Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made...

37
Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses) Z. Fodor University of Wuppertal, Forschungszentrum Juelich, Eotvos University Budapest Nara, December 14, 2012 (talk for non-experts) Z. Fodor Computational particle physics: lattice QCD (approach

Transcript of Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made...

Page 1: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Computational particle physics: lattice QCD(approaching the continuum limit with physical quark masses)

Z. Fodor

University of Wuppertal, Forschungszentrum Juelich, Eotvos University Budapest

Nara, December 14, 2012

(talk for non-experts)

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 2: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Outline

1 Spectrum

2 Quark masses

3 QCD transition

4 Tc & EoS

5 NN interaction

6 High densities

7 CPU-resources

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 3: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

QCD: need for a systematic non-perturbative method

in some cases (g-2): perturbative approach is good; in other cases: bad

pressure at high temperatures converges at T=10300 MeV

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 4: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Lattice field theory

systematic non-perturbative approach (numerical solution):

quantum fields on the lattice

quantum theory: path integral formulation with S=Ekin-Epot

quantum mechanics: for all possible paths add exp(iS)quantum fields: for all possible field configurations add exp(iS)

Euclidean space-time (t=iτ ): exp(-S) sum of Boltzmann factors

we do not have infinitely large computers⇒ two restrictions

a. put it on a space-time grid (proper approach: asymptotic freedom)formally: four-dimensional statistical systemb. finite size of the system (can be also controlled)

⇒ stochastic approach, with reasonable spacing/size: solvable

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 5: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

x

y

t

fine lattice to resolve thestructure of the proton (<∼0.1 fm)few fm size is needed50-100 points in ‘xyz/t’ directionsa⇒a/2 means 100-200×CPU

mathematically109 dimensional integrals

advanced techniques,good balance andorder of Pflops are needed

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 6: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Lattice Lagrangian: gauge fields

U (x+e )µΨ (x)

a

µ

Plaquette

µνP

µ

ν

L = −14F a

µνF aµν + ψ(Dµγµ + m)ψ

anti-commuting ψ(x) quark fields live on the sitesgluon fields, Aa

µ(x) are used as links and plaquettes

U(x , y) = exp (igs∫ y

x dx ′µ Aaµ(x ′)λa/2)

Pµν(n) = Uµ(n)Uν(n + eµ)U†µ(n + eν)U†ν(n)

S = Sg + Sf consists of the pure gluonic and the fermionic parts

Sg = 6/g2s ·∑

n,µ,ν [1− Re(Pµν(n))]

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 7: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Lattice Lagrangian: fermionic fields

quark differencing scheme:

ψ(x)γµ∂µψ(x)→ ψnγµ(ψn+eµ − ψn−eµ)

ψ(x)γµDµψ(x)→ ψnγµUµ(n)ψn+eµ + ...

fermionic part as a bilinear expression: Sf = ψnMnmψmwe need 2 light quarks (u,d) and the strange quark: nf = 2 + 1

(complication: doubling with 16 fermions⇒ staggered/Wilson)

Euclidean partition function is given by the Boltzmann weights

Z =

∫ ∏n,µ

[dUµ(x)][dψn][dψn]e−Sg−Sf =∫ ∏

n,µ

[dUµ(n)]e−Sg det(M[U])

using two fermionic fields instead of one: det2(M[U])

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 8: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Importance sampling

Z=∫ ∏

n,µ

[dUµ(n)]e−Sg det(M[U])

we do not take into account all possible gauge configuration

each of them is generated with a probability ∝ its weight

importance sampling, Metropolis algorithm:(all other algorithms are based on importance sampling)

P(U → U ′) = min[1,exp(−∆Sg) det(M[U ′])/det(M[U])

]gauge part: trace of 3×3 matrices (easy, without M: quenched)fermionic part: determinant of 106 × 106 sparse matrices (hard)

more efficient ways than direct evaluation (Mx=a), but still hardZ. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 9: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Hadron spectroscopy in lattice QCD

Determine the transition amplitude between:having a “particle” at time 0 and the same “particle” at time t⇒ Euclidean correlation function of a composite operator O:

C(t) = 〈0|O(t)O†(0)|0〉

insert a complete set of eigenvectors |i〉

=∑

i〈0|eHt O(0) e−Ht |i〉〈i |O†(0)|0〉 =∑

i |〈0|O†(0)|i〉|2 e−(Ei−E0)t ,

where |i〉: eigenvectors of the Hamiltonian with eigenvalue Ei .

and O(t) = eHt O(0) e−Ht .

t large ⇒ lightest states (created by O) dominate: C(t) ∝ e−M·t

t large ⇒ exponential fits or mass plateaus Mt=log[C(t)/C(t+1)]

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 10: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Quenched results

QCD is 40 years old⇒ properties of hadrons (Rosenfeld table)

non-perturbative lattice formulation (Wilson) immediately appearedneeded 20 years even for quenched result of the spectrum (cheap)instead of det(M) of a 106×106 matrix trace of 3×3 matrices

always at the frontiers of computer technology:GF11: IBM "to verify quantum chromodynamics" (10 Gflops, ’92)CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

m (

GeV

)

GF11 infinite volume K−inputCP−PACS K−inputCP−PACS φ−input

K

K*

φN

ΛΣ

Ξ

∆Σ*

Ξ*

Ω

the ≈10% discrepancy was believed to be a quenching effectZ. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 11: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Difficulties of full dynamical calculations

though the quenched result can be qualitatively correctuncontrolled systematics⇒ full “dynamical” studiesby two-three orders of magnitude more expensive (balance)present day machines offer several Pflops

no revolution but evolution in the algorithmic developmentsBerlin Wall ’01: it is extremely difficult to reach small quark masses:

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 12: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Scale setting and masses in lattice QCDin meteorology, aircraft industry etc. grid spacing is set by handin lattice QCD we use g,mud and ms in the Lagrangian (’a’ not)measure e.g. the vacuum mass of a hadron in lattice units: MΩasince we know that MΩ=1672 MeV we obtain ’a’masses are obtained by correlated fits (choice of fitting ranges)illustration: mass plateaus at the smallest Mπ ≈190 MeV (noisiest)

4 8 12t/a

00.10.20.30.40.50.60.70.80.9

a M

K

N

volumes and masses for unstable particles: avoided level crossingdecay phenomena included: in finite V shifts of the energy levels⇒ decay width (coupling) & masses of the heavy and light statesZ. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 13: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Final result for the hadron spectrum S. Durr et al., Science 322 1224 2008

0

500

1000

1500

2000

M[M

eV

]

p

K

r K* NLSX D

S*X*O

experiment

width

input

Budapest-Marseille-Wuppertal collaboration

QCD

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 14: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Light hadron spectrum summary: A. Kronfeld 1209.3468

ρ K K∗ η φ N Λ Σ Ξ Δ Σ∗

Ξ∗ Ωπ ηʹ ω0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

(MeV

)

© 2012 Andreas Kronfeld/Fermi Natl Accelerator Lab.

results with various actions and fermion formulations(!) are the same

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 15: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

The mass is not the sum of the constituents’ mass

usually the mass of “some ordinary thing” is justthe sum of the mass of its constituents (upto tiny corrections)

origin of the mass of the visible universe: dramatically differentproton is made up of massless gluons and almost massless quarks

mass of a quark is ≈5 MeV, that of a proton (hadron) is ≈1000 MeV

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 16: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

The calculation that we have been dreaming of doing

Nf = 2 + 1 all the way down to Mπ<∼135 MeV to allow smallinterpolation to physical mass pointLarge L>∼5− 6 fm to have sub percent finite V errorsAt least three a ≤ 0.1 fm for controlled continuum limitA reliable determination of the scale with a well measuredphysical observableFull nonperturbative renormalizationComplete analysis of systematic uncertainties

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 17: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Where do we stand in lattice QCD?

all simulations with Nf 2,2+1 and 2+1+1 and Mπ < 400 MeVvery first physical mass point simulations: PACS-CS Collaboration

0 0.05 0.1 0.15a[fm]

0

200

400

600

Mπ[M

eV]

ETMC '09 (2)ETMC '10 (2+1+1)MILC '10MILC '12QCDSF '10 (2)QCDSF-UKQCD '10BMWc '10BMWc'08PACS-CS '09RBC/UKQCD '10JLQCD/TWQCD '09HSC '08BGR '10CLS '10 (2)

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 18: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Continuum extrapolation of renormalized massesRenormalized quark masses interpolated in M2

π & M2K to physical point using:

SU(2) χPT

or low-order polynomial anszätze

with cuts on pion mass Mπ < 340, 380 MeV

Example of continuum extrapolations:

for ms/mud the continuum extrapolation is flat

a=

0.0

6 f

m

a=

0.0

8 f

m

a=

0.1

0 f

m

a=

0.1

2 f

m

0

1

2

3

4

mud

RI (4

GeV

) [M

eV

]

0 0.01 0.02 0.03 0.04αa[fm]

a=

0.0

6 f

m

a=

0.0

8 f

m

a=

0.1

0 f

m

a=

0.1

2 f

m

0

40

80

120

msR

I (4G

eV

) [M

eV

]

0 0.01 0.02 0.03 0.04αa[fm]

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 19: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Outline: what has lattice done for the phase diagram

.Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 20: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Outline: what has lattice done for the phase diagram

cross-over: Y. Aoki, G. Endrodi, Z. Fodor, S. Katz, K. Szabo, Nature 443 (2006) 675

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 21: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Outline: what has lattice done for the phase diagram

cross-over, absolute scale (Tc)Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 22: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Outline: what has lattice done for the phase diagram

cross-over, Tc , EoSZ. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 23: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Outline: what has lattice done for the phase diagram

cross-over, Tc , EoS, curvature of phase line, µ>0 EoS, fluct.Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 24: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Finite size scaling in the quenched theory

look at the susceptibility of the Polyakov-linefirst order transition (Binder) =⇒ peak width ∝ 1/V, peak height ∝ V

finite size scaling shows: the transition is of first order

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 25: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Approaching the continuum limuit

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 26: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Approaching the continuum limuit

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 27: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Approaching the continuum limuit

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 28: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Approaching the continuum limuit

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 29: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Approaching the continuum limuit

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 30: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

The nature of the QCD transition: analytic

• finite size scaling analysis with continuum extrapolated T 4/m2∆χ

the result is consistent with an approximately constant behaviorfor a factor of 5 difference within the volume rangechance probability for 1/V is 10−19 for O(4) is 7 · 10−13

continuum result with physical quark masses in staggered QCD:the QCD transition is a cross-over

Wuppertal-Budapest Collaboration: Y.Aoki, G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, Nature, 443 (2006) 675

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 31: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

The nature of the QCD transition

Y.Aoki, G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, Nature, 443 (2006) 675

analytic transition (cross-over)⇒ it has no unique Tc :examples: melting of butter (not ice) & water-steam transition

l

above the critical point cp and dρ/dT give different Tcs.QCD: chiral & quark number susceptibilities or Polyakov loopthey result in different Tc values⇒ physical difference

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 32: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Wuppertal-Budapest & hotQCD: staggered Tc & eos

Wuppertal-Budapest: Tc PLB 643 ’06 46; JHEP 906 ’09 88; 1009 ’10 73 eos JHEP 601 ’06 89; 1011 ’10 77

hotQCD: Tc Phys. Rev. D85 (2012) 054503 eos Phys. Rev. D77 (2008) 014511; D80 (2009) 014504

Tc from chiral condensate equation of state (eos)

0

0.2

0.4

0.6

0.8

1

120 140 160 180 200T [MeV]

Δl,sr1 scale

asqtad: Nτ=8Nτ=12

HISQ/tree: Nτ=6Nτ=8

Nτ=12stout, cont.

0

1

2

3

4

5

6

7

100 150 200 250 300 350 400

(ε-3

p)/

T4

T [MeV]

HotQCD results:

p4 Nt=8

asqtad Nt=8

HISQ Nt=8

HISQ Nt=12

0

1

2

3

4

5

6

7

100 150 200 250 300 350 400

(ε-3

p)/

T4

T [MeV]

Wuppertal-Budapestresults:stout continuum

Wuppertal-Budapest: Tc=157(4) MeV; hotQCD: Tc=154(9) MeV

Wuppertal-Budapest: eos-peak ≈4; hotQCD: ≈70,50,40,25% higher

theoretically more solid: Wilson (WHOT-QCD); best: overlap (JLQCD)Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 33: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Project group A02: HAL-BMW cooperation

NN potential & phase-shift for Mπ=300 & 135 MeV (2HEX action)

0 0.05 0.1 0.15a[fm]

0

200

400

600

Mπ[M

eV]

ETMC '09 (2)ETMC '10 (2+1+1)MILC '10MILC '12QCDSF '10 (2)QCDSF-UKQCD '10BMWc '10BMWc'08PACS-CS '09RBC/UKQCD '10JLQCD/TWQCD '09HSC '08BGR '10CLS '10 (2)

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 34: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Project group A03: large baryonic densities

Z=∫ ∏

n,µ

[dUµ(n)]e−Sg det(M[U])

we do not take into account all possible gauge configuration

each of them is generated with a probability ∝ its weight

importance sampling, Metropolis algorithm:(all other algorithms are based on importance sampling)

P(U → U ′) = min[1,exp(−∆Sg) det(M[U ′])/det(M[U])

]for µ 6= 0 the determinant is complex⇒ sign problemno importance sampling is possible

reduction of M: staggered (Fodor-Katz) & Wilson (Nagata-Nakamura)Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 35: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Continuum prediction for the curvature: full result

G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, JHEP 1104 2011 001

dashed line: freeze-out curve from experiments

lower solid line: Tc from the chiral condensateupper solid line: Tc from the strange susceptibility

bands (red and blue) indicate the widths of the transition linesthe widths remain in this order approximately the sameleading order: no critical point (*plan: higher order & full method)Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 36: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Project group A04: message of computational physics

M’s eigenvalues close to 0: CPU demanding (large condition number)

0

50

100

150

200

250

300

350

4K 98K 196K 295K

1 24 48 72

Perf

orm

ance

/TFl

op/s

# Parallel tasks

Number of BG/P racks

go down to physical pion masses⇒ algorithmically safe

Blue Gene shows perfect strong scaling from 1 midplane to 72 racksour sustained performance is as high as 37% of the peak

single K20 GPU card performance upto 570 Gflops (staggered)(other major source: cell based special purpose machine QPACE)

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)

Page 37: Computational particle physics: lattice QCD · 2012. 12. 17. · CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 m (GeV) GF11 infinite

Spectrum Quark masses QCD transition Tc & EoS NN interaction High densities CPU-resources

Summary: physical quark masses and continuum limit

1 Spectrum

2 Quark masses

3 QCD transition

4 Tc & EoS

5 NN interaction

6 High densities

7 CPU-resources

Z. Fodor Computational particle physics: lattice QCD (approaching the continuum limit with physical quark masses)