Computational Modeling of Multiphase Geomaterial

409
FUSAO OKA SAYURI KIMOTO COMPUTATIONAL MODELING OF MULTIPHASE GEOMATERIALS A SPON PRESS BOOK

Transcript of Computational Modeling of Multiphase Geomaterial

  • GEOTECHNICAL ENGINEERING

    Computational Modeling of Multiphase Geomaterials discusses how numerical methods play a very important role in geotechnical engineering and in the related activity of computational geotechnics. It shows how numerical methods and constitutive modeling can help predict the behavior of geomaterials such as soil and rock.

    After presenting the fundamentals of continuum mechanics, the book explores recent advances in the use of modeling and numerical methods for multiphase geomaterial applications. The authors describe the constitutive modeling of soils for rate-dependent behavior, strain localization, multiphase theory, and applications in the context of large deformations. They also emphasize viscoplasticity and watersoil coupling.

    Features

    Explains how to predict the behavior of geomaterials

    Contains the governing equations for multiphase geomaterials

    Discusses the constitutive modeling of multiphase geomaterials, including elastoplastic and elastoviscoplastic models

    Presents numerical methods, such as the finite element method, for analyzing geomaterials

    Covers the latest developments in geomechanics, including the deformation-seepage flow coupled analysis of an unsaturated river embankment

    Drawing on the authors well-regarded work in the field, this book provides you with the knowledge and tools to tackle problems in geomechanics. It gives you a comprehensive understanding of how to apply continuum mechanics, constitutive modeling, finite element analysis, and numerical methods to predict the behavior of soil and rock.

    ISBN: 978-0-415-80927-6

    9 780415 809276

    90000

    w w w . s p o n p r e s s . c o m

    Y132935

    CO

    MP

    UTA

    TIO

    NA

    L M

    OD

    ELIN

    G O

    FM

    ULT

    IPH

    AS

    E G

    EO

    MA

    TE

    RIA

    LS

    FUSAO OKASAYURI KIMOTO

    COMPUTATIONALMODELING OFMULTIPHASEGEOMATERIALS

    OK

    AK

    IMO

    TO

    A S P O N P R E S S B O O K

    Y132935 cvr mech.indd 1 6/7/12 10:11 AM

  • COMPUTATIONALMODELING OFMULTIPHASE

    GEOMATERIALS

  • A SPON PRESS BOOK

    COMPUTATIONALMODELING OFMULTIPHASE

    GEOMATERIALS

    FUSAO OKASAYURI KIMOTO

  • CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487-2742

    2013 by Taylor & Francis Group, LLCCRC Press is an imprint of Taylor & Francis Group, an Informa business

    No claim to original U.S. Government worksVersion Date: 20120619

    International Standard Book Number-13: 978-1-4665-7064-1 (eBook - PDF)

    This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

    Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

    For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

    Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

    Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.com

    and the CRC Press Web site athttp://www.crcpress.com

  • v

    Contents

    Preface xvAcknowledgments xvii

    1 Fundamentalsincontinuummechanics 1

    1.1 Motion 11.2 Strainandstrainrate 2

    1.2.1 Straintensor 21.2.2 Compatibilityrelationofstrain 41.2.3 Shearstrainanddeviatoricstrain 51.2.4 Volumetricstrain 6

    1.3 Changesinarea 71.4 Deformationratetensor 81.5 Stressandstressrate 10

    1.5.1 Stresstensor 101.5.2 Principalstressesandthe

    invariantsofthestresstensor 121.5.3 Stressratetensorandobjectivity 16

    1.6 Conservationofmass 191.7 Balanceoflinearmomentum 201.8 Balanceofangularmomentumandthe

    symmetryofthestresstensor 221.9 Balanceofenergy 231.10 EntropyproductionandClausiusDuheminequality 241.11 Constitutiveequationandobjectivity 26

    1.11.1 Principleofobjectivityandconstitutivemodel 271.11.2 Timeshift 281.11.3 Translationalmotion 281.11.4 Rotationalmotion 28

    References 29

  • vi Contents

    2 Governingequationsformultiphasegeomaterials 31

    2.1 Governingequationsforfluidsolidtwo-phasematerials 312.1.1 Introduction 312.1.2 Generalsetting 322.1.3 Densityofmixture 332.1.4 Definitionoftheeffectiveandpartial

    stressesofthefluidsolidmixturetheory 342.1.5 Displacementstrainrelation 342.1.6 Constitutivemodel 352.1.7 Conservationofmass 352.1.8 Balanceoflinearmomentum 352.1.9 Balanceequationsforthemixture 382.1.10 Continuityequation 38

    2.2 Governingequationsforgaswatersolidthree-phasematerials 412.2.1 Introduction 412.2.2 Generalsetting 412.2.3 Partialstresses 422.2.4 Conservationofmass 432.2.5 Balanceofmomentum 452.2.6 Balanceofenergy 46

    2.3 Governingequationsforunsaturatedsoil 462.3.1 Partialstressesforthemixture 472.3.2 Conservationofmass 482.3.3 Balanceoflinearmomentumforthethreephases 492.3.4 Continuityequations 51

    References 52

    3 Fundamentalconstitutiveequations 55

    3.1 ElasticBody 553.2 Newtonianviscousfluid 573.3 Binghambodyandviscoplasticbody 583.4 vonMisesplasticbody 593.5 Viscoelasticconstitutivemodels 59

    3.5.1 Maxwellviscoelasticmodel 603.5.2 KelvinVoigtmodel 613.5.3 Characteristictime 62

  • Contents vii

    3.6 ElastoplasticModel 633.6.1 Yieldconditions 643.6.2 Additivityofthestrain 653.6.3 Loadingconditions 663.6.4 Stabilityofelastoplasticmaterial 673.6.5 Maximumworktheorem 693.6.6 Flowruleandnormality(evolutional

    equationofplasticstrain) 713.6.7 Consistencyconditions 73

    3.7 Overstresstypeofelastoviscoplasticity 763.7.1 Perzynasmodel 763.7.2 DuvautandLionsmodel 773.7.3 PhillipsandWusmodel 80

    3.8 Elastoviscoplasticmodelbasedonstresshistorytensor 803.8.1 Stresshistorytensorandkernelfunction 813.8.2 Flowruleandyieldfunction 81

    3.9 Otherviscoplasticandviscoelasticplastictheories 833.10 Cyclicplasticityandviscoplasticity 833.11 Dissipationandtheyieldfunctions 86References 89

    4 FailureconditionsandtheCam-claymodel 91

    4.1 Introduction 914.2 Failurecriteriaforsoils 92

    4.2.1 FailurecriterionbyCoulomb 924.2.2 FailurecriterionbyTresca 934.2.3 FailurecriterionbyvonMises 934.2.4 FailurecriterionbyMohr 944.2.5 MohrCoulombfailurecriterion 944.2.6 MatsuokaNakaifailurecriterion 944.2.7 Ladefailurecriterion 954.2.8 Failurecriteriononplane 954.2.9 LodeangleandMohrCoulombfailurecondition 98

    4.3 Cam-claymodel 1024.3.1 OriginalCam-claymodel 1024.3.2 Ohtastheory 1084.3.3 ModifiedCam-claymodel 1104.3.4 Stressdilatancyrelations 112

    References 113

  • viii Contents

    5 Elastoviscoplasticmodelingofsoil 115

    5.1 Rate-dependentandtime-dependentbehaviorofsoil 1155.1.1 Strainrate-dependentbehaviorofclayeysoil 1155.1.2 Creepdeformationandfailure 1175.1.3 Stressrelaxationbehavior 1205.1.4 Strainrate-dependentcompression 1205.1.5 Isotaches 123

    5.2 Viscoelasticconstitutivemodels 1255.3 Elastoviscoplasticconstitutivemodels 126

    5.3.1 Overstressmodels 1265.3.2 Time-dependentmodel 1275.3.3 Viscoplasticmodelsbasedon

    thestresshistorytensor 1275.4 Microrheologymodelsforclay 1285.5 AdachiandOkasviscoplasticmodel 128

    5.5.1 Strainrateeffect 1375.5.2 SimulationbytheAdachiandOkasmodel 138

    5.5.2.1 Effectofsecondaryconsolidation 1385.5.2.2 Isotropicstressrelaxation 140

    5.5.3 Constitutivemodelforanisotropicconsolidatedclay 141

    5.6 Extendedviscoplasticmodelconsideringstressratio-dependentsoftening 141

    5.7 Elastoviscoplasticmodelforcohesivesoilconsideringdegradation 1425.7.1 Elastoviscoplasticmodelconsideringdegradation 1425.7.2 Determinationofthematerialparameters 1485.7.3 Strain-dependentelasticshearmodulus 149

    5.8 Applicationtonaturalclay 1505.8.1 OsakaPleistoceneclay 1505.8.2 OsakaHoloceneclay 1525.8.3 Elastoviscoplasticmodelbasedon

    modifiedCam-claymodel 1535.9 Cyclicelastoviscoplasticmodel 156

    5.9.1 Cyclicelastoviscoplasticmodelbasedonnonlinearkinematicalhardeningrule 157

    5.9.2 Cyclicelastoviscoplasticmodelconsideringstructuraldegradation 1585.9.2.1 Staticyieldfunction 158

  • Contents ix

    5.9.2.2 Viscoplasticpotentialfunction 1595.9.2.3 Kinematichardeningrules 1595.9.2.4 Strain-dependentshearmodulus 1615.9.2.5 Viscoplasticflowrule 162

    References 164

    6 Virtualworktheoremandfiniteelementmethod 171

    6.1 Virtualworktheorem 1716.1.1 Boundaryvalueproblem 1716.1.2 Virtualworktheorem 173

    6.2 Finiteelementmethod 1756.2.1 Discretizationofequilibriumequation 1756.2.2 Discretizationofcontinuityequation 1796.2.3 Interpolationfunction 1806.2.4 Triangularelement 1816.2.5 Isoparametricelements 183

    6.3 DynamicProblem 1906.3.1 Timediscretizationmethod 191

    6.3.1.1 LinearaccelerationmethodandWilsonmethod 191

    6.3.1.2 Newmarkmethod 1926.3.1.3 Centralfinitedifferencescheme 193

    6.3.2 Massmatrix 1936.4 Dynamicanalysisofwater-saturatedsoil 193

    6.4.1 Equationofmotion 1946.4.2 Continuityequation 201

    6.4.2.1 Galerkinmethod 2016.4.2.2 Finitevolumemethod 202

    6.4.3 Timediscretization 2066.4.3.1 Equationofmotion 2076.4.3.2 Continuityequation 207

    6.5 Finitedeformationanalysisforfluidsolidtwo-phasemixtures 2106.5.1 Effectivestressandfluidsolidmixturetheory 2106.5.2 Equilibriumequation 2116.5.3 Continuityequation 2146.5.4 Discretizationoftheweakforms

    fortheequilibriumequationandthecontinuityequation 216

  • x Contents

    6.5.4.1 Discretizationoftheweakformsfortheequilibriumequation 216

    6.5.4.2 Discretizationoftheweakformforthecontinuityequation 219

    References 220

    7 Consolidationanalysis 223

    7.1 Consolidationbehaviorofclays 2237.2 Consolidationanalysis:smallstrainanalysis 225

    7.2.1 One-dimensionalconsolidationproblem 2257.2.2 Two-dimensionalconsolidationproblem 2307.2.3 Summary 234

    7.3 Consolidationanalysiswithamodelconsideringstructuraldegradation 2347.3.1 Effectofsamplethickness 2357.3.2 SimulationofAboshisexperimentalresults 238

    7.3.2.1 Determinationofmaterialparameters 2387.3.2.2 Elasticparameters 2387.3.2.3 Viscoplasticparameters 2387.3.2.4 Consolidationanalysis 239

    7.3.3 Effectofdegradation 2417.4 Consolidationanalysisofclayfoundation 244

    7.4.1 Introduction 2447.4.2 Consolidationanalysisofsoftclay

    beneaththeembankment 2447.4.2.1 Soilparameters 2447.4.2.2 Soilresponsebeneathembankment 245

    7.5 Consolidationanalysisconsideringconstructionoftheembankment 2497.5.1 Numericalexample 251

    References 255

    8 Strainlocalization 259

    8.1 Strainlocalizationproblemsingeomechanics 2598.1.1 Angleofshearband 260

    8.2 Localizationanalysis 2618.3 Instabilityofgeomaterials 2648.4 Noncoaxiality 2708.5 Currentstress-dependentcharacteristicsandanisotropy 271

  • Contents xi

    8.6 RegularizationofIll-posedness 2718.6.1 Nonlocalformulationofconstitutivemodels 2728.6.2 Fluidsolidtwo-phaseformulation 2738.6.3 Viscoplasticregularization 2738.6.4 Dynamicformulation 2738.6.5 Discretemodelandfiniteelement

    analysiswithstrongdiscontinuity 2748.7 Instabilityandeffectsofthetransportofporewater 274

    8.7.1 Extendedviscoplasticmodelsforclay 2768.7.2 Instabilityanalysisoffluid-

    saturatedviscoplasticmodels 2788.7.2.1 Instabilityunderlocally

    undrainedconditions 2788.7.2.2 Instabilityanalysisconsidering

    theporewaterflow 2818.8 Two-dimensionalfiniteelementanalysis

    usingelastoviscoplasticmodel 2828.8.1 Effectsofpermeability 2828.8.2 Strainlocalizationanalysisbythegradient-

    dependentelastoviscoplasticmodel 2868.8.2.1 Finiteelementformulation

    ofthegradient-dependentelastoviscoplasticmodel 286

    8.8.2.2 Effectofthestraingradientparameter 2878.8.2.3 Effectoftheheterogeneity

    ofthesoilproperties 2888.8.2.4 Mesh-sizedependency 290

    8.9 Three-dimensionalstrainlocalizationanalysisofwater-saturatedclay 2918.9.1 Undrainedtriaxialcompressiontests

    forclayusingrectangularspecimens 2928.9.1.1 Claysamplesandthetestingprogram 2928.9.1.2 Imageanalysis 293

    8.9.2 Three-dimensionalsoilwatercoupledfiniteelementanalysismethod 294

    8.9.3 Numericalsimulationoftriaxialtestsforrectangularspecimens 2958.9.3.1 Determinationofthe

    materialparameters 2958.9.3.2 Boundaryconditions 296

  • xii Contents

    8.9.3.3 Comparisonbetweenexperimentalandsimulationresults 297

    8.9.3.4 Three-dimensionalshearbands 3018.9.3.5 Effectsofthestrainrates 302

    8.10 Applicationtobearingcapacityandearthpressureproblems 305

    8.11 Summary 306References 307

    9 Liquefactionanalysisofsandyground 317

    9.1 Introduction 3179.2 Cyclicconstitutivemodels 3179.3 Cyclicelastoplasticmodelforsand

    withageneralizedflowrule 3199.3.1 Basicassumptions 3199.3.2 Overconsolidationboundarysurface 3199.3.3 Fadingmemoryoftheinitialanisotropy 3219.3.4 Yieldfunction 3229.3.5 Plasticstraindependenceoftheshearmodulus 324

    9.3.5.1 Method1 3249.3.5.2 Method2 3249.3.5.3 Method3 3259.3.5.4 Method4 325

    9.3.6 Plasticpotentialfunction 3269.3.7 Stressstrainrelation 328

    9.4 Performanceofthecyclicmodel 3299.4.1 Determinationofmaterialparameters 329

    9.5 Liquefactionanalysisofaliquefiableground 3329.5.1 VerticalarrayrecordsonPortIsland 3349.5.2 Numericalmodels 3349.5.3 Commonparameters 3359.5.4 Parametersforelastoplasticitymodel 3389.5.5 Parametersforelastoviscoplasticitymodel 3389.5.6 ParametersforRambergOsgoodmodel 3399.5.7 Finiteelementmodelandnumericalparameters 3409.5.8 Numericalresults 340

  • Contents xiii

    9.6 Numericalanalysisofthedynamicbehaviorofapilefoundationconsideringliquefaction 3419.6.1 Simulationmethods 3449.6.2 Resultsanddiscussions 345

    References 349

    10 Recentadvancesincomputationalgeomechanics 353

    10.1 Thermo-hydro-mechanicalcoupledfiniteelementmethod 35310.1.1 Temperature-dependentviscoplasticparameter 35410.1.2 Elasticandtemperature-dependentstretching 35710.1.3 Weakformoftheequilibrium

    equationforwatersoilmixture 35810.1.4 Continuityequation 36010.1.5 Balanceofenergy 36310.1.6 Simulationofthermalconsolidation 365

    10.2 Seepagedeformationcoupledanalysisofunsaturatedriverembankmentusingmultiphaseelastoviscoplastictheory 37010.2.1 Introduction 37010.2.2 Governingequationsandanalysismethod 37110.2.3 Constitutivemodelforunsaturatedsoil 371

    10.2.3.1 Overconsolidationboundarysurface 37110.2.3.2 Staticyieldfunction 37210.2.3.3 Viscoplasticpotentialfunction 37310.2.3.4 Viscoplasticflowrule 37310.2.3.5 Constitutivemodelforporewater:

    soilwatercharacteristiccurve 37410.2.4 Simulationofthebehaviorofunsaturated

    soilbyelastoviscoplasticmodel 37510.2.5 Numericalanalysisofseepage

    deformationbehaviorofalevee 37610.2.5.1 Analysismethod 37610.2.5.2 Deformationduringtheseepageflow 377

    References 385

  • xv

    Preface

    Overthelastthreedecades,studiesonconstitutivemodelsandnumeri-cal analysis methods have been well developed. Nowadays, numericalmethodsplayaveryimportantroleingeotechnicalengineeringandinarelatedactivity calledcomputationalgeotechnics.Thisbookdealswiththeconstitutivemodelingofmultiphasegeomaterialsandnumericalmeth-odsforpredictingthebehaviorofgeomaterialssuchassoilandrock.Thebook provides fundamental knowledge of continuum mechanics, con-stitutivemodeling,numericalmethodsformultiphasegeomaterials,andtheirapplications. Inaddition, themonograph includesrecentadvancesinthisarea,namely,theconstitutivemodelingofsoilsforrate-dependentbehavior,strainlocalization,themultiphasetheory,andtheirapplicationsinthecontextoflargedeformations.Thepresentationisself-contained.Muchattentionhasbeenpaidtoviscoplasticity,watersoilcoupling,andstrainlocalization.

    Chapter1presents the fundamental conceptandresults incontinuummechanics,suchasmotion,deformation,andstress,whicharenecessaryforunderstandingthefollowingchapters.Thischapterhelpsreadersmakeaself-consistentstudyofthecontentsofthisbook.

    Chapter2dealswiththegoverningequationsformultiphasegeomaterialsbased on the theory of porous media, such as water-saturated and airwatersoilmultiphasesoilsincludingsoilwatercharacteristiccurves.Thischapterisessentialforthestudyofcomputationalgeomechanics.

    Chapter3startswiththeelasticconstitutivemodelandreviewsthefun-damentalconstitutivemodelsincludingplasticityandviscoplasticity.Fortheplasticitytheory,thestabilityconceptinthesenseofLyapunovisdiscussed.Attheendofthechapter,cyclicplasticityandviscoplasticitymodelsarepresentedwithkinematicalhardeningrules.

    InChapter4,failurecriteriaandtheCam-claymodelarereviewed.Forthefailurecriteria,manywell-knowncriteriahavebeenproposedinthischapter,fromCoulombscriteriontoMatsuokaNakaiscriterion.Then,theCam-claymodel is reviewedsince themodel includesadescriptionof thebasicpropertiesofsoilbehaviorsuchasdilatancyandthecriticalstateconcept.

  • xvi Preface

    Chapter 5 is devoted to the rate- and time-dependent behavior andmodelingofsoils.Atfirst,typicalrate-andtime-dependentbehaviorsofsoilsarereviewedbasedontheexperimentalmeasurements.Severalrate-dependentmodelsarediscussedandelastoviscoplasticmodelsbasedontheCam-claymodelandPerzynasviscoplasticity theoryarepresented.AdachiandOkasmodelisfirstdescribedandthenanelastoviscoplasticmodelconsideringstructuraldegradationisintroduced.Thechapterendswiththecalibrationofthesemodelsusingtheexperimentalresults.

    InChapter6,thevirtualworktheoremispresentedandthenthefiniteelementmethodfortwo-phasematerials isdescribedforquasi-staticanddynamicproblemswithintheframeworkoftheinfinitesimalstraintheory.

    Chapter7dealswithatypicalmultiphasephenomenonofsoils;namely,theconsolidationproblem.Inparticular,theeffectsofsamplethicknessonconsolidation,usingAboshiswell-knowndata,andtheanomalousbehav-iorofporewaterdevelopmentintheclayfoundationbeneaththeembank-ment,duringloadingandaftertheendofconstructionembankment,arenumericallyanalyzed.

    Chapter8 startswith a reviewof the studyon the strain localizationbehaviorofsoils.Severalissuesrelatedtothestrainlocalizationarethendiscussed for rate-independent and rate-dependent models. Finally, anumericalanalysisofthestrainlocalizationofwater-saturatedclayispre-sentedfortriaxialtestsandpracticalproblems.

    InChapter9,aliquefactionanalysismethodispresentedwithacyclicelastoplasticmodelusingthetwo-phasetheorypresentedinChapter2forwater-saturatedsoils.Applicationsoftheliquefactionbehaviortoaman-madeislandduringanearthquakeandofthesoilpilestructureinterac-tionareshown.

    Chapter10dealswithrecentadvancesingeomechanics.Itincludesthetemperature-dependentbehaviorofsoilssuchasconsolidationduetothechangeintemperature,andthenumericalanalysisofairwatersoilcou-pledproblems;namely,thedeformationseepageflowcoupledanalysisofanunsaturatedriverembankmentispresented.

  • xvii

    Acknowledgments

    During the writing and preparation of this book, the authors becameindebtedtomanyresearchersandstudents.Inparticular,weexpressoursincere thanks to Dr. K. Akai and Dr. T. Adachi, Emeritus Professorsof Kyoto University; Dr. H. Aboshi, Emeritus Professor of HiroshimaUniversity,forgivingusdataonconsolidation;Dr.S.Leroueil,ProfessorofLavalUniversity;Dr.A.YashimaofGifuUniversity;Dr.T.KodakaofMeijo University; Dr. R. Uzuoka of Tokushima University; Dr. Y. Higoof Kyoto University; Dr. F. Zhang of Nagoya Institute of Technology;Dr.K.Sekiguchi;Dr.A.Tateishi;Dr.Y.Taguchi;Dr.S.Sunami;Dr.M.Kato;Dr.M.J.Jiang,Dr.C.-W.Lu;Y.-S.Kim;Dr.Garcia;Dr.MojtabaMirjalili;Dr.R.Kato;Dr.YoungSeokKim;Dr.A.W.Karnawardena;Dr.H.Feng;Dr.Md.R.Karim;Dr.B.Siribumrungwong;Mr.T.Takyu;Mr.T.Satomura;Mr.N.Nishimatsu;Ms.T.Ichinose;Mr.Takada;andthegraduatestudentsoftheGeomechanicsLaboratoryofKyotoUniversityfortheircontributionsanddiscussions.WethankMs.ChikakoItohforherdailyassistance;Mr.ShahbodaghKhanBabak,aPhDstudentofKyotoUniversity,forhisassistanceinpreparingthefigures;andMs.H.GriswoldforherEnglishcorrections.Finally,wededicatethisbooktoourfamilies,inparticular,O.KeikoandK.Keiko.

    Manythanksarealsoduetothefollowingorganizationsandtheresearchersforpermissionforusetheindicatedfigures:ProfessorH.Aboshi,Figure5.8;Professor T. Adachi, Figure 5.7a,b; Professor Liam Finn, Figure 5.3a,band Figure 5.5; Gihodo Syuppan Co. Ltd. (Dr. M. Saito), Figure 5.6;Professor G. Sllfore, Figure 5.9; American Society of Civil Engineers(ASCE),Figure10.1andFigure10.3;ASTM,Figure5.2andFigure5.12a,b;InstitutionofCivilEngineers(Gotechnique),Figure5.1a,bandFigure5.11;andNationalResearchCouncilofCanada(NRC)(CanadianGeotechnicalJournal),Figure5.10.

  • 1

    Chapter1

    Fundamentals in continuum mechanics

    In this book, we use vectors and tensors in components, and the directnotationsforthesevectorsandtensorsaregivenwithoutfurtherexplana-tion.Adotdenotesacontractionoftheinnerindices,forexample,a bi i

    a bsothatA Bij ij A:B.

    1.1 MOTION

    The position of the material point X ii( 1 2 3)= , , of a body at time t isexpressedby

    x x X ti i j ( )= , (1.1)

    Material pointXi canbe givenby thepositionof xi at a time t= 0.Equation (1.1) expresses the motion of the material point of the body.TherectangularCartesiancoordinatesusedinthisbookaredescribedbyo e e e( )1 2 3 , , , withoriginoandunitbasevectorei .

    Therearetwomethodsfordescribingthemotionofaparticle.Oneisthematerialdescription,inwhichthemotionisexpressedbymaterialpointXi ,andtheotheristhespatialdescription,inwhichthemotionisexpressedbyspatialcoordinatesxi .ThematerialdescriptioniscalledtheLagrangiandescriptionandthespatialdescriptioniscalledtheEuleriandescription.

    Thevelocityvectorofaparticleisgivenby

    v

    x X tt

    ii j( )=

    ,

    (1.2)

    In thematerial description, the acceleration of a particle in a body isexpressedby

    a

    v X tt

    ii j( )=

    ,

    (1.3)

  • 2 Computationalmodelingofmultiphasegeomaterials

    Inthespatialdescription,ontheotherhand,theaccelerationofaparticleisgivenby

    a

    v x tt

    vv x tx

    ii j

    ki j

    k

    ( ) ( )= ,

    +

    ,

    (1.4)

    1.2 STRAIN AND STRAIN RATE

    1.2.1 Strain tensor

    Strainisthechangeinshapeorthechangeinvolumeofabodyduringtheapplicationof forcetothebody.Weneedanobjectivemeasureofstrainthatcanbederivedthroughchangesinthevariationofthelineelement.

    Letusconsider themotionof thebodyshown inFigure1.1.Materialpoints P and Q have moved to points P and Q after the deformation.PointsQandQarethepointslocatedinthevicinityofpointsPandP.

    Distance,dS,betweenpointsPandQ,isgivenby

    dS dX dXa a2 = (1.5)

    and thedistancebetweenpointsP andQ after thedeformation,ds, isgivenby

    ds dx dxb b2 = (1.6)

    wherethesummationconventionisusedfora,b= 1,2,3.

    ui + dui

    ui

    dxi

    Xi xi

    PdXi

    Q

    Q

    P

    x1, X1

    x2, X2

    x3, X3

    Figure 1.1 Motion.

  • Fundamentalsincontinuummechanics 3

    Displacementvectoru ii( 1 2 3)= , , isgivenby

    x X ui i i= + (1.7)

    TakingthedifferencebetweenEquations(1.5)and(1.6),wehave

    ds dS dx dx dX dX F F dX dX

    xX

    xX

    dX dX E dX dX

    k k k k ki kj ij i j

    k

    i

    k

    jij i j ij i j

    ( )

    2

    2 2 = =

    =

    = (1.8)

    where Fij xXij

    = is the deformation gradient and i j i jij (1 0 ) = , = ; , isKroneckersdelta.Eij inEquation(1.8)iscalledtheGreenstraintensor.

    SubstitutingEquation(1.7)intoEquation(1.8),weget

    E

    uX

    uX

    uX

    uX

    iji

    j

    j

    i

    k

    i

    k

    j

    12

    =

    +

    +

    (1.9)

    Forthecaseofinfinitesimalstrain,thatis, uXi

    j1| |

  • 4 Computationalmodelingofmultiphasegeomaterials

    where ij isgivenby

    ux

    ux

    iji

    j

    j

    i

    12

    =

    (1.13)

    andrepresentstherotationofasmallelement,forexample,therotationisnotzerofortherigidbodymotion.

    1.2.2 Compatibility relation of strain

    Thestraintensorhassixcomponents,althoughthedisplacementvectorhasonlythreecomponents.Thisindicatesthatweneedthreeindepen-dentequationstoobtainthedisplacementvectorfromthestraintensor.However, six compatibility equations exist among the strain compo-nents. As for the compatibility equations, three of them are indepen-dent,andcompatibility equationsarenecessaryandprovide sufficientconditions for single-value displacements in a simple connected body(seeMalvern1969).

    As for the differentiation of the displacementstrain relations withrespecttocoordinates,weobtainthecompatibilityequationsas

    y x x yxx yy xy

    2

    2

    2

    2

    2

    +

    =

    (1.14)

    z y y zyy zz yz

    2

    2

    2

    2

    2

    +

    =

    (1.15)

    x z z xzz xx zx

    2

    2

    2

    2

    2

    +

    =

    (1.16)

    y z x x y z

    xx yz xz xy22

    =

    +

    +

    (1.17)

    x z y x y z

    yy yz xz xy22

    =

    +

    (1.18)

    x y z x y z

    zz yz xz xy22

    =

    +

    (1.19)

  • Fundamentalsincontinuummechanics 5

    Equations(1.14)to(1.19)canbeexpressedbyatensornotationas

    ij kl kl ij ik jl jl ik0 + =, , , , (1.20)

    wherei,j,k,l= 1,2,3.

    1.2.3 Shear strain and deviatoric strain

    Let us consider the deformation shown in Figure 1.2. The displacementvectorisgivenbyu c y u c x c cx y 01 2 1 2= , = , , > .

    Then,

    uy

    ux

    c cxy xyx y2 ( )1 2 = =

    +

    = + (1.21)

    andthestraincomponents, xx yy , ,arezero.Assuming a small deformation gradient, u

    yx

    is given by 1 and ux

    y

    isgivenby 2 ,namely,

    uy

    ux

    x y1 2

    +

    = + (1.22)

    This indicatesthat xy expresseschanges intheangle, inotherwords,changesintheshape,thatis,shearingdeformation.

    eij ij ij kk

    13

    = (1.23)

    isdefinedasthedeviatoricstraintensor.

    xO2

    1

    ux

    ux

    y

    Figure 1.2 Sheardeformation.

  • 6 Computationalmodelingofmultiphasegeomaterials

    1.2.4 Volumetric strain

    SettingVasthevolumeafterthedeformationandV0asthevolumebeforethedeformation,volumetricstrain v isexpressedby V V Vv kk ( )0 0 = = / .

    IfweexpressthevolumebeforethedeformationbyV dX dX dX0 1 2 3= ,

    dX dX dX dX dX dX dX dX dX

    o

    v [(1 )(1 )(1 ) ]

    ( )

    11 22 33 1 2 3 1 2 3 1 2 3

    11 22 33

    = + + + /

    = + + + (1.24)

    whereo()isthehigher-ordersmallterm.Wecandisregardthehigher-ordertermforthesmalldeformationcase.

    Next,wewillconsiderthechangesinvolumeforthefinitedeformationcase.Thevolumeofthesmallhexahedronafterthedeformation,dV,isgivenby

    dV d d d dx dx dxijk i j kx x x( )= = (1.25)

    where ijk isapermutation(oralternating)symbol.The volume of the small hexahedron before the deformation, dV0, is

    givenby

    dV d d d dX dX dXpqr p q rX X X( )0 = = (1.26)

    Usingthedeformationgradient,Fij xXij

    = ,weget

    J det F F F Fmn ijk pqr ip jq kr( )

    16

    = (1.27)

    Usingthefollowingrelation:

    ijk pqr

    ip iq ir

    jp jq jr

    kp kq kr

    =

    (1.28)

    weobtain

    det F F F Fpqr mn ijk ip jq kr( ) = (1.29)

    As for Equation (1.29), it is worth noting that det F F F Fmn ijk i j k( ) 1 2 3= followingtheexpansionofthedeterminantdet Fmn( ).

  • Fundamentalsincontinuummechanics 7

    Ifpqrisanevenpermutationof1,2,3,wehavethedeterminantandifpqrisoddwehavethenegativeone.

    Consequently,wehave

    dV F F F dX dX dX

    det F dX dX dX JdV dV

    ijk ip jq kr p q r

    pqr mn p q r( ) 00

    0

    =

    = = =

    (1.30)

    where 0 andaretheinitialmassdensityandthecurrentmassdensity,respectively.

    Disregardingthehigher-ordertermleadsto

    J det F

    uX

    iji

    i

    ( ) 1= +

    (1.31)

    Therefore,weobtainthefollowingrelationconsistenttoEquation(1.24)as

    dV dVdV

    ii v0

    0

    = = (1.32)

    1.3 CHANGES IN AREA

    ThechangesinareahavebeenestimatedbyNansonsformulaincontin-uummechanics(Malvern1969)andaregivenby

    ds J dSTn F N 0= (1.33)

    wherenistheunitnormaltoareadsinthecurrentconfiguration,dsisanareainthecurrentconfiguration,Nistheunitnormaltotheinitialcon-figuration,F 1 istheinverseofthedeformationgradient,anddS0isanareaintheinitialconfiguration.

    Surface vector dSN 0 at point X in the referential configuration isexpressedby

    dS d dN X X0 = (1.34)

    wheredXisaninfinitesimalvectoratpointX.Surfacevector dsn atpointxinthecurrentconfigurationisexpressedby

    ds d d n ds dx dxs spq p qn x x , ( )= = (1.35)

    wheredx isaninfinitesimalvectoratpointx.

  • 8 Computationalmodelingofmultiphasegeomaterials

    FromEquation(1.34),weobtain

    N dS

    Xx

    Xx

    dx dxi ijkj

    p

    k

    qp q0 =

    (1.36)

    Then, multiplying both sides of Equation (1.36) by Xxis

    and usingEquations(1.28)and(1.35),weget

    JXx

    N dS n dsis

    i s0

    = (1.37)

    inwhichtherelation JXx

    Xx

    Xx

    spq ijki

    s

    j

    p

    k

    q

    1 =

    Consequently, we get Equation (1.33), called Nansons theorem, sincecomponentsof F 1 and TF are

    F

    Xx

    FXx

    iji

    jijT j

    i

    ,1 =

    =

    1.4 DEFORMATION RATE TENSOR

    Whenwedealwiththelargedeformationofabody,thematerialconfigurationchangeseachtime,andthedeformationratetensorisusefulfortheanalysis.

    TakingatimederivativeofEquation(1.8)leadsto

    ddt

    ds dS dxddt

    dxk k( ) 2 ( )2 2 = (1.38)

    ddt

    dxddt

    xX

    dXxX

    ddtdXk

    k

    mm

    k

    mm( ) =

    +

    vX

    dXkm

    m=

    dv L dxk km m= = (1.39)

    L

    vx

    iji

    j

    =

    (1.40)

    whereLij iscalledthevelocitygradienttensor.

  • Fundamentalsincontinuummechanics 9

    Thevelocitygradient tensor canbe separated into symmetricpartDij andantisymmetricpartWij as

    L D Wij ij ij= + (1.41)

    D

    vx

    vx

    iji

    j

    j

    i

    12

    =

    +

    (1.42)

    W

    vx

    vx

    iji

    j

    j

    i

    12

    =

    (1.43)

    SubstitutingtheprecedingequationsintoEquation(1.39)gives

    ddt

    ds dS dxddt

    dx dx v dx dx L dx

    dx D dx dxW dx

    i i i i m m i im m

    i im m i im m

    ( ) 2 ( ) 2 2

    2 2

    2 2 = = =

    = +

    , (1.44)

    SinceWij isskewsymmetric, dxW dxi im m2 0= .Hence,wehave

    ddt

    ds dSddt

    ds dx D dxi im m( ) ( ) 22 2 2 = = (1.45)

    Subsequently,Dij isusedtoexpressthemeasureofthedeformationrateatthecurrentconfiguration,whichiscalledtherate-of-deformationtensororthestretchingtensor.Incontrast,Wij denotestherateofrotationandiscalledthespin.

    In a small deformation field, we do not distinguish the deformationbetweenthecurrentandthereferenceconfigurations.Hence,wecanusestrainrate ij insteadofthedeformationratetensoras:

    ux

    ux

    iji

    j

    j

    i

    12

    =

    +

    (1.46)

  • 10 Computationalmodelingofmultiphasegeomaterials

    1.5 STRESS AND STRESS RATE

    1.5.1 Stress tensor

    Theforcesactingonabodycanbeclassifiedintotwoforces:thebodyforceandthesurfaceforce.Thebodyforceistheforceactingonthebodyremotely,suchasthegravitationalforce,whichisproportionaltothemassvolume.Thesurfaceforceistheforceactingonthebodythroughthesurface,whichisproportionaltotheareaofthesurfaceandiscalledthestressvector.

    Letusconsiderthesurfaceforce t dst x n( , , ) ,showninFigure1.3(a),actingonthesmallsurfaceelementdsofthecrosssectionofthebodyatapositionx.tisasurfacetractionvectorperunitareaactingonsideIIfromsideI.

    Incontrast,theforceactingonsideIfromsideIIhasthesamemagnitudeofforceasthatfromsideItosideII,onlyinanoppositedirection.

    t ds t dst x n t x n( , ) ( , ), = , (1.47)

    inwhichnistheunitnormalvectortothesurface.Thesurfaceforceperunitareatiscalledthestressvectororthetractionvector.

    Considerthestressstateofatetrahedron,whichisinequilibriumunderthesurface,andthebodyforcesshowninFigure1.3(b).

    TheareaofABCisS,theareaofOBCis S1,theareaofOCAisS2 ,andtheareaofOABis S3.Then,

    S Sn n n ni i n ( )1 2 3= , = , , (1.48)

    F3F1

    F2

    IIt(n)

    t(n)

    Pn

    n

    I

    t(e1)

    t(e2)

    t(e3)

    t(n)

    e1

    132

    e2

    e3

    C

    Pn

    x2O B

    x1

    x3

    A

    (a) (b)

    Figure 1.3 (a)Forcebalance.(b)Tractionvectorsinequilibrium.

  • Fundamentalsincontinuummechanics 11

    The reason is as follows:Whenwe set the intersectionpointbetweentheperpendicularlinefrompointOandABCaspointP,andOP= h,thevolumeofthetetrahedronisSh/3.

    Hence,

    Sh S AO S BO S CO1 2 3= = = (1.49)

    Then,

    S S h AO ncos1 1 1/ = / = (1.50)

    where ni isthedirectioncosine cos i .Fromtheequilibriumoftheforcesactingonthetetrahedron,wehave

    S S S S Sht n t e t e t e F a( ) ( ) ( ) ( ) ( ) 3 01 1 2 2 3 3+ + + + / = (1.51)

    whereFisthegravitationalforceandaistheinertialforce.Ash0,Equation(1.51)becomes

    n n nt n t e t e t e( ) ( ) ( ) ( ) 01 1 2 2 3 3+ + + = (1.52)

    Equation(1.52)canberewrittenas

    ni

    i it n t e( ) ( ) 01

    3

    + ==

    (1.53)

    Then,ifweusethefollowingexpression

    nk

    k kn e1

    3

    ==

    (1.54)

    thetractionvectorbecomes

    n n nk k k k k kt e t e t e( ) ( ) ( )= = (1.55)

    whereEinsteinssummationconvention n nk

    k k k ke e1

    3 =

    isused.

  • 12 Computationalmodelingofmultiphasegeomaterials

    Thestressvectorcanbedefinedas

    m

    k

    mk kt e e( )1

    3

    =

    (1.56)

    FromEquations(1.55)and(1.56),wegetCauchysfundamentaltheoremofstressvectoras

    nm k

    mk k mt n e( )1

    3

    = , =

    (1.57)

    where mk iscalledthestresstensor.Thekthcomponentof t isgivenby tk = nmk m . mk denotes thecom-

    ponentofthestressvectorinthe xkdirectionactingontheperpendicularplanetothexm axis.

    Whenwedisregardthecouplestress(seeSection1.8),thestresstensorbecomessymmetricfromtheequilibriumofthemomentas

    ij ji = (1.58)

    TheCauchystresstensorisexpressedbyboth ij andTij inthisbook.

    1.5.2 Principal stresses and the invariants of the stress tensor

    Ingeneral,thestressvectorisnotparalleltothenormalvectorofthesec-tion,asshowninFigure1.3.Inacertaindirection,however,thestressvec-torisparalleltothedirectionofnormalvector,ni ,inwhichdirectionstressvector,ti ,canbeexpressedby

    t n ni ji j i= = (1.59)

    whereisthemagnitudeofthestressvector.Since ij issymmetric,wehave

    n nji ij j ij ij i( ) ( ) 0 = = (1.60)

    Equation(1.60)isasetoflinearhomogeneousequationsforniandhasanontrivialsolution,thatis,ni 0 ifandonlyifthefollowingrelationholds:

    det ij ij 0| |= (1.61)

  • Fundamentalsincontinuummechanics 13

    Equation (1.61) is an eigenvalue equation. When the stress tensor issymmetric,Equation(1.61)hasthreerealroots(realeigenvalues).Thesethreeeigenvalues, 1 2 3 , , ,arecalledprincipalstresses.Thedirectionofni ,whichsatisfiesEquation(1.60),iscalledtheprincipalstressdirection.

    Equation(1.61)canbewrittenas

    I I I 03

    12

    2 3 + = (1.62)

    I1 11 22 33= + + (1.63)

    I ( )2 11 22 22 33 33 11 122

    232

    312= + + + + (1.64)

    I 2 ( )3 11 22 33 12 23 31 11 232

    22 312

    33 122= + + + (1.65)

    SinceEquation(1.61)holdsfortheprincipalstressconditions,wehave

    I I I ( )( )( ) 03

    12

    2 3 1 2 3 + = = (1.66)

    Consequently,fromtherelationbetweenrootsandcoefficients, I I I1 2 3, , canbeexpressedas

    I1 1 2 3= + + (1.67)

    I2 1 2 2 3 3 1= + + (1.68)

    I3 1 2 3= (1.69)

    Since I I I1 2 3, , areinvariantsundertherotationofthecoordinates,theyarecalledthefirst,thesecond,andthethirdinvariants,respectively.

    Alternatively,thesethreeinvariantscanbeexpressedbyI I I1 2 3, , as

    I ii1 = (1.70)

    I ij ij

    12

    2 = (1.71)

    I ij jk ki

    13

    3 = (1.72)

  • 14 Computationalmodelingofmultiphasegeomaterials

    Thedifferencebetweenthestresstensorandthemeanvalueofstressten-sor, m ,iscalledthedeviatoricstresstensor,sij ,as

    sij ij m ij= (1.73)

    m

    13( )11 22 33 = + + (1.74)

    Forthedeviatoricstresstensor,threestressinvariantsexist, J J J1 2 3, , ,as

    J J s s J s s sij ij ij jk ki0

    12

    13

    1 2 3= , = , = (1.75)

    The angle of the coordinates for specifying the principal stresses isobtainedbysetting xy 0 = inEquation(1.77)as

    xy

    xx yy

    tan22

    =

    (1.76)

    xy xy

    xx yycos2( )

    2sin2 =

    (1.77)

    where xy isacomponentofthestresstensor,whichistransformedwithrespecttotherotationofthecoordinates,andistheanglebetweenthereferencecoordinatesandcorrespondstotheprincipalstressdirections.

    PROBLEMShowtheprincipalstressesandtheirdirectionsforthefollowingstresstensor:

    [ ] ij =4 1 11 2 11 1 2

    Answer:Ifwesetastheprincipalstress,

    det4 1 11 2 11 1 2

    0

    =

  • Fundamentalsincontinuummechanics 15

    Thisyields ( ) ( ) ( ) ( )2 4 2 4 2 2 02 + = .Then,theprincipalstressesare1 5= ,2 2= ,and 3 1= .

    From Equation (1.60), the direction corresponding to 51 = is givenas n n n n n n n n n0 3 0 3 01 2 3 1 2 3 1 2 3 + + = , + = , + = . Then, : :n n n1 2 3= : :2 1 1, where n n n ni ( )1 2 3= , , are the components of the unit principaldirectionvector.Similarly,theprincipaldirectionfor 22 = isobtainedas

    n n n n n n n2 0 0 01 2 3 1 3 1 2+ + = , + = , + = . Then, n n n 1 1 11 2 3: : = : : . Theprincipaldirection for 13 = is n n n n n n3 0 01 2 3 1 2 3+ + = , + + = ,

    and thenn n n 0 1 11 2 3: : = : : .

    LetusconsiderthecurrentforcevectorbythenominalstressvectorthatisthestressvectorwithrespecttosurfaceareadS0inthereferenceconfigu-rationas

    t T ni ji j= (1.78)

    s Ni ji j= (1.79)

    where ij isthenominalstresstensororthefirstPiolaKirchhoffstresstensor.Sincetheforceisinequilibrium,

    t ds s dSi i 0= (1.80)

    Nansonstheorem,Equation(1.37),gives

    JN dS

    xX

    n dsjs

    js0 =

    (1.81)

    BysubstitutingEquations(1.78)and(1.79)forEquation(1.80)andusingEquation(1.81),weobtain

    JT

    xX

    kik

    jji=

    (1.82)

    Then,

    = =

    J JXxTij

    i

    kkjF T or

    1 (1.83)

  • 16 Computationalmodelingofmultiphasegeomaterials

    1.5.3 Stress rate tensor and objectivity

    When we consider the stress rate, we have to examine the objectivityof it.Theobjectivity isdefinedastheindependenceofthemotionwithrespect to theobservers.Since thephysical lawhas tobeobjective, thephysicallawincludingtheconstitutiveequationofmaterialsshouldsat-isfytheobjectivity.Here,wewilldiscusstheobjectivityofthestressandthestressratetensor.Theobjectivityfortheconstitutiveequationswillbediscussedinthenextsection.Herein,theobjectivityfollowsmostlythatbyMalvern(1969).

    Theobserverforaneventiscalledareferenceframe.Forthedifferentobservers,thereexistsatransformationamongthem,whichisexpressedbyaEuclidtransformation.

    The Euclid transformation between two frames, tx( , ) and tx( , )* * , isgivenby

    t tx Q x c( ) ( )= + (1.84)

    t t t0= (1.85)

    where tQ( )denotesanorthogonaltensorthatexpressestherotationbetweentwoframes, tc( )istherelativemotionoftheorigin,and t0expressesthetimedifference.

    Forthechangeinreferenceframefromxto x*byEquations(1.84)and(1.85),scalarC,vectoru,andtensorEaretransformedas

    C C= (1.86)

    u Qu= (1.87)

    E QEQT= (1.88)

    Forphysicallawstobeobjective,theyhavetobedescribedbytensorquan-tities.ThedifferentiationofEquation(1.84),withrespecttotime,provides

    t t t tv c Q v Q x( ) ( ) ( ) ( )= + +

    t t t t tTc Q v Q Q x c( ) ( ) ( ) ( )( ( )) = + + (1.89)

    wherethesuperimposeddot( )indicatestimedifferentiation.

  • Fundamentalsincontinuummechanics 17

    Ifweset

    TA QQ= (1.90)

    Aistheangularvelocitytensoroftheunstarredframetothestarredframe.Inthefollowing,wewillexaminethedeformationgradient(F x XiJ i J= / ),

    velocity gradient (L v xij i j L FF 1= / , = ), rate of deformation (stretching)tensorD,spintensorW,andCauchystresstensorT.

    Ifboththenewandtheoldframesinthereferencestatearethesame,fromdx Qdx QFdX= = ,weobtain

    F QF= (1.91)

    Differentiatingtheprecedingequation,

    F QF QF = + (1.92)

    F F F F Q QFF Q AT T1 1 1 = = + (1.93)

    Then,bysettingL F F 1= ,velocitygradienttensorLbecomes

    L QLQ AT= + (1.94)

    Consequently,Lisnotobjective.Sincethestretchingtensor(orthedeformationratetensor),D L LT( ),12= +

    satisfiesthetransformationas

    D QDQT= (1.95)

    Disobjective.Moreover,thespintensor,W L LT( )12= ,transformsas

    W QWQ AT= + (1.96)

    Hence,Wisnotobjective.Wisacontinuumspintensoranddoesnotrep-resentrigidbodymotion.

    TheCauchystresstensorfollowsthetransformationas

    T QTQT= (1.97)

  • 18 Computationalmodelingofmultiphasegeomaterials

    TakingatimederivativeofEquation(1.97)gives

    TQTQ QTQ QTQT T

    T = + + (1.98)

    Then,thetimederivativeofthestresstensorisnotobjective.Letuscon-siderthequantityasT WT TW + .Since

    Q AQ = (1.99)

    QQ IT = (1.100)

    T

    Q Q AT = (1.101)

    wehave

    T W T T W Q T WT TW QT[ ] + = + (1.102)

    Hence,Tisobjective.

    T T WT TW = + (1.103)

    whereTiscalledtheJaumannstressratetensor.Theotherstressrate,theJaumannderivativeofKirchhoffstress( JT),

    o

    T

    ,isobjective.

    T T T L L

    ( ), ( )o

    iitr tr L= + = (1.104)

    DifferentiatingEquation(1.82)withrespecttotime,

    vX

    xX

    JT JTkj

    jik

    jji ki ki

    +

    = + (1.105)

    Hence,

    xX

    JT JTvX

    J TJJT

    vxT

    J T L T L T

    k

    jji ki ki

    k

    jji

    ki kik

    ppi

    ki pp ki kp pi

    ( )

    = +

    = +

    = +

    (1.106)

  • Fundamentalsincontinuummechanics 19

    MultiplyingEquation(1.106)by

    X

    xq

    k,wehave

    Xx

    xX

    JXx

    T L T L Tqk

    k

    jji

    q

    kki pp ki kp pi

    ( )

    =

    + (1.107)

    Subsequently,

    JXx

    Sjij

    kki

    =

    (1.108)

    S T L T L Tki ki pp ki kp pi + (1.109)

    whereSij isthenominalstressratewithrespecttothecurrentconfiguration.

    1.6 CONSERVATION OF MASS

    TheconservationofmasscontinuousmediumVisexpressedasthebal-anceofmassofvolumeVholdsifthereisnomassinflowintovolumeVandnomassisproducedinV.Inthiscase,thebalanceofmassforanarbitraryvolumeVisexpressedby

    DDt

    dvV

    0 = (1.110)

    whereD/Dtdenotesthematerialtimederivative.Equation(1.110)gives

    + =

    DDt

    vx

    dvV

    i

    i

    0 (1.111)

    Whentheintegrandisacontinuousfunction,thelocalformforthebal-anceofmassis

    DDt

    vxi

    i

    0+

    = (1.112)

    Incontrast,usingEquation(1.29),themassconservationlawisexpressedby

    dV dV J= =0 0 0or (1.113)

  • 20 Computationalmodelingofmultiphasegeomaterials

    where is the mass density after the deformation and 0 is the densitybeforethedeformation.

    Equation (1.112) is an Eulerian description and Equation (1.113) is aLagrangiandescriptionofthemassconservationlaw.

    1.7 BALANCE OF LINEAR MOMENTUM

    ThebalanceoflinearmomentumisgivenbythestatementthechangeinthelinearmomentumofthebodyoccupyingregionR(=volumeV+theboundaryS)isproportionaltotheforceactingonthebody.Thebalanceofmomentumisexpressedas

    DDt

    v dv t ds b dvV

    iS

    iV

    i = + (1.114)

    where DDt

    isthematerialtimederivative,vi isthevelocityvector, ti isthestressvector,bi isthebodyforce,andisthemassdensity.

    Theleft-handsideofEquation(1.114)indicatesthetimechangeofthelinearmomentum,andthefirstandsecondtermsontheright-handsideexpressthesurfaceforceandthebodyforce,respectively.

    UsingCauchystheorem(Equation1.57, t ni ji j= )andtheGausstheo-rem,andconsideringthebalanceofmass,wehave

    V

    i iji

    j

    a bx

    dv

    =

    0 (1.115)

    wherea Dv Dti i= / istheaccelerationterm.IfEquation(1.115)holdslocally,

    xb aji

    ji i

    + = (1.116)

    Whendisregardingtheaccelerationterm,thatis,forthequasi-staticcase,Equation(1.116)iscalledtheequilibriumequation.

    Equation (1.116) can be expressed in component form for a two-dimensionalproblemasx x x y x z,1 2 3 , ,x,ycomponents.

    x y zbxx yx zx x 0

    +

    +

    + = (1.117)

  • Fundamentalsincontinuummechanics 21

    x y zbxy yy zy y 0

    +

    +

    + = (1.118)

    x y zbxz yz zz z 0

    +

    +

    + = (1.119)

    wereb b bx y z,, arecomponentsofthebodyforcevector.Thebalanceoflinearmomentuminthereferenceconfigurationisgivenby

    a dV dV b dViVV

    ji j i

    V

    0 0 , 0 0 0 = + (1.120)

    where ai istheaccelerationvectorand ij isthenominalstresstensorinEquation(1.83).

    Taking a time derivative of the first term on the right-hand side ofEquation(1.120)andusingNansonstheoremand J 0 = ,wefind

    DDt

    N dS JSXxN dS

    JSXx J

    xX

    n ds

    S n ds

    ji

    S

    j kij

    kS

    j

    kij

    kS

    p

    jp

    ki

    S

    k

    1

    0 0

    =

    =

    =

    (1.121)

    Hence,aratetypeofbalanceoflinearmomentum,withrespecttothecurrentconfiguration,isobtainedas

    a dv S n ds b dvi ki kSV

    i

    V

    = + (1.122)

    Underthestaticconditionswithconstantbodyforce,theprecedingequa-tionbecomes

    S dvki kV

    0, = (1.123)

    TheaboverateequilibriumequationwillbeusedfortheupdatedLagrangianformulationoftheboundaryvalueproblem.

  • 22 Computationalmodelingofmultiphasegeomaterials

    1.8 BALANCE OF ANGULAR MOMENTUM AND THE SYMMETRY OF THE STRESS TENSOR

    Fromthebalanceofangularmomentum,thesumofthemomentumiszerointhecaseofazerotimeratefortheangularmomentum.Then,

    s ds dv dv s ds

    v vt n r b r a r M( ) 0 + + = (1.124)

    wheredenotesthevectorproduct, t n( )isthestressvector,bisthebodyforcevector,aistheinertiaforcevector,risthepositionvector,andMisthecouplestressvector.Couplestressiscalledmomentstressandcannotbe disregarded for materials with a significant rotation of the particles,suchasgranularmaterials.

    Equation(1.124)canbewrittenincomponentformas

    t x ds b x dv a x dv M ds

    sijk k j

    Vijk k j

    Vijk k j

    si 0 + + = (1.125)

    where ijk isthepermutationsymbol.UsingCauchystheoremandthedivergencetheorem,wehave

    sijk k j

    sijk j mk m

    vijk j

    mk

    mjt x ds x n ds x x = =

    +

    kk dv (1.126)

    Consideringcouplestresstensorij,weobtainM ni ji j ;= andEquation(1.125)becomes

    V

    ijk jmk

    mk k

    Vijk jkx x

    b a dv

    + +

    ++

    =ji

    jxdv 0 (1.127)

    Upon substitutingEquation (1.116), thefirst termofEquation (1.127)becomeszero.

    Hence,

    x

    dvV

    ijk jkji

    j

    0 +

    = (1.28)

  • Fundamentalsincontinuummechanics 23

    Whenthestressdistributioniscontinuous,thelocalformforEquation(1.128)is

    xijk jk

    ji

    j

    0 +

    = (1.129)

    whencouplestresstensorjiiszero.Fori= 1, 123 23 132 32 23 32 23 320+ = = =, .Ingeneral,

    ij ji = (1.130)

    Consequently, thestresstensor issymmetricwhencouplestresstensorjiiszero.

    1.9 BALANCE OF ENERGY

    Theenergyconservationlawiscalledthefirstlawofthermodynamics,anditisdescribedasfollows:Thetimerateoftotalenergyofthemasssystemisequaltothesumoftheexternalmechanicalworkratedonebythebodyforceandthesurfaceforce,heatinflowthroughthesurfaceofthebodyandtheotherenergysupply.

    K E F Q + = + (1.131)

    K

    DDt

    v v dvV

    i i12

    = (1.132)

    F b v dv t v ds

    Vi i

    Si i = + (1.133)

    E edv

    V

    = (1.134)

    Q hdv q n ds

    V Si i = (1.135)

    whereK istherateofthemechanicalenergy,Eistheinternalenergy,eistheinternalenergydensity,Fistheexternalworkrate,Qistheheatinflowandothersuppliesofenergy,histheenergysupplydensitysuchasradia-tion,andqiistheheatflowvector.

  • 24 Computationalmodelingofmultiphasegeomaterials

    Fromtheconservationoflinearmomentum,wehave

    F

    DDt

    v v dv D dvV

    i iV

    ij ij12 = + (1.136)

    Then,

    E D dv hdv q n ds

    Vij ij

    V Si i

    = + (1.137)

    ThelocalformforEquation(1.131)becomes

    e D h qij ij i i = + , (1.138)

    1.10 ENTROPY PRODUCTION AND CLAUSIUSDUHEM INEQUALITY

    Thesecondlawofthermodynamicsisdescribedasfollows:Thetimerateoftheentropyofthebodyisnotlessthanthechangeinentropyassociatedwiththeheatinflowandtheothersuppliesofenergy.

    Inotherwords,theentropyproductionduringthemotionofabodyisnotalwaysnegative.

    N H (1.139)

    N

    DDt

    dvV

    = (1.140)

    whereistheentropydensity.

    H

    hdv

    qn ds

    V S

    ii

    = + (1.141)

    whereisthetemperature.

    DDt

    h qi

    i

    ,

    (1.142)

    ThelocalformforEquation(1.139),ClausiusDuhemInequality,is

  • Fundamentalsincontinuummechanics 25

    Ifweset D Dt = / ,usingthefirstlawofthermodynamics,thepreced-ingequationbecomes

    D e q

    xij ij i

    i

    10 +

    (1.143)

    If we set Helmholtzs free energy function as = e, Equation(1.143)becomes

    D q

    xij ij i

    i

    ( )1

    0 + +

    (1.144)

    Letusconsiderthecasewithasmallchangeindensityandthefollow-ingrelations:

    ije ( ) = , (1.145)

    Dij ije ij

    vpij ij = + , = (1.146)

    where ije and ijvp are the elastic strain rate and the inelastic strain rate,

    respectively.FromEquation(1.144),wehave

    +

    +

    ije ij

    eij ij

    1qq

    xi i

    0 (1.147)

    ij

    ije =

    , =

    (1.148)

    Hence,

    q

    xij ij

    vpi

    i

    10

    (1.149)

    Equation(1.149)indicatesthattheinternalentropyproductionoccursduetotheinelasticstrainandtheheatflow.

  • 26 Computationalmodelingofmultiphasegeomaterials

    TruesdellandNoll(1965)definedinternalentropyproductionas

    D e q

    xij ij i

    i

    1 1 102 = +

    (1.150)

    ThestrongsufficientconditionsforEquation(1.150)tobetruearegivenbythefollowingtwoinequalities:

    D eij ij

    1 10 = +

    (1.151)

    q

    xi

    i

    102

    (1.152)

    WhenFourierslawofheatflowisexpressedas

    qi i,= :heatconductioncoefficient (1.153)

    Equation(1.152)becomes

    xi

    102

    2

    (1.154)

    Consequently,

    0 (1.155)

    Namely,isnonnegative.An important thermodynamical framework for the plasticity theory

    hasbeenstudiedbyCollinsandHoulsby(1997)basedontheZieglerstheory of dissipation function. The related results will be presented inChapter3.

    1.11 CONSTITUTIVE EQUATION AND OBJECTIVITY

    Aswasbeenmentionedearlier, therearenine fundamental laws incon-tinuummechanics,exceptforelectromagneticlaws.Theseincludethemassconservation law (1), theconservation lawsof linearmomentum(3), theconservationlawsofangularmomentum(3),theconservationofenergy(1),andtheentropyproductioninequality(1,constraintcondition).

  • Fundamentalsincontinuummechanics 27

    Ontheotherhand,therearenineteenvariablescontainedinthelaws,namely,themassdensity(1),velocitycomponents(3),thecomponentsofthestresstensor(9),temperature(1),thecomponentsoftheheatflowvector(3),internalenergy(1),andentropy(1).

    Hence,elevenmoreequationsarerequired todescribe theresponseofmaterials.Theseelevenequationsarecalledconstitutiveequationsinordertospecifytheresponsecharacteristicsofmaterials.Thenumberofequa-tionsiseleven,thatis,sixforstressstrainrelations,threeforheatflux,oneforinternalenergy,andoneforentropy.

    Constitutive equations are not given a priori but are derived basedon experiments satisfying the fundamental laws and objectivity. Thewell-known Hookes law is a typical constitutive equation for elasticmaterials.

    1.11.1 Principle of objectivity and constitutive model

    Theresponseofamaterialtoexternalactionisindependentoftheobserver.Itindicatesthattheconstitutiveequationshouldbeindifferenttochangesinthecoordinateframe.Inthefollowing,wewilldiscusstheobjectivityoftheconstitutiveequationsandhowtheprincipleofobjectivityprescribesconstitutiveequations.

    Constitutiveequationsdescribethematerialsinherentresponsetoexter-nalactionandareexpressedbyafunctionalofthehistoryofmotionanddeformation.Thisfunctionaliscalledtheconstitutivefunctional.

    Forexample,whenthestresstensorTatamaterialpointXisdeterminedbythemotionofmaterialpoint X inthevicinityofX,constitutivefunc-tionalGisgivenby

    t tT G x X X X[ ( ) ( ) ]= , , , , (1.156)

    ConstitutivetensorfunctionalGhastobeindifferentwithrespecttotherigidrotation,thetranslationalmotion,andthetimeshiftsothatconstitu-tivefunctionalGsatisfiestheprincipleofobjectivityas

    t t t tx X Q x X c( ) ( ) ( ) ( ), = , + (1.157)

    t t t0= (1.158)

    t t t t t t tG x X X X G x X X X[ ( ) ( ) ] [ ( ) ( ) ]0, , , , , = , , , , , (1.159)

    whereX isapointinthevicinityofpointX.

  • 28 Computationalmodelingofmultiphasegeomaterials

    Intheabove,weassumethatfunctionalGdependsonthemotionofthematerialpointsinthevicinityofpointXand,ingeneral,theconstitutivefunctionaldependsonthepasthistory( t t < ).Herein,however,wedisregarditforthesakeofsimplicity.

    1.11.2 Time shift

    Whenweset t IQ( ) = , tc( ) 0= ,t t0 = ,and = , = t t tx X x X( , ) ( , ) 0.Then,forexample,thestresstensorTcanbeexpressedbyfunctionalGas

    T G x X X X[ ( 0) ( 0) 0]= , , , , , (1.160)

    This indicates that the functionaldoesnotexplicitlydependon time. Inotherwords,theresponsefunctional,whichexplicitlydependsontime,isnotobjective.

    1.11.3 Translational motion

    Whenweset t IQ( ) = , t tc x X( ) ( )= , ,andt 00 = ,

    t t t t tx X x X x X( ) ( ) ( ), = , , , = (1.161)

    t t t tT G x X x X X X[ ( ) ( ) ( ) ]= , , , , , , (1.162)

    1.11.4 Rotational motion

    When tQ( )issettobearbitraryand tc( ) 0= andt 00 = ,

    t t t t t t tTQ T X Q G Q x X X X T( ) ( ) ( ) [ ( ) ( ) ( ) ], = , , , , , = (1.163)

    FromEquation(1.162),weget

    t t t t t t t tTQ G x X x X X X Q G Q x X x X X( ) [ ( ) ( ) ( ) ] ( ) [ ( )( ( ) ) ( )) ], , , , , = , , ,,

    (1.164)

    TakingtheTaylorseriesof tx X( ), around tx X( ), ,assumingthecontinu-ityofthefunctional,wehave

    t t t dx X x X F X X( ) ( ) ( ), , = , (1.165)

  • Fundamentalsincontinuummechanics 29

    Hence,

    t t t tTQ TQ G QF X X X( ) ( ) [ ( ) ( ) ]= , , , , (1.166)

    Thedependenceof the functionalon the relativeposition leads to thedependenceonthedeformationgradient,Fi j xX

    ij

    =, ,andthedependenceonthestrain.

    Forexample,considerthecaseinwhichthedeformationratetensor,D,dependsonthestress,namely,

    D G T( )= (1.167)

    TheobjectivefunctionalGsatisfies

    QDQ G QTQT T( )= (1.168)

    forarotationQ.Fromaphysicalpointofview,itcanbeseenthatthedeformationrate

    tensorrotatesaccordingtotherotationoftheloadingsystem.Hence,theprincipleofobjectivitycanbeviewed theprincipleof the space isotropy(Figure1.4).

    REFERENCES

    Belytschko, T., Liu, W.K., and Moran, B. 2000. Nonlinear Finite Elements forContinuaandStructures,JohnWiley&Sons,NewYork.

    Boehler, J.P. 1987. Applications of Tensor Functions in Solid Mechanics, CISMCoursesandLectures,No.292,Springer-Verlag,NewYork.

    y T

    TD ij

    Dij

    x

    xO

    y

    Figure 1.4 Changeofreferenceframe.

  • 30 Computationalmodelingofmultiphasegeomaterials

    Collins, I.F., and Houlsby, G.T. 1997. Application of thermomechanical prin-ciples to themodelingofgeotechnicalmaterials,Proc.Roy.Soc.LondonA,453:19752001.

    Eringen,A.C.1967.MechanicsofContinua,NewYork:JohnWiley&Sons.Fung, Y.C., and Tong, P. 2001. Classical and Computational Solid Mechanics,

    WorldScientific.Gurtin, M.E. 1982. An Introduction to Continuum Mechanics, New York:

    AcademicPress.Malvern,L.E.1969.IntroductiontotheMechanicsofaContinuousMedia,New

    York:Prentice-Hall.Maugin,G.A.1992.TheThermomechanicsofPlasticityandFracture,Cambridge

    UniversityPress.Spencer, A.J.M. 1988. Continuum Mechanics, Longman Scientific and Technical,

    NewYork.Truesdell, C., and Noll, W. 1965. The non-linear field theories of mechanics, In

    EncyclopediaofPhysics,Vol.III,Part3,ed.byS.Flgge,Berlin:Springer-Verlag.Ziegler,H.1983.AnIntroductiontoThermomechanics,2nded.,ElsevierScience,

    North-Holland,Amsterdam.

  • 31

    Chapter2

    Governing equations for multiphase geomaterials

    Oneoftheimportantcharacteristicsofgeomaterialsisthatthematerialis composed of solid, liquid, and gas in general. In this chapter, gov-erning equations for the analysis includingbalance lawsand constitu-tiveequationsarepresentedbasedonthetheoryofporousmedia,thatis,animmisciblemixtureofsolidandfluids.First,governingequationsforfluidsolidmaterialsareshown,theninSection2.2, thegoverningequations for gasliquidsolid three-phase materials are formulated.In Section 2.3 the equations for the unsaturated saturated soils arepresented.

    2.1 GOVERNING EQUATIONS FOR FLUIDSOLID TWO-PHASE MATERIALS

    2.1.1 Introduction

    Thegoverningequationsforporewatersoilcoupledproblemscanbederived fromBiots theoryofwater saturatedporousmedia,which isbased on continuum mechanics (Biot 1941, 1955, 1956, 1962; Atkinand Craine 1976; Bowen 1976). Before Biots work, Fillunger (1913)proposedatheoryofporousmediafilledwithwater.Historicaldevel-opment of the theory of porous media has been well documented bydeBoer(2000a,b).VariousmethodsareproposedforBiotstwo-phasemixture theory depending on the method of approximation and thechoiceofunknownvariables(Coussy1995;LewisandSchrefler1998;Zienkiewicz et al. 1999; Ehlers, Graf, and Ammann 2004). In manycomputer programs for liquefaction and consolidation analyses, a u-pformulation is adopted in which the displacement (u) of the solid andporewaterpressure(p)areusedastheunknownvariables,becausewecanreducethedegreeoffreedomalthoughtheu-pformulationprovidesadifferentsolutioninthehighfrequencyrangeforthehigherpermeability

  • 32 Computationalmodelingofmultiphasegeomaterials

    (Zienkiewiczetal.,1980,LIQCARes.DevelopmentGroup,2005).Thisu-p formulation can be easily applied to the consolidation problemssincethedisplacementofporewaterisexplicitlyintroduced.

    2.1.2 General setting

    Thefollowingassumptionsareadoptedintheu-pformulation:

    1.Aninfinitesimalstrainisused. 2.Therelativeaccelerationofthefluidphasetothatofthesolidphaseis

    muchsmallerthantheaccelerationofthesolidphase. 3.Thegrainparticlesinthesoilareincompressible. 4.Theeffectofthetemperatureisdisregarded.

    Themotionofthemixtureforthemultiphasemediumisdescribedbythesuperpositionofmultiphases inthecontextofcontinuumtheoryasshowninFigure2.1.Forthefluidsolidtwo-phasemixture,weassumethat each point within the mixture is occupied simultaneously by twoconstituents and described by the rectangular Cartesian coordinates(Figure2.2).

    Inthefollowings,thematerialtimederivativeisgivenby

    DDt t

    vx

    a

    ia

    ia

    ( )

    =+

    (2.1)

    wheresuperscriptaindicatesphaseaand via isthevelocityofthematerial

    inphasea,xia isthepositionofparticleofaphase.

    Water

    Soil particleSolid fluid mixture

    Solid phase Fluid phase

    Figure 2.1 Superpositionofsolidandfluidphases.

  • Governingequationsformultiphasegeomaterials 33

    Atcurrentstateattimet, x xis

    if( ) ( )= fortwophases;(s)standsforsolid

    and(f)forfluidphasesinFigure2.2.Hence,materialtimederivativeforthemultiphasescanbedescribedinthespatialcoordinatexi andthesuper-scriptscanbeneglectedas:

    DDt t

    vx

    ia

    i

    =+

    (2.2)

    2.1.3 Density of mixture

    Thedensitiesofthesolidphase,s

    ,andthefluidphase,f

    ,aredefinedas

    s s f fn n = =( ) ,1 (2.3)

    wherenistheporosity,s isthedensityofthesolid,andf isthedensityofthefluid.

    ThedensityofthemixtureisdescribedusingEquations(2.1)and(2.2)as

    = + = +s f s fn n( )1 (2.4)

    InBiotstheory,thewater-saturatedsoilisdescribedbythesuperpositionofthesolidphaseandthefluidphaseasshowninFigure2.1.

    x3

    x2

    x1

    at time t

    at current time t

    xi Xi( f )

    xi(s)Xi(s) ( f )= xi = xi

    Figure 2.2 Geometricarrangement.

  • 34 Computationalmodelingofmultiphasegeomaterials

    2.1.4 Definition of the effective and partial stresses of the fluidsolid mixture theory

    The total stress is givenby the sumof thepartial stressesactingon thephasesas

    ij ij

    sijf= + (2.5)

    where ijs isthepartialstresstensorofthesolidphaseand ij

    f isthepartialstresstensorofthefluidphase.

    Thepartialstressesforthefluidphaseandthesolidphasearegivenby

    ijf

    ijnp= (2.6)

    n pij

    sij ij(1 ) = (2.7)

    where ij isthetotalstresstensor, ijistheeffectivestresstensor,pistheporewaterpressure,nistheporosity,and ij istheKroneckersdelta.Inthederivation,tensionispositivebuttheporewaterpressure ispositiveforcompression.

    The total stress isdescribedby theeffective stressand theporewaterpressureas

    = pij ij ij (2.8)

    2.1.5 Displacementstrain relation

    FromAssumption1,thedisplacementstrainrelationsforthesolidandthefluidphasesaredefinedas

    ijs i

    s

    j

    js

    iijf i

    f

    j

    jux

    u

    xux

    u=

    +

    =

    +1

    212

    ,ff

    ix (2.9)

    whereijs isthestraintensorofthesolidphaseandui

    sisthedisplacementvectorofthesolidphase,ij

    f isthestraintensorofthefluidphase,anduif

    isthedisplacementvectorofthefluidphase.Thestrainratesaregivenbythetimedifferentiationofstrainsas

    ijs i

    s

    j

    js

    i

    ux

    ux

    =

    +

    12

    ,

    ijf i

    f

    j

    jf

    i

    ux

    ux

    =

    +

    12 (2.10)

    where()denotesthetimedifferentiation.

  • Governingequationsformultiphasegeomaterials 35

    2.1.6 Constitutive model

    The constitutive relations of the solid phase are given by the relationsbetweentheincrementalstrainsandeffectivestressincrementsas

    = Dij ijkl kl

    s (2.11)

    where ijistheeffectivestressincrementtensor,Dijkl isthemodulusten-sor,and kl

    s isthestrainincrementtensorofthesolidphase.Inthecaseoftheelastoplasticmodel,itbecomes

    D Dijkl ijklep= (2.12)

    Whendisregardingtheviscousresistanceoffluidphase,theconstitutiveequationisgivenby

    p Kf

    iif= (2.13)

    whereKf istheelasticvolumetricmodulusoftheporefluid.

    2.1.7 Conservation of mass

    Themassconservationlawsforthesolidandthefluidphasesaregivenby

    +

    =

    s sis

    itux

    ( ) 0 (2.14)

    +

    =

    f fif

    itux

    ( ) 0 (2.15)

    2.1.8 Balance of linear momentum

    Thelinearmomentumconservationlawsforthetwophasesaregivenas

    sis

    iijs

    j

    siu R xb

    =

    + (2.16)

    fif

    iijf

    j

    fiu R xb

    + =

    + (2.17)

  • 36 Computationalmodelingofmultiphasegeomaterials

    wherebi isthebodyforcevector,andRi isthetermexpressingtheenergydissipationduetotherelativemotionbetweenthesolidandthefluidphases(Biot1956).

    R n

    kwi

    wi=

    (2.18)

    i if

    is

    w n u u = ( ) (2.19)

    wherekisthepermeabilitycoefficient(assumedtobescalarbecauseofisot-ropy),and iw istherelativevelocityvectorofthefluidphasetothesolidphase. w

    f g= istheunitweightoftheporewaterwiththegravitationalaccelerationg.

    WhenwedescribeRibyEquation(2.18),itiseasilyshownthattheequa-tionofmotionforthefluidphaseisageneraldescriptionofDarcyslaw.

    ConsideringEquation(2.19)andthattheporosityisconstant,weobtainthe following equation from the equation of motion for the fluid phaseEquation(2.17),aftermanipulation:

    fis

    f

    i iijf

    j

    fiu n

    w Rx

    b

    + + =

    + (2.20)

    Iftherelativeaccelerationisalmostzero,

    u wis

    i (2.21)

    Equation(2.20)canbeapproximatedconsideringEquation(2.21):

    fis

    iijf

    j

    fiu R xb

    + =

    + (2.22)

    Substituting Equations (2.2), (2.5), and (2.18) into Equation (2.22),weobtain

    n u n

    kw

    npx

    n bf is w

    ii

    fi

    + =

    + (2.23)

    Whenweassumethatthespatialgradientoftheporosityissufficientlysmall,thefollowingequationholds:

    =nxi

    0 (2.24)

  • Governingequationsformultiphasegeomaterials 37

    SubstitutingEquation(2.24)intoEquation(2.23),wehave

    f i

    s wi

    i

    fiu k

    wpx

    b + =

    + (2.25)

    Then,whenthesecondtermontheright-handsideofEquation(2.25)isabodyforceduetothegravitationalforce,andwedisregardthedynamicterm,thefollowingequationholds:

    + =px

    bi

    fi 0 (2.26)

    Hence,p gxf= 1inwhichx1isacoordinateinthedirectionofthegravita-tionalforceandgisthegravitationalacceleration;thenpisthencalledthehydrostaticpressure.

    FromEquation(2.25),wehavethefollowingequation:

    i

    w

    fis

    i

    fiw

    ku

    px

    b = +

    (2.27)

    Then,disregardingtheaccelerationtermandsettingthedirectionof x1forthedirectionofgravitationalforcegandb g1 = ,wehave

    1

    1 11w

    k px

    g kx

    px

    w

    f

    w

    =

    =

    =

    khx1

    (2.28)

    inwhich wf g= andhisthetotalhead.

    Thetotalheadisexpressedby

    h

    px

    pz

    w w

    = = + 1

    (2.29)

    wherez x= 1,zistheelevationhead,andp

    w isthepressurehead.It is seen thatEquation (2.28) isDarcys law. It shouldbenoted that

    theconservationlawofthelinearmomentumofthefluidphaseEquation(2.17)isageneraldescriptionofDarcyslaw.Inthepreceding,thefunda-mental equationsof governing equationshavebeendescribed.Next,wewillderivethebalanceequationofthewholemixtureandthecontinuityequationfromthefundamentalequations.

  • 38 Computationalmodelingofmultiphasegeomaterials

    2.1.9 Balance equations for the mixture

    ByaddingEquation(2.16)andEquation(2.17),weobtainthebalanceoflinearmomentumofthemixtureas

    sis f

    if ij

    s

    j

    ijf

    j

    si

    fu u

    x xb

    + =

    +

    + + bbi (2.30)

    Upon substitution of Equations (2.3), (2.4), and (2.19) into Equation(2.30),thefollowingequationisderived:

    i

    s fi

    ij

    jiu w xb + =

    + (2.31)

    FromAssumption2,namely,inthecasethattherelativeaccelerationcanbeneglectedasEquation(2.21),Equation(2.31)becomesthebalanceoflinearmomentumforthemixtureas

    i

    s ij

    jiu xb =

    + (2.32)

    Forthebalanceofangularmomentumofthemultiphasematerials,weassumethebalanceofangularmomentumforthephasesaswellasforthewholemixture.

    2.1.10 Continuity equation

    SubstitutionofEquation(2.1)intothemassconservationequationofthesolidphaseEquation(2.14)leadstothefollowingequation:

    ( )

    ( ) {( ) }( )1

    1 11

    +

    +

    + n

    tn

    tn ux

    ns

    s s is

    iis ux

    s

    i

    =

    0 (2.33)

    Inasimilarway,substitutingEquation(2.2)intothemassbalanceequa-tionofthefluidphaseEquation(2.15)gives

    n

    tnt

    nux

    nux

    ff f i

    f

    iif

    f

    i

    +

    +

    +

    =

    ( )

    0 (2.34)

  • Governingequationsformultiphasegeomaterials 39

    MultiplyingEquation(2.33)by f s/ andaddingtheresultandEquation(2.34),wehave

    f f if

    is

    i

    f int

    nt

    n u ux

    +

    +

    +

    ( ) { ( )}1 ss

    i

    f

    if

    f

    i

    f

    s

    s

    ux

    nt

    ux

    nt

    +

    +

    +

    +

    ( )1 ii

    ss

    iu

    x

    =

    0

    (2.35)

    InEquation(2.35),thefirsttermisequaltozero.TakingintoaccountAssumption1andsubstitutingEquation(2.10)andEquation(2.19) intoEquation(2.35),wehave

    + +

    +

    +i

    iiis

    f

    f

    if

    f

    is

    wx

    nt

    ux

    n

    ( )1

    +

    = s

    is

    s

    itu

    x 0 (2.36)

    where iis isthevolumetricstrainrateofthesolidphase.

    Considering the material time derivative, Equation (2.36) can beexpressedas

    + + +

    =ii

    iis

    f

    f

    s

    swx

    n n

    ( )1

    0 (2.37)

    Herein,whenweassume the incompressibilityof the soil constituentssuchassoilparticles(Assumption3),thefollowingequationholds:

    s = 0 (2.38)

    SubstitutionofEquation(2.38)intoEquation(2.37)leadstothefollow-ingequation:

    + + =ii

    iis

    f

    fwx

    n

    0 (2.39)

    Theprecedingequationisthecontinuityequationforthecaseofincom-pressibilityofthesolidconstituent.Thethirdtermoftheleft-handsideofEquation(2.39)denotesacompressibilityoftheporewater.

  • 40 Computationalmodelingofmultiphasegeomaterials

    Neglecting the effect of temperature, the following equation is givensincethetimederivativeofmassoftheporefluid(f fV )iszero:

    D VDt

    f f( )= 0 (2.40)

    Afterthemanipulationofthisequationwehave

    f

    f

    f

    f iifV

    V

    = = (2.41)

    Substitutingtheconstitutiveequationofthefluid,Equation(2.13),intoEquation(2.41)gives

    f

    f f

    p

    K

    = (2.42)

    UponsubstitutionofEquation(2.42)intoEquation(2.39),thecontinuityequationbecomes

    + + =ii

    iis

    fwx

    n

    Kp 0 (2.43)

    InEquation(2.43),thisequationincludestherelativevelocityofthefluidphasetothesolidphase.

    IfAssumption2oftheu-pformulationisadopted,wecanexpresswibytheaccelerationofthesolidphaseandtheporewaterpressureashasbeenshowninEquation(2.27)andcanbeeliminatedinEquation(2.43).

    SubstitutingEquation(2.27)intoEquation(2.43),weget

    +

    x

    ku

    px

    bi w

    fis

    i

    fi

    + + =iis

    f

    n

    Kp 0 (2.44)

    Ifthebodyforcebiisconstant,andthespatialgradientsofpermeabilityandthedensityofthefluidaresufficientlysmall,consideringEquation(2.8),thefinalformofthecontinuityisgivenas

    k p

    x

    n

    Kp

    w

    fiis

    iiis

    f

    + + =

    2

    20 (2.45)

  • Governingequationsformultiphasegeomaterials 41

    2.2 GOVERNING EQUATIONS FOR GASWATERSOLID THREE-PHASE MATERIALS

    2.2.1 Introduction

    Geomaterials generally fall into the category of multiphase materials.Theyarebasicallycomposedofsoilparticles,water,andair.Thebehaviorofmultiphasematerialscanbedescribedwithintheframeworkofamac-roscopiccontinuummechanicalapproachthroughtheuseofthetheoryofporousmedia(deBoer2000b).Thetheoryisconsideredtobeagener-alizationofBiotstwo-phaseporoustheoryforsaturatedsoil(Biot1941,1955,1956).

    Proceeding fromthegeneralgeometricallynonlinear formulation, thegoverningbalancerelationsformultiphasematerialscanbeobtained(deBoer2000b;LoretandKhalili2000;LewisandSchrefler1998;EhlersandGraf,2003;Ehlersetal.,2004).Massconservationlawsforthegasphaseaswellasfortheliquidphaseareconsideredinthoseanalyses.Inthefieldofgeotechnics,airpressureisassumedtobezeroinmanyresearchworks(Shengetal.2003),sincegeomaterialsusuallyexistinanunsaturatedstatenearthesurfaceofthegroundandwehavenotenoughdataonadevelop-mentofairpressure.Consideringgashydratedissociationintheseabedground,however,wehavetodealwiththehighlevelofgaspressurethatexistsdeepintheground(Kimotoetal.2007),thismeansthatthemassbalanceforthreephasesmustbeconsidered.Okaetal.(2006)proposedanairwatersoilcoupledfiniteelementmodelinwhichtheskeletonstressis used as a stress variable, and the suction effect is introduced in theconstitutiveequationforsoil.Furthermore,theconservationofenergyisrequiredwhen there isa considerable change in temperatureduring thedeformation process. Vardoulakis (2002) showed that the temperatureof saturated clay rises with plastic deformation. Oka et al. (2004) andKimotoetal.(2007)numericallysimulatedthethermalconsolidationpro-cess,whichwillbeshowninChapter10.

    2.2.2 General setting

    The material to be modeled is composed of three phases, namely, solid(S),water(W),andgas(G),whicharecontinuouslydistributedthroughoutspace.Totalvolume(V)isobtainedfromthesumofthepartialvolumesoftheconstituents,namely,

    V V S W G

    = =( , , ) (2.46)

  • 42 Computationalmodelingofmultiphasegeomaterials

    Thevolumeofvoid,Vv ,whichiscomposedofwaterandgas,isgivenasfollows:

    V V W Gv

    = =( , ) (2.47)

    Volumefraction, n,isdefinedasthelocalratioofthevolumeelementwithrespecttothetotalvolume,namely,

    n

    VV

    = (2.48)

    n S W G

    = =1 ( , , ) (2.49)

    Thevolumefractionofthevoid,thatis,porosity,n,iswrittenas

    n nVV

    V VV

    n W Gv S

    S= = =

    = =

    1 ( , ) (2.50)

    Thevolumefractionofthefluid,nF ,isgivenby

    n n W GF = = ( , ) (2.51)

    Thevolumefractionconcepthasbeenadoptedtoconstructthetheoryofmixture(Mills1967;Morland1972).ThehistoricaldevelopmentofthevolumefractiontheoryhasbeenwelldiscussedbydeBoer(2000b).

    Inaddition,thewatersaturationisrequiredinthemodel,namely,

    s

    V

    V V

    n

    n n

    n

    nr

    W

    W G

    W

    W G

    W

    F=

    +=

    += (2.52)

    2.2.3 Partial stresses

    Byanalogytothewater-saturatedsoil,weassumethat

    = n PijS

    ijS F

    ij (2.53)

    ijW W W

    ijn P= (2.54)

    ijG G G

    ijn P= (2.55)

  • Governingequationsformultiphasegeomaterials 43

    wherePF istheaveragepressureofthefluidssurroundingthesolidskeleton(Bolzonetal.1996)givenby

    P s P s PF

    rW

    rG= + ( )1 (2.56)

    and ij isaskeletonstress.Theskeletonstress,whichwillbeexplainedinthefollowing,isreason-

    abletodescribethebehaviorofsolidskeletonintheconstitutiverelation.Totalstresstensor, ij ,isobtainedfromthesumofthepartialstresses,

    ij ,namely,

    = =

    S W Gij ij ( , , ) (2.57)

    and

    Pij ijF

    ij = + (2.58)

    2.2.4 Conservation of mass

    Theconservationofmassforthesolid,water,andgasphases,(=S,W,G),isgiveninthefollowingequation:

    ( ) = + =( )t n q m S W GMi i

    , , , (2.59)

    inwhich isthematerialdensity,qMi isthefluxvector,and misthemass

    changerateofphaseperunitvolume.Thefluxvectorisexpressedintermsofthevelocityoftheflowas

    q n v S W GMi i = =( , , ) (2.60)

    where vi isthevelocityofphase.

    Therelativevelocityoftheflow,Vi ,withrespecttothesolidphaseis

    V n v v W Gi i iS = =( ) ( , ) (2.61)

  • 44 Computationalmodelingofmultiphasegeomaterials

    TheconservationlawsinEquation(2.59)forthesolid,water,andgasphasesareexpressedwithwatersaturation, sr ,andthevolumefractionofvoid,nF,as

    + = s F F s i i

    s sn n v m ( ) ,1 (2.62)

    n s s n n s ns v mW F

    rW

    rF F

    rW

    rW

    i iW W, + + + = (2.63)

    n s n s n s n s vF r

    G Fr

    G Fr

    G Fr

    Gi iG( ) ( ) ( ) ,1 1 1 + + == m

    G (2.64)

    whereweassumetheincompressibilityofsoilparticles, S = 0,andn nF = istheporosity.

    Assumingthatthespatialgradientofthevolumefractionsarezero,weobtainfollowingrelationsfromEquations(2.62)to(2.64)as

    s n s n V s v s

    m mr

    FW

    W rF

    i iW

    r i iS

    r

    s

    s

    W

    W

    + + + =, , 0 (2.65)

    s n s n s v V s

    m mr

    FG

    G rF

    r i iS

    i iG

    r

    s

    s

    G

    G(1 ) (1 ) (1 ) 0, ,

    + +

    = (2.66)

    Asfordescribingchangesinthegasdensity,theequationofidealgasescanbeused,thatis,

    G

    G GM PR

    = (2.67)

    G

    G G GMR

    P P=

    2 (2.68)

    inwhichMGisthemolecularweightofgas,Risthegasconstant,isthetemperature,andtensionispositiveintheequation.

    DividingEquation(2.68)byEquation(2.67)yields

    G

    G

    G

    G

    P

    P= (2.69)

  • Governingequationsformultiphasegeomaterials 45

    2.2.5 Balance of momentum

    Momentumbalanceisrequiredforeachphase,namely,

    n v n F P S W Gi ji j i i = + =, ( , , ) (2.70)

    inwhich Fi is thegravity forceand Pi is related to the interaction term

    givenin

    P D v v D D S W Gi i i

    = = = ( ), ( , , , ) (2.71)

    where Dareparameters thatdescribe the interactionwitheachphase.Themomentumbalanceequationforeachphaseisobtainedwiththefol-lowingequationswhentheaccelerationisdisregarded:

    n P n F D v v D v vji jS F

    iS S

    iSW

    iS

    iW SG

    iS

    iG' ( ) ( ) ( ) 0, , + = (2.72)

    n P n F D v v D v vW W

    iW W

    iWS

    iW

    iS WG

    iW

    iG( ) ( ) ( ) 0, + = (2.73)

    n P n F D v v D v vG G

    iG G

    iGS

    iG

    iS GW

    iG

    iW( ) ( ) ( ) 0, + = (2.74)

    D W G ( , , )= aregivenas

    D

    n g

    kD

    n g

    kWS

    W W

    WGS

    G G

    G= =

    ( ),

    ( )2 2 (2.75)

    inwhich kWand kGarethepermeabilitycoefficients for thewaterphase

    and thegasphase, respectively.Weassume that the interactionbetweenwaterandgasphasesDGW andDWGiszero.

    When the spacederivativeofvolume fraction n i, isnegligible,Darcys

    lawforthewaterphaseandthegasphaseisobtainedfromEquations(2.73)and(2.74),respectively,as

    V n v v

    kgP Fi

    W WiW

    iS

    W

    W iW W

    i,( ) ( )= =

    (2.76)

    V n v v

    kgP Fi

    G GiG

    iS

    G

    G iG G

    i,( ) ( )= =

    (2.77)

  • 46 Computationalmodelingofmultiphasegeomaterials

    ThesumofEquations(2.72)to(2.74)leadsto

    ji jE

    iEF n S W G, , ( , , )+ = = =0 (2.78)

    It is worth noting that Darcy-type laws such as Equations (2.76) and(2.77)arenotobjectivesincetheyincludevelocitybutareagoodapprox-imation (Eringen 2003). In addition, as has been printed out in Section2.2.1.9, it is assumed that the angular momentum is balanced for thephasesforthewholemixture.

    2.2.6 Balance of energy

    Thefollowingenergyconservationequationisappliedinordertoconsidertheheatconductivity:

    c D h Q

    Eijvp

    ij i i, ( ) = + (2.79)

    c n c S W GE( ) = = ( , , ) (2.80)

    wherecisthespecificheat,isthetemperatureforallthephases,Dijvpis

    theviscoplasticstretchingtensor, hi istheheatfluxvector,and Q istheheatsource.

    Heatflux,hi ,isgivenby

    hi

    Ei= , (2.81)

    E n=

    ( =S,W,G) (2.82)

    inwhich isthethermalconductivity.

    2.3 GOVERNING EQUATIONS FOR UNSATURATED SOIL

    In the theoryofporousmedia, theconceptof theeffective stress tensorisrelatedtothedeformationofthesoilskeletonandplaysanimportantrole.The effective stress tensorhasbeendefinedbyTerzaghi (1943) for

  • Governingequationsformultiphasegeomaterials 47

    water-saturated soil. However, the effective stress needs to be redefinedif the fluid is made of compressible materials. In the present study, theskeletonstresstensor, ij ,isdefinedandthenusedforthestressvariablein the constitutive relation for the soil skeleton (Okaetal.2006,2008,2010),whichhasbeencalledaverageskeletonstressbyJommi(2000)andGallipolietal.(2003).

    2.3.1 Partial stresses for the mixture

    Thetotalstress tensor isassumedtobecomposedofthreepartialstressvaluesforeachphase:

    ij ij

    sijf

    ija= + + (2.83)

    where ij is the total stress tensor,and ijs , ij

    f ,and ija are thepartial

    stresstensorsforsolid,liquid,andair,respectively.Consideringthevolumefraction(Ehlersetal.2004),thepartialstress

    tensorsforunsaturatedsoilcanbegivenby

    ijf

    rf

    ijnS p= (2.84)

    ija

    ra

    ijn S p= ( )1 (2.85)

    = n Pijs

    ijF

    ij(1 ) (2.86)

    P S p S pF

    rf

    ra= + ( )1 (2.87)

    where pf and pa are theporewaterpressureand theporeairpressure,respectively,nistheporosity,Sr isthedegreeofsaturation, ij istheskel-etonstress,andPF istheaverageporepressure.Thetensionispositiveinthischapter.

    Fortheunsaturatedsoil,wewillusetheskeletonstress(Okaetal.2006,2008;Kimotoetal.2010)asthebasicstressvariableinthemodelalongwithsuction.TheskeletonstressonlyappliestothesoilskeletonandEquation(2.86)comesfromtheanalogytotheeffectivestressforthewater-saturatedsoil.ByaddingEquations(2.84),(2.85),and(2.86)wehaveskeletonstressas

    Pij ijF

    ij = + (2.88)

  • 48 Computationalmodelingofmultiphasegeomaterials

    TheskeletonstresswasfirstadvocatedbyJommi(2000)astheaverageskeletonstress,whichwasdefinedasthedifferencebetweenthetotalstressandtheaveragefluidpressure.Ehlersetal.(2004)callediteffectivestress.However,hereinwecalleditskeletonstresstoavoidconfusingitwithmeanvalueoftheskeletonstress.

    Adoptingtheskeletonstressprovidesanaturalapplicationofthemix-turetheorytounsaturatedsoil.ThedefinitioninEquation(2.88)issimilartoBishopsdefinitionfortheeffectivestressofunsaturatedsoil.InadditiontoEquation(2.88),theeffectofsuctionontheconstitutivemodelshouldalwaysbetakenintoaccount.Thisassumptionleadstoareasonablecon-sideration of the collapse behavior of unsaturated soil, which has beenknownasabehavior thatcannotbedescribedbyBishopsdefinition fortheeffectivestressofunsaturatedsoil.Introducingsuctionintothemodel,however,makesitpossibletoformulateamodelforunsaturatedsoil,start-ingfromamodelforsaturatedsoil,byusingtheskeletonstressinsteadoftheeffectivestress.

    2.3.2 Conservation of mass

    Themassconservationlawforthethreephasesisgivenby

    +

    =

    J JiJ

    itux

    ( ) 0 (2.89)

    where J istheaveragedensityfortheJphaseand uiJ isthevelocityvector

    fortheJphase.

    s sn = ( )1 (2.90)

    f

    rfnS = (2.91)

    a

    ran S = ( )1 (2.92)

    whereJ=s, f,anda, inwhich thesuperscriptss, f,anda indicate thesolid,theliquid,andtheairphases,respectively;nistheporosity;andSr isthesaturation.

    J isthemassbulkdensityofthesolid,theliquid,andthegas.

  • Governingequationsformultiphasegeomaterials 49

    2.3.3 Balance of linear momentum for the three phases

    The conservation laws of linear momentum for the three phases aregivenby

    i

    ssi i

    ijs

    j

    siu Q R xb

    =

    + (2.93)

    fif

    iijf

    j

    fiu R xb

    + =

    + (2.94)

    aia

    iija

    j

    aiu Q xb

    + =

    + (2.95)

    where u J a f siJ ( , , )= aretheaccelerationvectorsforthethreephases,bi is

    thebodyforce,Qi denotes the interactionbetweenthesolidandtheairphases, and Ri denotes the interaction between the solid and the liquidphases.Theseinteractionterms,QiandRi ,canbedescribedas

    R nS

    kwi r

    wf i

    f=

    (2.96)

    Q n S

    g

    kwi r

    a

    a ia= ( )1

    (2.97)

    wherekf isthewaterpermeabilitycoefficient,ka istheairpermeability, if

    w istheaveragerelativevelocityvectorofwaterwithrespecttothesolidskel-eton,and i

    aw istheaveragerelativevelocityvectorofairtothesolidskeleton.

    Therelativevelocityvectorsaredefinedby

    if

    r if

    is

    w nS u u = ( ) (2.98)

    ia

    r ia

    is

    w n S u u = ( )( )1 (2.99)

  • 50 Computationalmodelingofmultiphasegeomaterials

    UsingEquation(2.98),Equation(2.94)becomes

    fis

    rif

    iijf

    j

    fiu nS

    w Rx

    b

    + + =

    +

    1 (2.100)

    We deal with the behavior of soil in which the difference betweenaccelerationsofthesoilskeletonandporefluidissufficientlysmall.Thisassumptionisreasonableexceptforthehighfrequencyproblemandveryhighpermeability(Zienkiewiczetal.1980).Forthisreasonweassumethatwif 0,inthiscase,usingEquations(2.84),(2.91),and(2.96),Equation

    (2.100)becomes

    nS u nS

    kw nS

    px

    nS brf

    is

    rwf i

    fr

    f

    ir

    fi

    + =

    + (2.101)

    inwhichweassumethatthespatialgradientsofporosityandsaturationaresufficientlysmall.Thesameassumptionwillbetakeninthefollowingderivationsofthegoverningequations.

    Aftermanipulation,theaveragerelativevelocityvectorofwatertothesolid skeleton and the average relative velocity vector of air to the solidskeletonareshownas

    if

    f

    w

    f

    i

    fis f

    iwk p

    xu b =

    +

    (2.102)

    ia

    a

    a

    a

    i

    ais a

    iwk

    g

    px

    u b =

    +

    (2.103)

    inwhich wia 0isassumedduetothereasonmentionedearlier.

    Based on the aforementioned fundamental conservation laws, we canderiveequationsofmotionforthewholemixture.SubstitutingEquations(2.90), (2.91), and (2.92) into the given equation and adding Equations(2.93)to(2.95),wehave

    ( ) ( ) + + =

    +u nS u u n S u ux

    bis rf

    if

    is

    ra

    ia

    is ij

    ji(1 ) (2.104)

    whereisthemassdensityofthemixtureas = + +f a s ,and ij isthetotalstresstensor.

  • Governingequationsformultiphasegeomaterials 51

    Fromthefollowingassumptions,

    is

    if

    is

    u u u >> ( ) (2.105)

    is

    ia

    is

    u u u >> ( ) (2.106)

    equationsofmotionforthewholemixturearederivedas

    i

    s ij

    jiu xb =

    + (2.107)

    2.3.4 Continuity equations

    Using the mass conservation law for the solid and the liquid phases,Equation(2.89)(J=s,f)andEquations(2.90)and(2.91),andassumingtheincompressibilityofsoilparticles,weobtain

    { }

    + + + =nS u u

    xS nS nS

    r if

    is

    ir ii

    sr

    f

    f r

    ( )

    0 (2.108)

    Incorporating Equation (2.102) and p Kf iif= (Kf: volumetric elastic

    coefficient) into the previous equation leads to the following continuityequationfortheliquidphase:

    +

    x

    ku

    px

    bi

    f

    w

    fis

    f

    i

    fi

    + + + =S nS nSp

    Kr ii

    sr r

    f

    f 0 (2.109)

    Similarly, we can derive the continuity equation for the air phase byassuming that the spatial gradients of porosity and saturation are suffi-cientlysmall:

    +

    x

    ku

    px

    bi w

    ais

    a

    i

    ai

    a

    + + =( ) ( )1 1 0S nS n Sr ii

    sr r

    a

    a

    (2.110)

    Forthesaturationwewilluseaconstitutiveequationcalledwaterchar-acteristicrelationorwaterretentionrelation.

  • 52 Computationalmodelingofmultiphasegeomaterials

    Sincesaturationisafunctionofsuction,thatis,thepressurehead,thetimerateforsaturationisgivenby

    nS n

    dSd

    dd

    ddp

    pdd

    prr

    cc

    w

    c1 =

    =

    (2.111)

    where = VVw is the volumetric water content, pc is the matric suction

    (p p pc a f= ( )), = pc w/ is thepressurehead forsuction,andC dd=

    isthespecificwatercontent.

    Andweneedtheconstitutiveequationforairphasesuchasidealgas.

    REFERENCES

    Atkin,R.J.,andCraine,R.E.1976.Continuumtheoriesofmixtures:basictheoryandhistoricaldevelopments,Q.J.