(1 +√ρ)2

M ∼ ρN

fluctuations around b(ρ)

complex or real Gaussian (Wishart matrices)

M2/3[λNM − b(ρ)

]→ C (ρ)FTW

FTW C. Tracy, H. Widom (1994) distribution

K. Johansson (2000), I. Johnstone (2001)

Page 104: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

two main questions and objectives

tail inequalities for the spectral measure

P( M∑

k=1

f (λNk ) ≥ t

)

tail inequalities for the extremal eigenvalues

P(λNM ≥ b(ρ) + ε

)

Wishart matrices

more general covariance matrices

Page 105: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

two main questions and objectives

tail inequalities for the spectral measure

P( M∑

k=1

f (λNk ) ≥ t

)

tail inequalities for the extremal eigenvalues

P(λNM ≥ b(ρ) + ε

)

Wishart matrices

more general covariance matrices

Page 106: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration tool

F = F (Y Y t) = F (Yij)

satisfactory for the global regime

less satisfactory for the local regime

specific functionals

eigenvalue counting function

extreme eigenvalues

Page 107: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration tool

F = F (Y Y t) = F (Yij)

satisfactory for the global regime

less satisfactory for the local regime

specific functionals

eigenvalue counting function

extreme eigenvalues

Page 108: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration tool

F = F (Y Y t) = F (Yij)

satisfactory for the global regime

less satisfactory for the local regime

specific functionals

eigenvalue counting function

extreme eigenvalues

Page 109: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration tool

F = F (Y Y t) = F (Yij)

satisfactory for the global regime

less satisfactory for the local regime

specific functionals

eigenvalue counting function

extreme eigenvalues

Page 110: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration tool

F = F (Y Y t) = F (Yij)

satisfactory for the global regime

less satisfactory for the local regime

specific functionals

eigenvalue counting function

extreme eigenvalues

Page 111: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

two main questions and objectives

tail inequalities for the spectral measure

P( M∑

k=1

f (λNk ) ≥ t

)

tail inequalities for the extremal eigenvalues

P(λNM ≥ b(ρ) + ε

)

Wishart matrices

more general covariance matrices

Page 112: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the spectral measure

A. Guionnet, O. Zeitouni (2000)

measure concentration tool

f : R→ R smooth (Lipschitz)

X = (Xij)1≤i ,j≤M M ×M symmetric matrix

eigenvalues λ1 ≤ · · · ≤ λM

F : X → Tr f (X ) =M∑k=1

f (λk) Lipschitz

with respect to the Euclidean structure on M ×M matrices

convex if f is convex

Page 113: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the spectral measure

A. Guionnet, O. Zeitouni (2000)

measure concentration tool

f : R→ R smooth (Lipschitz)

X = (Xij)1≤i ,j≤M M ×M symmetric matrix

eigenvalues λ1 ≤ · · · ≤ λM

F : X → Tr f (X ) =M∑k=1

f (λk) Lipschitz

with respect to the Euclidean structure on M ×M matrices

convex if f is convex

Page 114: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the spectral measure

A. Guionnet, O. Zeitouni (2000)

measure concentration tool

f : R→ R smooth (Lipschitz)

X = (Xij)1≤i ,j≤M M ×M symmetric matrix

eigenvalues λ1 ≤ · · · ≤ λM

F : X → Tr f (X ) =M∑k=1

f (λk) Lipschitz

with respect to the Euclidean structure on M ×M matrices

convex if f is convex

Page 115: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the spectral measure

A. Guionnet, O. Zeitouni (2000)

measure concentration tool

f : R→ R smooth (Lipschitz)

X = (Xij)1≤i ,j≤M M ×M symmetric matrix

eigenvalues λ1 ≤ · · · ≤ λM

F : X → Tr f (X ) =M∑k=1

f (λk) Lipschitz

with respect to the Euclidean structure on M ×M matrices

convex if f is convex

Page 116: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the spectral measure

A. Guionnet, O. Zeitouni (2000)

measure concentration tool

f : R→ R smooth (Lipschitz)

X = (Xij)1≤i ,j≤M M ×M symmetric matrix

eigenvalues λ1 ≤ · · · ≤ λM

F : X → Tr f (X ) =M∑k=1

f (λk) Lipschitz

with respect to the Euclidean structure on M ×M matrices

convex if f is convex

Page 117: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

concentration inequalities

Sn = 1√n

(X1 + · · ·+ Xn)

F (X ) = F (X1, . . . ,Xn), F : Rn → R 1-Lipschitz

X1, . . . ,Xn independenty standard Gaussian

P(F (X ) ≥ E

(F (X )

)+ t)≤ e−t

2/2, t ≥ 0

0 ≤ Xi ≤ 1 independent, F 1-Lipschitz and convex

P(F (X ) ≥ E

(F (X )

)+ t)≤ 2 e−t

2/4, t ≥ 0

M. Talagrand (1995)

Page 118: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the spectral measure

Gaussian entries Yij

f : R→ R such that f (x2) 1-Lipschitz

P( M∑

k=1

[f (λNk )− E

(f (λNk )

)]≥ t

)≤ C (ρ) e−t

2/C(ρ), t ≥ 0

compactly supported entries Yij

f : R→ R such that f (x2) 1-Lipschitz and convex

Page 119: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the spectral measure

Gaussian entries Yij

f : R→ R such that f (x2) 1-Lipschitz

P( M∑

k=1

[f (λNk )− E

(f (λNk )

)]≥ t

)≤ C (ρ) e−t

2/C(ρ), t ≥ 0

compactly supported entries Yij

f : R→ R such that f (x2) 1-Lipschitz and convex

Page 120: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the spectral measure

Gaussian entries Yij

f : R→ R such that f (x2) 1-Lipschitz

P( M∑

k=1

[f (λNk )− E

(f (λNk )

)]≥ t

)≤ C (ρ) e−t

2/C(ρ), t ≥ 0

compactly supported entries Yij

f : R→ R such that f (x2) 1-Lipschitz and convex

Page 121: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the spectral measure

Gaussian entries Yij

f : R→ R such that f (x2) 1-Lipschitz

P( M∑

k=1

[f (λNk )− E

(f (λNk )

)]≥ t

)≤ C (ρ) e−t

2/C(ρ), t ≥ 0

compactly supported entries Yij

f : R→ R such that f (x2) 1-Lipschitz and convex

Page 122: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

Marchenko-Pastur theorem

1

M

M∑k=1

δλNk→ ν on

(a(ρ), b(ρ)

)M ∼ ρN

global regime

large deviation asymptotics of the spectral measure

fluctuations of the spectral measure

M∑k=1

[f(λNk)−∫R f dν

]→ G Gaussian variable

f : R→ R smooth

Page 123: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

non-Lipschitz functions f

typically f = 1I , I ⊂ R interval

M∑k=1

f(λNk)

= #{λNk ∈ I

}= NI counting function

Wishart matrices (determinantal structure)

I interval in (a, b)

1√logM

[NI − E(NI )

]→ G Gaussian variable

exponential tail inequalities

P(NI − E(NI ) ≥ t

)≤ C e−ct log(1+t/ logM), t ≥ 0

Var(NI

)= O(logM)

Page 124: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

non-Lipschitz functions f

typically f = 1I , I ⊂ R interval

M∑k=1

f(λNk)

= #{λNk ∈ I

}= NI counting function

Wishart matrices (determinantal structure)

I interval in (a, b)

1√logM

[NI − E(NI )

]→ G Gaussian variable

exponential tail inequalities

P(NI − E(NI ) ≥ t

)≤ C e−ct log(1+t/ logM), t ≥ 0

Var(NI

)= O(logM)

Page 125: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

non-Lipschitz functions f

typically f = 1I , I ⊂ R interval

M∑k=1

f(λNk)

= #{λNk ∈ I

}= NI counting function

Wishart matrices (determinantal structure)

I interval in (a, b)

1√logM

[NI − E(NI )

]→ G Gaussian variable

exponential tail inequalities

P(NI − E(NI ) ≥ t

)≤ C e−ct log(1+t/ logM), t ≥ 0

Var(NI

)= O(logM)

Page 126: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

non-Lipschitz functions f

typically f = 1I , I ⊂ R interval

M∑k=1

f(λNk)

= #{λNk ∈ I

}= NI counting function

Wishart matrices (determinantal structure)

I interval in (a, b)

1√logM

[NI − E(NI )

]→ G Gaussian variable

exponential tail inequalities

P(NI − E(NI ) ≥ t

)≤ C e−ct log(1+t/ logM), t ≥ 0

Var(NI

)= O(logM)

Page 127: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

non-Lipschitz functions f

typically f = 1I , I ⊂ R interval

M∑k=1

f(λNk)

= #{λNk ∈ I

}= NI counting function

Wishart matrices (determinantal structure)

I interval in (a, b)

1√logM

[NI − E(NI )

]→ G Gaussian variable

exponential tail inequalities

P(NI − E(NI ) ≥ t

)≤ C e−ct log(1+t/ logM), t ≥ 0

Var(NI

)= O(logM)

Page 128: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

non-Lipschitz functions f

typically f = 1I , I ⊂ R interval

M∑k=1

f(λNk)

= #{λNk ∈ I

}= NI counting function

Wishart matrices (determinantal structure)

I interval in (a, b)

1√logM

[NI − E(NI )

]→ G Gaussian variable

exponential tail inequalities

P(NI − E(NI ) ≥ t

)≤ C e−ct log(1+t/ logM), t ≥ 0

Var(NI

)= O(logM)

Page 129: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

non-Gaussian covariance matrices

comparison with Wishart model

partial results

localization results L. Erdos, H.-T. Yau (2009-12)

Lindeberg comparison method T. Tao, V. Vu (2010-11)

Var(NI

)= O(logM)

S. Dallaporta, V. Vu (2011)

P(NI − E(NI ) ≥ t

)≤ C e−ct

δ, t ≥ C logM, 0 < δ ≤ 1

T. Tao, V. Vu (2012)

Page 130: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

non-Gaussian covariance matrices

comparison with Wishart model

partial results

localization results L. Erdos, H.-T. Yau (2009-12)

Lindeberg comparison method T. Tao, V. Vu (2010-11)

Var(NI

)= O(logM)

S. Dallaporta, V. Vu (2011)

P(NI − E(NI ) ≥ t

)≤ C e−ct

δ, t ≥ C logM, 0 < δ ≤ 1

T. Tao, V. Vu (2012)

Page 131: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

non-Gaussian covariance matrices

comparison with Wishart model

partial results

localization results L. Erdos, H.-T. Yau (2009-12)

Lindeberg comparison method T. Tao, V. Vu (2010-11)

Var(NI

)= O(logM)

S. Dallaporta, V. Vu (2011)

P(NI − E(NI ) ≥ t

)≤ C e−ct

δ, t ≥ C logM, 0 < δ ≤ 1

T. Tao, V. Vu (2012)

Page 132: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

non-Gaussian covariance matrices

comparison with Wishart model

partial results

localization results L. Erdos, H.-T. Yau (2009-12)

Lindeberg comparison method T. Tao, V. Vu (2010-11)

Var(NI

)= O(logM)

S. Dallaporta, V. Vu (2011)

P(NI − E(NI ) ≥ t

)≤ C e−ct

δ, t ≥ C logM, 0 < δ ≤ 1

T. Tao, V. Vu (2012)

Page 133: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

non-Lipschitz functions f

typically f = 1I , I ⊂ R interval

M∑k=1

f(λNk)

= #{λNk ∈ I

}= NI counting function

Wishart matrices (determinantal structure)

I interval in (a, b)

1√logM

[NI − E(NI )

]→ G Gaussian variable

exponential tail inequalities

P(NI − E(NI ) ≥ t

)≤ C e−ct log(1+t/ logM), t ≥ 0

Var(NI

)= O(logM)

Page 134: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

two main questions and objectives

tail inequalities for the spectral measure

P( M∑

k=1

f (λNk ) ≥ t

)

tail inequalities for the extremal eigenvalues

P(λNM ≥ b(ρ) + ε

)

Wishart matrices

more general covariance matrices

Page 135: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

two main questions and objectives

tail inequalities for the spectral measure

P( M∑

k=1

f (λNk ) ≥ t

)

tail inequalities for the extremal eigenvalues

P(λNM ≥ b(ρ) + ε

)

Wishart matrices

more general covariance matrices

Page 136: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the extremal eigenvalues

fluctuations of the largest eigenvalue

M2/3[λNM − b(ρ)

]→ C (ρ)FTW M ∼ ρN

Page 137: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extremal eigenvalues

largest eigenvalue λNM = max1≤k≤M λNk

λNM =λNMN→ b(ρ) =

(1 +√ρ)2

M ∼ ρN

fluctuations around b(ρ)

complex or real Gaussian (Wishart matrices)

M2/3[λNM − b(ρ)

]→ C (ρ)FTW

FTW C. Tracy, H. Widom (1994) distribution

K. Johansson (2000), I. Johnstone (2001)

Page 138: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the extremal eigenvalues

fluctuations of the largest eigenvalue

M2/3[λNM − b(ρ)

]→ C (ρ)FTW M ∼ ρN

finite M inequalities

at the (mean)1/3 rate

reflecting the tails of FTW

bounds on Var( λNM)

Page 139: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the extremal eigenvalues

fluctuations of the largest eigenvalue

M2/3[λNM − b(ρ)

]→ C (ρ)FTW M ∼ ρN

finite M inequalities

at the (mean)1/3 rate

reflecting the tails of FTW

bounds on Var( λNM)

Page 140: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the extremal eigenvalues

fluctuations of the largest eigenvalue

M2/3[λNM − b(ρ)

]→ C (ρ)FTW M ∼ ρN

finite M inequalities

at the (mean)1/3 rate

reflecting the tails of FTW

bounds on Var( λNM)

Page 141: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

tail inequalities for the extremal eigenvalues

fluctuations of the largest eigenvalue

M2/3[λNM − b(ρ)

]→ C (ρ)FTW M ∼ ρN

finite M inequalities

at the (mean)1/3 rate

reflecting the tails of FTW

bounds on Var( λNM)

Page 142: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration tool

(Gaussian) Wishart matrix Y Y t

λNM = max1≤k≤M

λNk = sup|v |=1

|Y v |2

sNM =√λNM Lipschitz of the Gaussian entries Yij

Gaussian concentration

P(sNM ≥ E

(sNM)

+ t)≤ e−M t2/C , t ≥ 0

E(sNM) ∼√

b(ρ)

correct large deviation bounds (t ≥ 1)

Page 143: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration tool

(Gaussian) Wishart matrix Y Y t

λNM = max1≤k≤M

λNk = sup|v |=1

|Y v |2

sNM =√λNM Lipschitz of the Gaussian entries Yij

Gaussian concentration

P(sNM ≥ E

(sNM)

+ t)≤ e−M t2/C , t ≥ 0

E(sNM) ∼√

b(ρ)

correct large deviation bounds (t ≥ 1)

Page 144: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration tool

(Gaussian) Wishart matrix Y Y t

λNM = max1≤k≤M

λNk = sup|v |=1

|Y v |2

sNM =√λNM Lipschitz of the Gaussian entries Yij

Gaussian concentration

P(sNM ≥ E

(sNM)

+ t)≤ e−M t2/C , t ≥ 0

E(sNM) ∼√

b(ρ)

correct large deviation bounds (t ≥ 1)

Page 145: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration tool

(Gaussian) Wishart matrix Y Y t

λNM = max1≤k≤M

λNk = sup|v |=1

|Y v |2

sNM =√λNM Lipschitz of the Gaussian entries Yij

Gaussian concentration

P(sNM ≥ E

(sNM)

+ t)≤ e−M t2/C , t ≥ 0

E(sNM) ∼√

b(ρ)

correct large deviation bounds (t ≥ 1)

Page 146: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration tool

(Gaussian) Wishart matrix Y Y t

λNM = max1≤k≤M

λNk = sup|v |=1

|Y v |2

sNM =√λNM Lipschitz of the Gaussian entries Yij

Gaussian concentration

P(sNM ≥ E

(sNM)

+ t)≤ e−M t2/C , t ≥ 0

E(sNM) ∼√b(ρ)

correct large deviation bounds (t ≥ 1)

Page 147: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration tool

(Gaussian) Wishart matrix Y Y t

λNM = max1≤k≤M

λNk = sup|v |=1

|Y v |2

sNM =√λNM Lipschitz of the Gaussian entries Yij

Gaussian concentration

P(sNM ≥ E

(sNM)

+ t)≤ e−M t2/C , t ≥ 0

E(sNM) ∼√b(ρ)

correct large deviation bounds (t ≥ 1)

Page 148: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

measure concentration tool

(Gaussian) Wishart matrix Y Y t

λNM = max1≤k≤M

λNk = sup|v |=1

|Y v |2

sNM =√λNM Lipschitz of the Gaussian entries Yij

Gaussian concentration

P(sNM ≥ E

(sNM)

+ t)≤ e−M t2/C , t ≥ 0

E(sNM) ∼√b(ρ)

does not fit the small deviation regime t = s M−2/3

Page 149: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extreme eigenvalues

alternate tools

Riemann-Hilbert analysis (Wishart matrices)

tri-diagonal representations (Wishart and β-ensembles)

moment methods (Wishart and non-Gaussian matrices)

Page 150: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extreme eigenvalues

alternate tools

Riemann-Hilbert analysis (Wishart matrices)

tri-diagonal representations (Wishart and β-ensembles)

moment methods (Wishart and non-Gaussian matrices)

Page 151: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

extreme eigenvalues

alternate tools

Riemann-Hilbert analysis (Wishart matrices)

tri-diagonal representations (Wishart and β-ensembles)

moment methods (Wishart and non-Gaussian matrices)

Page 152: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

M2/3[λNM − b(ρ)

]→ C (ρ)FTW

P(λNM ≤ b(ρ) + s M−2/3

)→ FTW(C s)

bounds for Wishart matrices

tri-diagonal representation

B. Rider, M. L. (2010)

P(λNM ≥ b(ρ) + ε

)≤ C e−Mε3/2/C , 0 < ε ≤ 1

P(λNM ≤ b(ρ)− ε

)≤ C e−Mε3/C , 0 < ε ≤ b(ρ)

Page 153: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

M2/3[λNM − b(ρ)

]→ C (ρ)FTW

P(λNM ≤ b(ρ) + s M−2/3

)→ FTW(C s)

bounds for Wishart matrices

tri-diagonal representation

B. Rider, M. L. (2010)

P(λNM ≥ b(ρ) + ε

)≤ C e−Mε3/2/C , 0 < ε ≤ 1

P(λNM ≤ b(ρ)− ε

)≤ C e−Mε3/C , 0 < ε ≤ b(ρ)

Page 154: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

M2/3[λNM − b(ρ)

]→ C (ρ)FTW

P(λNM ≤ b(ρ) + s M−2/3

)→ FTW(C s)

bounds for Wishart matrices

tri-diagonal representation

B. Rider, M. L. (2010)

P(λNM ≥ b(ρ) + ε

)≤ C e−Mε3/2/C , 0 < ε ≤ 1

P(λNM ≤ b(ρ)− ε

)≤ C e−Mε3/C , 0 < ε ≤ b(ρ)

Page 155: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

M2/3[λNM − b(ρ)

]→ C (ρ)FTW

P(λNM ≤ b(ρ) + s M−2/3

)→ FTW(C s)

bounds for Wishart matrices

tri-diagonal representation

B. Rider, M. L. (2010)

P(λNM ≥ b(ρ) + ε

)≤ C e−Mε3/2/C , 0 < ε ≤ 1

P(λNM ≤ b(ρ)− ε

)≤ C e−Mε3/C , 0 < ε ≤ b(ρ)

Page 156: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

P(λNM ≤ b(ρ) + s M−2/3

)→ FTW(C s)

bounds for Wishart matrices

P(λNM ≥ b(ρ) + ε

)≤ C e−Mε3/2/C , 0 < ε ≤ 1

P(λNM ≤ b(ρ)− ε

)≤ C e−Mε3/C , 0 < ε ≤ b(ρ)

fit the Tracy-Widom asymptotics (ε = s M−2/3)

1− FTW(s) ∼ e−s3/2/C (s → +∞)

FTW(s) ∼ e−s3/C (s → −∞)

Var( λNM) = O( 1

M4/3

)

Page 157: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

P(λNM ≤ b(ρ) + s M−2/3

)→ FTW(C s)

bounds for Wishart matrices

P(λNM ≥ b(ρ) + ε

)≤ C e−Mε3/2/C , 0 < ε ≤ 1

P(λNM ≤ b(ρ)− ε

)≤ C e−Mε3/C , 0 < ε ≤ b(ρ)

fit the Tracy-Widom asymptotics (ε = s M−2/3)

1− FTW(s) ∼ e−s3/2/C (s → +∞)

FTW(s) ∼ e−s3/C (s → −∞)

Var( λNM) = O( 1

M4/3

)

Page 158: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

P(λNM ≤ b(ρ) + s M−2/3

)→ FTW(C s)

bounds for Wishart matrices

P(λNM ≥ b(ρ) + ε

)≤ C e−Mε3/2/C , 0 < ε ≤ 1

P(λNM ≤ b(ρ)− ε

)≤ C e−Mε3/C , 0 < ε ≤ b(ρ)

fit the Tracy-Widom asymptotics (ε = s M−2/3)

1− FTW(s) ∼ e−s3/2/C (s → +∞)

FTW(s) ∼ e−s3/C (s → −∞)

Var( λNM) = O( 1

M4/3

)

Page 159: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

P(λNM ≤ b(ρ) + s M−2/3

)→ FTW(C s)

bounds for Wishart matrices

P(λNM ≥ b(ρ) + ε

)≤ C e−Mε3/2/C , 0 < ε ≤ 1

P(λNM ≤ b(ρ)− ε

)≤ C e−Mε3/C , 0 < ε ≤ b(ρ)

fit the Tracy-Widom asymptotics (ε = s M−2/3)

1− FTW(s) ∼ e−s3/2/C (s → +∞)

FTW(s) ∼ e−s3/C (s → −∞)

Var( λNM) = O( 1

M4/3

)

Page 160: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

M2/3[λNM − b(ρ)

]→ C (ρ)FTW

b(ρ) =(1 +√ρ)2

λNM = λNM/N, M = M(N) ∼ ρN

(√MN)1/3

(√M +

√N)4/3

(λNM − (

√M +

√N)2

)→ FTW

N + 1 ≥ M 0 < ε ≤ 1

P(λNM ≥ (

√M +

√N)2(1 + ε)

)≤ C e

−√MN ε3/2( 1√

ε∧(

MN

)1/4)/C

P(λNM ≤ (

√M +

√N)2(1− ε)

)≤ C e−MN ε3( 1

ε∧(

MN

)1/2)/C

Page 161: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

M2/3[λNM − b(ρ)

]→ C (ρ)FTW

b(ρ) =(1 +√ρ)2

λNM = λNM/N, M = M(N) ∼ ρN

(√MN)1/3

(√M +

√N)4/3

(λNM − (

√M +

√N)2

)→ FTW

N + 1 ≥ M 0 < ε ≤ 1

P(λNM ≥ (

√M +

√N)2(1 + ε)

)≤ C e

−√MN ε3/2( 1√

ε∧(

MN

)1/4)/C

P(λNM ≤ (

√M +

√N)2(1− ε)

)≤ C e−MN ε3( 1

ε∧(

MN

)1/2)/C

Page 162: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

bi and tri-diagonal representation

B =

χN 0 0 · · · · · · 0

χ(M−1) χN−1 0 0 · · ·...

0 χ(M−2) χN−3 0. . .

...... 0

. . .. . .

. . . 0... · · · . . . χ2 χN−M+2 00 · · · · · · 0 χ1 χN−M+1

χ(N−1), . . . , χ1, χ(M−1), . . . , χ1 independent chi-variables

B Bt same spectrum as Y Y t (Wishart)

H. Trotter (1984), A. Edelman, I. Dimitriu (2002)

extension to β-ensembles

Page 163: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

bi and tri-diagonal representation

B =

χN 0 0 · · · · · · 0

χ(M−1) χN−1 0 0 · · ·...

0 χ(M−2) χN−3 0. . .

...... 0

. . .. . .

. . . 0... · · · . . . χ2 χN−M+2 00 · · · · · · 0 χ1 χN−M+1

χ(N−1), . . . , χ1, χ(M−1), . . . , χ1 independent chi-variables

B Bt same spectrum as Y Y t (Wishart)

H. Trotter (1984), A. Edelman, I. Dimitriu (2002)

extension to β-ensembles

Page 164: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

bi and tri-diagonal representation

B =

χN 0 0 · · · · · · 0

χ(M−1) χN−1 0 0 · · ·...

0 χ(M−2) χN−3 0. . .

...... 0

. . .. . .

. . . 0... · · · . . . χ2 χN−M+2 00 · · · · · · 0 χ1 χN−M+1

χ(N−1), . . . , χ1, χ(M−1), . . . , χ1 independent chi-variables

B Bt same spectrum as Y Y t (Wishart)

H. Trotter (1984), A. Edelman, I. Dimitriu (2002)

extension to β-ensembles

Page 165: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

bi and tri-diagonal representation

B =

χN 0 0 · · · · · · 0

χ(M−1) χN−1 0 0 · · ·...

0 χ(M−2) χN−3 0. . .

...... 0

. . .. . .

. . . 0... · · · . . . χ2 χN−M+2 00 · · · · · · 0 χ1 χN−M+1

χ(N−1), . . . , χ1, χ(M−1), . . . , χ1 independent chi-variables

B Bt same spectrum as Y Y t (Wishart)

H. Trotter (1984), A. Edelman, I. Dimitriu (2002)

extension to β-ensembles

Page 166: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

bi and tri-diagonal representation

B =

χN 0 0 · · · · · · 0

χ(M−1) χN−1 0 0 · · ·...

0 χ(M−2) χN−3 0. . .

...... 0

. . .. . .

. . . 0... · · · . . . χ2 χN−M+2 00 · · · · · · 0 χ1 χN−M+1

χ(N−1), . . . , χ1, χ(M−1), . . . , χ1 independent chi-variables

B Bt same spectrum as Y Y t (Wishart)

H. Trotter (1984), A. Edelman, I. Dimitriu (2002)

extension to β-ensembles

Page 167: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

bounds for non-Gaussian entries

moment method E(Tr((YY t)p

))O. Feldheim, S. Sodin (2010)

largest eigenvalue (symmetric, subGaussian entries)

P(λNM ≥ b(ρ) + ε

)≤ C e−M ε3/2/C , 0 < ε ≤ 1

below the mean ?

necessary for variance bounds

Page 168: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

bounds for non-Gaussian entries

moment method E(Tr((YY t)p

))O. Feldheim, S. Sodin (2010)

largest eigenvalue (symmetric, subGaussian entries)

P(λNM ≥ b(ρ) + ε

)≤ C e−M ε3/2/C , 0 < ε ≤ 1

below the mean ?

necessary for variance bounds

Page 169: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

bounds for non-Gaussian entries

moment method E(Tr((YY t)p

))O. Feldheim, S. Sodin (2010)

largest eigenvalue (symmetric, subGaussian entries)

P(λNM ≥ b(ρ) + ε

)≤ C e−M ε3/2/C , 0 < ε ≤ 1

below the mean ?

necessary for variance bounds

Page 170: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

bounds for non-Gaussian entries

moment method E(Tr((YY t)p

))O. Feldheim, S. Sodin (2010)

largest eigenvalue (symmetric, subGaussian entries)

P(λNM ≥ b(ρ) + ε

)≤ C e−M ε3/2/C , 0 < ε ≤ 1

below the mean ?

necessary for variance bounds

Page 171: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

variance level

Var( λNM) = O( 1

M4/3

)

S. Dallaporta (2012)

comparison with Wishart model

localization results L. Erdos, H.-T. Yau (2009-12)

Lindeberg comparison method T. Tao, V. Vu (2010-11)

Page 172: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

variance level

Var( λNM) = O( 1

M4/3

)

S. Dallaporta (2012)

comparison with Wishart model

localization results L. Erdos, H.-T. Yau (2009-12)

Lindeberg comparison method T. Tao, V. Vu (2010-11)

Page 173: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

smallest eigenvalue

soft edge M = M(N) ∼ ρN, ρ < 1

a(ρ) =(1−√ρ

)2

P(λN1 ≤ a(ρ)− ε

)≤ C e−M ε3/2/C , 0 < ε ≤ 1

P(λN1 ≥ a(ρ) + ε

)≤ C e−M ε3/C , 0 < ε ≤ a(ρ)

Wishart matrices B. Rider, M. L. (2010)

Page 174: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

smallest eigenvalue

soft edge M = M(N) ∼ ρN, ρ < 1

a(ρ) =(1−√ρ

)2

P(λN1 ≤ a(ρ)− ε

)≤ C e−M ε3/2/C , 0 < ε ≤ 1

P(λN1 ≥ a(ρ) + ε

)≤ C e−M ε3/C , 0 < ε ≤ a(ρ)

Wishart matrices B. Rider, M. L. (2010)

Page 175: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

smallest eigenvalue

hard edge M = N, ρ = 1

a(ρ) =(1−√ρ

)2= 0

P(λN1 ≤

ε

N2

)≤ C

√ε+ C e−cN

large families of covariance matrices

M. Rudelson, R. Vershynin (2008-10)

Page 176: Concentration Inequalities for Random Matrices · Concentration Inequalities for Random Matrices M. Ledoux Institut de Math ematiques de Toulouse, France

smallest eigenvalue

hard edge M = N, ρ = 1

a(ρ) =(1−√ρ

)2= 0

P(λN1 ≤

ε

N2

)≤ C

√ε+ C e−cN

large families of covariance matrices

M. Rudelson, R. Vershynin (2008-10)