Compressible Fluid Flow v1 Nh

download Compressible Fluid Flow v1 Nh

of 82

Transcript of Compressible Fluid Flow v1 Nh

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    1/82

    Compressible Fluid Flow

    .

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    2/82

    OutlineOutline

    OutlineOutline Concept of compressible fluid

    Mach number a criteria for compressible fluid flowcharacterization.

    Processes of compressible fluid flow:

    Adiabatic flow with friction

    Isothermal flow with friction

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    3/82

    Compressibility, Z

    A measure of the change in density that will beproduced in the fluid by a specified change in

    .

    Gases highly compressible.

    Liquid very low compressibility.

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    4/82

    In fluid flow there are usuall occur chan esin pressure associated with changes of otherparameters of the flow

    For example, changes in the velocity in the.

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    5/82

    ese pressure c anges w , n genera ,

    cause density changes which will

    the fluid involved will have an

    influence on the flow.

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    6/82

    en ens y c anges are mpor an ,

    temperature change in the flow that may arise

    also influence on the flow

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    7/82

    In other words

    ,

    the temperature changes in the flow

    .

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    8/82

    Although the density changes in the flow fieldcan be very important, there exist many situations

    of great practical importance in which the effects

    of these density and temperature changesare negligible.

    Example: Flow of incompressible fluid

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    9/82

    Incompressible fluid flow

    The pressure and kinetic energy changes are so small

    temperature changes in the fluid flow

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    10/82

    There are however a number of flows that are of reat

    practical importance in which this assumption is notadequate.

    The density and temperature changes being so large .

    In such cases it is necessar to stud thethermodynamics of the flow simultaneously

    with its dynamics.

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    11/82

    The study of these flows in which

    e c anges n ens y an empera ure are mpor an

    is known as

    compress e u ow or gas ynam cs.

    s c ap er w ocus on gas ows w erecompressibility effects are important.

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    12/82

    ApplicationsApplicationsApplicationsApplications

    Although most obvious applications ofcompressible fluid flow theory are

    in the design of high speed aircraft,

    a knowledge of compressible fluid flow theoryis required in the design and operation

    of many devices commonly encountered in

    engineering practice.

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    13/82

    Gas and steam turbines e ow n e a ng an nozz es s rea e as compress e.

    Reciprocating engines the flow of the gases through the valves and in the intake and

    exhaust systems.

    Natural gas transmission lines compressibility effects are important in calculating the flow through

    such problems.

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    14/82

    Processes of Compressible FlowProcesses of Compressible FlowProcesses of Compressible FlowProcesses of Compressible Flow

    Conver ent Diver ent

    FlowReservoir Receiver

    Thermal insulation

    Isentropic flow

    MZA@UTPChemEFluidMech

    , ,

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    15/82

    Isentropic Friction section

    Flow

    Thermal insulation

    Adiabatic flow with friction

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    16/82

    IsentropicFriction section

    ow

    Isothermal flow with friction

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    17/82

    Speed of Sound, cSpeed of Sound, cSpeed of Sound, cSpeed of Sound, c

    Small ressure disturbance that move throu h a

    continuous medium

    wave (sound wave) propagates through a fluid)

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    18/82

    Sound

    A series of small air-pressure disturbances oscillation insinusoidal fashion in the frequency range from

    , cyc es per secon .

    More rigid material, speed of sound greater.

    Note: Other text use the notation a for speed of sound.

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    19/82

    A property of a material / compound.

    ..(1)kRTkPPc22

    S

    = =

    =

    Where:k = specific heat ratio, Cp/CvP = absolute pressure of the fluid (kPa, psi or equivalent)

    = 3

    R = specific gas constant (kJ/kgK or equivalent)

    T = absolute temperature of the fluid (K oroR)

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    20/82

    Mach Number, MaMach Number, MaMach Number, MaMach Number, Ma

    For incompressible fluid, Reynolds number, Re is.

    In compressible fluid, Mach number, Ma is useful in.

    Mach number, Ma a o o u ve oc y an spee o soun .

    Dimensionless.

    c

    VMa =

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    21/82

    BornFebruary 18, 1838

    Brno, Austrian Empire

    Februar 19, 1916 1916-02-19 a ed 78

    Munich, German Empire

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    22/82

    Characteristic of compressible fluid flow:

    a < : u son c ow

    Ma = 1 : Sonic flow

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    23/82

    Concorde, Ma = 2

    (supersonic aircraft)Boeing 747, Ma = 0.85 0.95

    (high speed, subsonic aircraft)

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    24/82

    .Sukhoi 30 MKM Ma 2.3

    MZA@UTPChemEFluidMechF 18 Ma 1.8 Hawk Ma 0.84

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    25/82

    Analysis of compressible fluid flowAnalysis of compressible fluid flowAnalysis of compressible fluid flowAnalysis of compressible fluid flow

    The gas (compressible fluid) is transferred from a very

    temperature, TR

    pressure, PR

    velocity, VR = 0

    roper es o u a reservo r are

    called reservoir (stagnation)

    conditions.

    RESERVOIR Receiver

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    26/82

    Stagnation conditions are those that would exist if the

    brought to rest (velocity = 0)

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    27/82

    Assumptions:

    Flow is one-dimensional

    Velocity gradients within a cross section areneglected

    Friction is restricted to wall shear

    Shaft work is zero

    Gravitational effects are negligible

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    28/82

    Steady, frictionless, adiabaticSteady, frictionless, adiabaticSteady, frictionless, adiabaticSteady, frictionless, adiabatic

    flowflowflowflow

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    29/82

    Convergent Divergent

    FlowReservoir Receiver

    Thermal insulationThroat

    Provided the reservoir conditions (TR and PR) how

    interest?

    Need for relation between reservoir condition and

    MZA@UTPChemEFluidMech

    point of interest.

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    30/82

    From THERMODYNAMICS, open-system energy balancefrom reservoir (R) to point/state of interest (1):

    22 VV

    1R2

    gz2

    gz

    ++=

    ++

    , R ,

    .. 1RP1R1 ==

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    31/82

    For ideal gas: CRC vP +=

    Ck

    v

    P=

    ( )1kCP

    =

    Then Eq. (2) will become;

    Rk2

    ( ) ( )TT2Chh2V 1RP1R2

    1 ==

    ( )= 1k 1R1

    MZA@UTPChemEFluidMech

    ( )

    = T1k

    1

    11

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    32/82

    Taking the term RkT1 to the left hand side:

    ( )1

    TT

    1k2

    RkTV

    1

    R

    1

    2

    1

    =

    From Eq. (1), for condition at point 1 11 kRTc =21

    21

    11c =

    2

    kRTcS

    =

    =

    =

    Then; .(3)( ) 1T1kc 1R

    2

    1

    1 =

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    33/82

    V

    = From Eq (3), substitute Ma and rearrange:

    c

    ..(4)( ) 121kMa

    TT

    2

    1R +=

    ,temperature and Mach numberat point of interestfor a given fluid.

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    34/82

    For compressible fluid, pressure and density change

    The isentropic (frictionless, adiabatic) relation is givenb :

    (a)T

    P

    1k

    k

    RR

    =11

    1

    (b)TT 1k

    1

    R

    1

    R

    =

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    35/82

    Substituting Eq. (4) into (a) and (b):

    ..(5)( )1

    1kMa

    P

    1kk

    2

    1R

    +

    =2P1

    12 ..

    12

    1

    1

    R

    +

    =

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    36/82

    FlowReservoir Receiver

    Steady, frictionless, adiabatic flow can be achieved iffluid flow in a variable cross sectional area nozzle.

    Then, there is a need to find relation between areaperpendicular to the flow with respect to the area of

    MZA@UTPChemEFluidMech

    .

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    37/82

    FlowReservoir Receiver

    In any flow, mass is conserved.

    From continuit e uation: AVAV =

    11R VA =

    MZA@UTPChemEFluidMech

    RR1

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    38/82

    RR

    11

    1

    R

    VA =

    Using equation above is not practical since: A is ver lar e

    VR = 0From previous assumptions

    Therefore other reference point is needed apart fromthe reservoir

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    39/82

    In any such flow there will be a state where Ma = 1.

    s s ca e e cr ca s a e.

    Properties related to critical state is called critical* .

    (Dont confuse yourself with definition of Pcror Tcr)

    Then the relation is written as:

    1 VA =

    MZA@UTPChemEFluidMech

    11

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    40/82

    Relation between area perpendicular to theow an area a cr ca s a e:

    ( )( )1k2

    1k2

    +

    )

    1

    1k

    12

    Ma

    1

    A

    A

    +=

    2

    At subsonic

    to get the fluid go faster, one must reduce thecross sectional area perpendicular to the flow.

    At supersonic to get the fluid go faster, one must increase

    MZA@UTPChemEFluidMech

    the cross sectional area perpendicular to the flow.

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    41/82

    Similarly, mass flow rate of fluid can be determinedfrom continuity equation with respect to the critical

    2

    RRT

    kPm

    ( )( )( )1k2

    1k

    1

    1kA

    +

    +

    =

    For air with k = 1.4: RT6847.0m R

    R

    =

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    42/82

    When the gas is blown down, there will be a decrease.

    =,

    Mass flow rate can also be determined usin :

    VAVAm ==

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    43/82

    Example 1Example 1Example 1Example 1

    Air flowing through an insulated, frictionless nozzle is, .

    Determine: The Mach number Ma

    The temperature, T

    The density, The air velocity, V

    at a location in the duct where the pressure is 430 kPa.

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    44/82

    SolutionSolutionSolutionSolution

    Assumption:

    r c on ess, nsu a e uc a a a c

    Air is an ideal gas

    . , p . ,R = 0.287 kJ/kgK

    Given: TR = 400 K, PR = 500 kPa

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    45/82

    SolutionSolutionSolutionSolution

    For isentropic gas flow:k

    ( ) 121kMa

    PP

    1k

    k2

    1

    1

    R

    +=

    T

    T

    P

    P 1k

    1

    R

    1

    R

    =

    1P2

    Mak

    1k

    R

    1

    =

    P

    PTT

    k

    R

    1R1

    =

    5002 4.114.1

    ( )

    500

    430400

    4.1

    14.1

    =

    ( )

    469.0

    43014.1

    =

    =K383 =

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    46/82

    SolutionSolutionSolutionSolution

    Density, 11

    RT

    P= The speed of sound

    ( )( )383287.0430

    =K

    mkPa383287.04.1

    213

    =

    3m

    kg3.91 =

    mkPa

    Kkg

    2

    13

    Fluid velocity, V1m

    kg.

    =

    =

    12.410.469

    ca1

    =

    =s

    .

    MZA@UTPChemEFluidMech

    s82.5 =

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    47/82

    Adiabatic Flow with FrictionAdiabatic Flow with FrictionAdiabatic Flow with FrictionAdiabatic Flow with Friction

    Isentropic Friction section

    Thermal insulation

    Occurs when a gas flows through a length of pipe at

    high velocity.

    If pipe is insulated or flow is fast, heat transfer is

    MZA@UTPChemEFluidMech

    considered negligible adiabatic.

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    48/82

    Adiabatic Flow with FrictionAdiabatic Flow with FrictionAdiabatic Flow with FrictionAdiabatic Flow with Friction

    Isentropic Friction section

    Thermal insulation

    Effect of friction due to the flow will cause the entropy

    o ow ng gas o ncrease en ropy s no cons an Therefore isentropic relation cannot be applied in the

    MZA@UTPChemEFluidMech

    analysis.

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    49/82

    Ffriction

    T

    V

    +T + dT

    V + dV

    dx

    Applying the momentum balance:

    Net pressure force Force due to wall shear stress= Mass flow rate x (Velocity out Velocity in)

    ( )[ ] ( )[ ] frictionFPdPPAVdVVm ++=+

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    50/82

    Ffriction

    T

    V

    +T + dT

    V + dV

    dx

    Applying the continuity equation:

    AV = constantV = constant (since A is constant) V = ( + d)(V + dV)

    MZA@UTPChemEFluidMech

    F

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    51/82

    Ffriction

    T

    V

    +T + dT

    V + dV

    dx

    Applying the energy balance:

    ( )dVVV22

    += 22

    P + dP = ( + d) R (T + dT)

    MZA@UTPChemEFluidMech

    F

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    52/82

    Ffriction

    T

    V

    +T + dT

    V + dV

    dx

    Also from Mach numberdefinition:

    VV

    2

    2

    ( )dVVkRTc

    22 +=

    dTTkR +

    MZA@UTPChemEFluidMech

    F

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    53/82

    Ffriction

    T

    V

    +T + dT

    V + dV

    dx

    The equations represents a set of equations withunknown dP, dT, d, dV and dMa

    Have to be solved accordingly to obtain appropriateex ressions.

    MZA@UTPChemEFluidMech

    F

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    54/82

    Ffriction

    T

    V

    +T + dT

    V + dV

    dx

    In momentum balance, there exist the term wallshear stress,

    wall.

    In pipeline system, this is expressed as dimensionlessvalue friction factor, f

    Most compressible gas flows in duct involve turbulentflow

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    55/82

    Solving from the equation (for circular pipe):

    ( )

    +++ =

    2

    2

    2

    21

    22

    Ma1k2

    1Maln1k111x4 f

    ( )

    + 21221 Ma1k2

    1

    The equation describe the change of Ma over a givenlength.

    ,condition Ma 1.

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    56/82

    When friction is involved, flows tend to reach soniccondition Ma 1. (Ma2 approaching 1)

    By setting Ma2 = 1, the length of duct required to givee va ue o a1 s o a ne as max mum eng , max

    (or critical length, L*)

    ++ 22 M11M1*

    ( ) +

    +

    =2

    1

    21 Ma1k

    2112

    n2kMakD

    MZA@UTPChemEFluidMech

    ExampleExample

    ExampleExample

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    57/82

    ExampleExampleExampleExample

    Air flows in a 5 cm diameter pipe. The air entersa a = . an s o eave a a = . . e erm ne

    the length of pipe required. What would be the

    Assume f = 0.002 and adiabatic flow.

    MZA@UTPChemEFluidMech

    SolutionSolution

    SolutionSolution

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    58/82

    SolutionSolutionSolutionSolution

    Flow is adiabatic.

    ( )Ma1k2

    1

    1Maln1k111x4

    2

    2

    2

    21

    22

    f

    +++ =

    ( )Ma1k2

    1 21221

    +

    ( )( )

    2.111

    1

    .2

    1.5

    2.5ln

    2(1.4)

    141

    1.5

    1

    2.5

    1

    1.4

    1

    050

    L00204

    22

    2

    22

    .

    ..

    .

    .

    +

    +

    ++

    =

    m1850L2

    .=

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    59/82

    Maximum pipe length, L*:

    ( )1Ma1kln

    2k1k

    MkMa1

    DL4

    2

    12

    2

    1*f +++ =a

    2

    22

    1

    *

    +

    ( ) ( ) ( )( )2.51412

    112

    .ln1.42

    .2.541.

    050

    22

    .

    .

    ...

    +

    +

    =

    m72L .* =

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    60/82

    Pressure relation: ( )

    + 22Ma

    2

    1k1

    MaP

    ( )

    +

    =2112 Ma2

    1k1MaP

    Temperature relation:

    ( )

    + 22Ma

    1k1

    ( ) +=

    2

    12 Ma

    21k1T

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    61/82

    Density relation:

    ( ) 2Ma1k1 +

    ( ) 22

    1

    2

    1

    2

    2

    1

    2

    1

    Ma

    1k

    1

    Ma

    a

    TP

    +

    ==

    MZA@UTPChemEFluidMech

    Isothermal Flow with FrictionIsothermal Flow with Friction

    Isothermal Flow with FrictionIsothermal Flow with Friction

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    62/82

    Isothermal Flow with FrictionIsothermal Flow with FrictionIsothermal Flow with FrictionIsothermal Flow with Friction

    IsentropicFriction section

    FlowReservoir Receiver

    Occurs in long, small, uninsulated pipe in contact withenvironment transmit sufficient heat to kee the flow

    isothermal. E.g.: flow of natural gas through long distance pipelines.

    MZA@UTPChemEFluidMech

    FfrictiondQ

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    63/82

    V

    +V + dV

    + d

    dx

    Applying the continuity equation:

    AV = constantV = constant (since A is constant)V = ( + d)(V + dV)

    =

    ddV

    MZA@UTPChemEFluidMech

    FfrictiondQ

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    64/82

    V

    +V + dV

    + d

    dx

    Applying the momentum balance:

    Net pressure force Force due to wall shear stress= Mass flow rate x (Velocity out Velocity in)

    ( )[ ] ( )[ ] frictionFPdPPAVdVVm ++=+

    MZA@UTPChemEFluidMech

    FfrictiondQ

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    65/82

    V

    +V + dV

    + d

    dx

    Applying the energy balance:

    +

    VdVV

    22

    = 22 PP

    =

    MZA@UTPChemEFluidMech

    FfrictiondQ

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    66/82

    V

    +V + dV

    + d

    dx

    From ideal gas EOS (P = RT)P + dP = ( + d) RT

    =

    ddP

    P

    MZA@UTPChemEFluidMech

    FfrictiondQ

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    67/82

    V

    +V + dV

    + d

    dx

    Also from Mach numberdefinition:

    V

    Ma=(since T constant, c constant)dVV

    dMaMa

    c

    +=+

    dV

    M

    dMa =

    MZA@UTPChemEFluidMech

    FfrictiondQ

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    68/82

    V

    +V + dV

    + d

    dx

    The equations represents a set of equations withunknown dP, dT, d, dV and dMa

    expressions.

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    69/82

    Isothermal Flow with FrictionIsothermal Flow with Friction

    Isothermal Flow with FrictionIsothermal Flow with Friction

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    70/82

    Q

    1

    V1

    1

    2

    V2

    2

    x

    1 2

    1

    2

    2

    1

    2

    1

    1

    2

    Ma

    Ma

    P

    P

    V

    V==

    =

    = 2

    Mal

    111L2f

    MZA@UTPChemEFluidMech

    121 MaMaMa2kD

    Q

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    71/82

    V11Ma

    V22Ma

    x

    For isothermal flow with friction, Ma tend to reachk

    1

    1 When Ma ~ , dq ~ infinity.

    An infinite amount of heat must be transferred or removed to kee

    k

    the temperature of the gas constant.

    Limiting value for Ma =

    k1

    MZA@UTPChemEFluidMech

    Isothermal Flow with FrictionIsothermal Flow with Friction

    Isothermal Flow with FrictionIsothermal Flow with Friction

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    72/82

    By setting Ma2 = , maximum length Lmax or L*1

    2kMa1L4 *12

    1

    ankMaD

    +

    =

    MZA@UTPChemEFluidMech

    ExampleExample

    ExampleExample

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    73/82

    pppp

    Air flows through a 5 cm diameter pipeline. The flow, .

    pressure of 900 kPa, and exit at Ma = 0.5. Determine: Len th of the i e.

    Maximum pipe length and the correspondingpressure.

    Mass flow rate of the air.

    e spec c ea ra o or a r an e mean r c onfactor may be taken as 1.4 and 0.004 respectively.

    MZA@UTPChemEFluidMech

    SolutionSolution

    SolutionSolution

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    74/82

    Length of pipe:

    ( )( ) 0.1

    0.5

    ln0.5

    1

    0.1

    1

    1.42

    1

    050

    L0040222.

    .

    =

    m2204L .=

    ( ) ( )( )0.11.41L00404 22

    *.

    ( )( )m43233L

    ..

    0.11.4050

    2

    .*.

    =

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    75/82

    Pressure at the maximum length:

    MaPFrom 12 =

    1Maand*PPL*,at 2 ==

    kPa51069000.1

    P*

    .

    .==

    1.4

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    76/82

    At T = 293 K,c = = 10.85 m/s

    V1 = Ma1 c = (0.1)(10.85) = 1.85 m/skRT

    ( ) kg710kPa900P 3311 ===.

    K293Kkg

    2870

    .

    851050710

    m

    2

    11

    =

    =

    ...

    kg0.0389 =

    MZA@UTPChemEFluidMech

    ExampleExample

    ExampleExample

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    77/82

    Natural gas flows through a 0.075 m diameter pipeline.

    assumed to be isothermal with a temperature of 15

    o

    C.The Mach number and pressure at the inlet are 0.09and 900 kPa, respectively. If the mean friction factorfor the flow is 0.002, determine the Mach number at

    .of the pipe and the exit pressure with this length of pipe.

    Assume the flow is steady and the specific heat ratiofor the natural gas is 1.3.

    MZA@UTPChemEFluidMech

    SolutionSolution

    SolutionSolution

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    78/82

    Assumption: Isothermal, steady flow, ideal gas

    = Maln111L22

    22f

    ( )( )

    =Ma

    ln11175000202 2

    121

    .

    =Ma

    l111

    4

    ...

    2

    2.

    0.09Ma0.00812.6

    2

    MZA@UTPChemEFluidMech

    Unknowns Ma2 solve through trial-and-error

    Ma2, uess LHS RHS Error

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    79/82

    0.1 40 8.916 -31.084

    0.2 40 37.068 -2.932

    0.25 40 40.3 0.300

    o grap a vs rror

    y = 64.76x - 15.88

    0

    0.5

    ,Ma, x = 0.245

    -1.5

    -1

    -0.5 0.2 0.25

    Ma

    -3.5

    -3-2.5

    -2

    MZA@UTPChemEFluidMech

    Error

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    80/82

    MaP 21

    1

    2 =

    kPa6330900

    2450

    P2 .

    .

    .==

    Maximum possible length:

    2kMaln

    kMaD

    2

    12

    1

    1 +

    =

    ( )( ) ( )( )( )0.091.3ln0.091.30.091.31

    0750

    L00204 22 +

    =.

    *.

    MZA@UTPChemEFluidMech

    m838.2L =*

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    81/82

    MaPFrom 12 =

    1Maand*PPL*,at 2

    21

    ==

    kPa4299000.09

    P*

    .

    .==

    1.3

    MZA@UTPChemEFluidMech

  • 7/27/2019 Compressible Fluid Flow v1 Nh

    82/82