Composite particles viewed as deformed oscillators ...fective description of tripartite...

31
1 1 2 1 2

Transcript of Composite particles viewed as deformed oscillators ...fective description of tripartite...

Page 1: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

EMFCSC INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS54th Course: The New Physics Frontiers in the LHC-2 Era

Composite particles viewed as deformed

oscillators, deformed Bose gas models and

some applications

Yu. A. Mishchenko1, A. M. Gavrilik1, I. I. Kachurik2

1Bogolyubov Institute for Theoretical Physics of NAS of Ukraine, Kyiv, Ukraine2Khmelnytskyi National University, Khmelnytskyi, Ukraine

Erice-Sicily, 14 οΏ½ 23 June 2016

Page 2: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Plan

1. Motivation for realization (modelling) of composite particles bydeformed oscillators.

2. Operator realization of two-particle composite bosons by de-formed oscillators (def. bosons).

3. Realization for οΏ½def. boson+ fermionοΏ½ composite fermi-particles (CFs). General solution for non-deformed constituents,and some particular ones.

4. Composite boson (quasiboson) as entangled bipartite system.The measures (characteristics) of entanglement between con-stituents of composite boson. Link with deformation parameterand energy dependence.

5. Application of deformed Bose gas models to eοΏ½ective accountfor the interaction/compositeness of particles: deformed virialexpansion of EOS.

6. Momentum correlation function intercept of 2nd order for οΏ½οΏ½, π‘ž-Bose gas model.

7. Conclusions.

Page 3: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Composite (quasi)particles in diverse branches of physicsβˆ™ Mesons, baryons, nuclei in nuclear or subnuclear physics;βˆ™ Excitons, biexcitons, dropletons in semiconductors and nanostruc-tures (quantum dots etc.);βˆ™ Trions (οΏ½2 electrons + holeοΏ½ or οΏ½2 holes + electronοΏ½) in semicon-ductors;βˆ™ Cooper pairs in superconductors, in the study of electron transport;βˆ™ Bipolarons in crystals, organic semiconductors;βˆ™ Composite fermions (οΏ½electron + magnetic οΏ½ux quantaοΏ½ boundstates [Jain]) appearing in fractional quantum Hall eοΏ½ect;βˆ™ Biphotons in quantum optics, quantum information;βˆ™ Biphonons, triphonons, multiphonons in crystals;βˆ™ Atoms, molecules, ... .

Deformed oscillators οΏ½ nonlinear generalization of ordinaryquantum oscillator deοΏ½ned by deformation structure function πœ™ and

π‘Žβ€ π‘Ž = πœ™(𝑁), π‘Žπ‘Žβ€  = πœ™(𝑁 + 1), [𝑁, π‘Žβ€ ] = π‘Žβ€ , [𝑁, π‘Ž] = βˆ’π‘Ž,

with [π‘Ž, π‘Žβ€ ] = 1 + π›Ώπœ™(𝑁) where π›Ώπœ™(𝑁) ≑ πœ™(𝑁+1)βˆ’πœ™(𝑁)βˆ’1.Fock space: |π‘›βŸ© = 1√

πœ™(𝑛)!(π‘Žβ€ )𝑛|0⟩, πœ™(𝑛)! ≑ πœ™(𝑛)Β·...Β·πœ™(1),

π‘Žβ€ |π‘›βŸ© =√

πœ™(𝑛+1)|𝑛+1⟩, π‘Ž|π‘›βŸ© =βˆšπœ™(𝑛)|π‘›βˆ’1⟩, 𝑁 |π‘›βŸ© = 𝑛|π‘›βŸ©.

Page 4: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Motivational considerationsComposite particles

Creation& annihilation operators:

𝐴†𝛼 =

βˆ‘πœ‡πœˆ

Ξ¦πœ‡πœˆπ›Ό π‘Žβ€ πœ‡π‘

β€ πœˆ ,

𝐴𝛼 =βˆ‘

πœ‡πœˆΞ¦πœ‡πœˆπ›Ό π‘πœˆπ‘Žπœ‡,

𝑁𝛼 = 𝑁𝛼(π‘Žβ€ πœ‡, π‘Žπœ‡, 𝑏

β€ πœˆ , π‘πœˆ).

Commutator:

[𝐴𝛼, 𝐴†𝛽] = 𝛿𝛼𝛽 βˆ’Ξ”π›Όπ›½(Ξ¦

πœ‡πœˆπ›Ύ ).

Deformed particlesGeneralized oscillator algebra:⎧βŽͺ⎨βŽͺβŽ©π’œβ€ 

π›Όπ’œπ›Ό = πœ‘(𝒩𝛼),

[π’œπ›Ό,π’œβ€ π›Ό] = πœ‘(𝒩𝛼 + 1)βˆ’ πœ‘(𝒩𝛼),

[𝒩𝛼,π’œβ€ π›Ό] = π’œβ€ 

𝛼, [𝒩𝛼,π’œπ›Ό] = βˆ’π’œπ›Ό.

Example.Arik-Coon deformation:[π’œπ›Ό,π’œβ€ 

𝛼] = 1βˆ’ (π‘ž βˆ’ 1)π’œβ€ π›Όπ’œπ›Ό,

πœ‘(𝒩𝛼) =π‘žπ’©π›Ό βˆ’ 1

π‘ž βˆ’ 1.

The realization/modelling of composite bosons (e.g. mesons, ex-citons, cooperons etc.) by deformed oscillators allows to:

I considerably simplify the calculations;I abstract away from the internal structure details;I apply well developed theory of deformed oscillators.

So, the operators for the system of composite particles map onto thedeformed oscillator operators. The internal structure information forsuch particles enters deformation parameter(s).

Page 5: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

I. Operator realization of quasibosons by deformed bosonsComposite (or quasi-) boson creation/annihilation operators 𝐴†

𝛼, 𝐴𝛼

(mode 𝛼) are realized on the states by certain def. oscillator operators

𝐴†𝛼 =

βˆ‘πœ‡πœˆ

Ξ¦πœ‡πœˆπ›Ό π‘Žβ€ πœ‡π‘

β€ πœˆ β†’ π’œβ€ 

𝛼 , 𝐴𝛼 =βˆ‘

πœ‡πœˆΞ¦πœ‡πœˆπ›Ό π‘πœˆπ‘Žπœ‡ β†’ π’œπ›Ό , (1)

where π’œβ€ π›Ό, π’œπ›Ό are def. oscillator creation/annihilation operators:

π’œβ€ π›Όπ’œπ›Ό=πœ™(𝒩𝛼), [π’œπ›Ό,π’œβ€ 

𝛽]=𝛿𝛼𝛽(πœ™(𝒩𝛼+1)βˆ’πœ™(𝒩𝛼)

)≑𝛿𝛼𝛽(1+Ξ”πœ™(𝒩𝛼)),

Ξ¦πœ‡πœˆπ›Ό is the composite's wavefunction, and constituent operators

π‘Žπœ‡, π‘πœˆ satisfy fermionic (bosonic) commut. relations. οΏ½ We look

for such operators 𝐴𝛼, 𝐴†𝛼, 𝑁𝛼 ≑ πœ‘βˆ’1(𝐴†

𝛼𝐴𝛼), which behave on a

subspace of all quasiboson states as the ones for a system of inde-pendent deformed oscillators with structure function πœ‘(𝑁):

[𝐴𝛼, 𝐴†𝛽] ≑ βˆ’πœ–Ξ”π›Όπ›½ = 0 for 𝛼 = 𝛽,

[𝑁𝛼, 𝐴†𝛼] = 𝐴†

𝛼, [𝑁𝛼, 𝐴𝛼] = βˆ’π΄π›Ό,

[𝐴𝛼, 𝐴†𝛽] = 𝛿𝛼𝛽 βˆ’ πœ–Ξ”π›Όπ›½ = πœ‘(𝑁𝛼 + 1)βˆ’ πœ‘(𝑁𝛼),

(2)

with Δ𝛼𝛽 β‰‘βˆ‘

πœ‡πœ‡β€²(Φ𝛽Φ

†𝛼)

πœ‡β€²πœ‡π‘Žβ€ πœ‡β€²π‘Žπœ‡ +βˆ‘

πœˆπœˆβ€²(Φ†

𝛼Φ𝛽)πœˆπœˆβ€²π‘β€ πœˆβ€²π‘πœˆ ↔ Ξ”πœ™(𝒩𝛼).,

πœ– = +1/βˆ’ 1 βˆ’ for boson/fermion constituents respectively.

Page 6: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Remark that closed-form relation holds

[[𝐴𝛼,𝐴†𝛽],𝐴

†𝛾 ]=βˆ’πœ–

βˆ‘π›ΏπΆπ›Ώπ›Όπ›½π›Ύ(Ξ¦)𝐴

†𝛿,

where 𝐢𝛿𝛼𝛽𝛾 depend on wavefunctions Ξ¦.

Realization conditions (2) reduce to equations for Φ𝛼 and πœ™(𝑛):

Φ𝛽Φ†𝛼Φ𝛾 +Φ𝛾Φ

†𝛼Φ𝛽 = 0, 𝛼 = 𝛽, (3)

Φ𝛼Φ†𝛼Φ𝛼 =

𝑓

2Φ𝛼,

𝑓

2= 1βˆ’ 1

2πœ‘(2), (4)

πœ‘(𝑛+ 1) =βˆ‘π‘›

π‘˜=0(βˆ’1)π‘›βˆ’π‘˜πΆπ‘˜

𝑛+1πœ‘(π‘˜), 𝑛 β‰₯ 2. (5)

Their solution yields:βˆ™ deformation structure function πœ™π‘“ (𝑁) = (1 + πœ–π‘“2 )𝑁 βˆ’ πœ–π‘“2𝑁

2

withβˆ™ deformation parameter 𝑓= 2

π‘š , π‘š ∈ N (π‘š is positive integer);βˆ™ matrices

Φ𝛼=π‘ˆ1(π‘‘π‘Ž)diag{0..0,

βˆšπ‘“/2π‘ˆπ›Ό(π‘š), 0..0

}π‘ˆ †2(𝑑𝑏), (6)

where π‘ˆ1(π‘‘π‘Ž), π‘ˆ2(𝑑𝑏), π‘ˆπ›Ό(π‘š) are arbitrary unitary matrices of di-mensions π‘‘π‘Ž Γ— π‘‘π‘Ž, 𝑑𝑏 Γ— 𝑑𝑏 and π‘šΓ—π‘š. πœ– = +1 or βˆ’1 for fermionicresp. bosonic constituents.

Page 7: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Generalization to quasibosons, composed of π‘ž-fermionsCommutation relations for the constituent π‘ž-fermions:

π‘Žπœ‡π‘Žβ€ πœ‡β€² + π‘žπ›Ώπœ‡πœ‡β€²π‘Žβ€ πœ‡β€²π‘Žπœ‡ = π›Ώπœ‡πœ‡β€² , π‘πœˆπ‘

β€ πœˆβ€² + π‘žπ›Ώπœˆπœˆβ€² π‘β€ πœˆβ€²π‘πœˆ = π›Ώπœˆπœˆβ€² , (7)

π‘Žπœ‡π‘Žπœ‡β€² + π‘Žπœ‡β€²π‘Žπœ‡ = 0, πœ‡ = πœ‡β€², π‘πœˆπ‘πœˆβ€² + π‘πœˆβ€²π‘πœˆ = 0, 𝜈 = 𝜈 β€². (8)

The nilpotency is absent (as opposed to the previous case):

π‘ž < 1 β‡’ (π‘Žβ€ πœ‡)π‘˜ = 0, (π‘β€ πœˆ)

π‘˜ = 0, π‘˜ β‰₯ 2. (9)

Solving the conditions analogous to (2) we obtain:

I Resulting expression for the structure function:

πœ‘(𝑛) = ([𝑛]βˆ’π‘ž)2 =

(1βˆ’ (βˆ’π‘ž)𝑛

1 + π‘ž

)2, π‘ž < 1. (10)

I Solution for matrices Φ𝛼 at π‘ž < 1:

Ξ¦πœ‡πœˆπ›Ό = Ξ¦πœ‡0(𝛼)𝜈0(𝛼)

𝛼 π›Ώπœ‡πœ‡0(𝛼)π›Ώπœˆπœˆ0(𝛼), |Ξ¦πœ‡0(𝛼)𝜈0(𝛼)𝛼 | = 1. (11)

For more details see:[1] A. M. Gavrilik, I. I. Kachurik, Yu. A. Mishchenko, Ukr. J. Phys. 56,

948 (2011).

[2] A. M. Gavrilik, I. I. Kachurik, Yu. A. Mishchenko, J. Phys. A: Math.

Theor. 44, 475303 (2011).

Page 8: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Realization of β€œdef. boson+fermion” composite fermionsCFs' creation/annihilation operators are given by οΏ½ansatzοΏ½ (1) with

π‘Žβ€ πœ‡, π‘Žπœ‡ resp. π‘β€ πœˆ , π‘πœˆ οΏ½ creation/annihilation operators for constituentbosons (deformed or not) resp. fermions such that

π‘Žβ€ πœ‡π‘Žπœ‡ = πœ’(π‘›π‘Žπœ‡), [π‘Žπœ‡, π‘Ž

β€ πœ‡β€² ] = π›Ώπœ‡πœ‡β€²

(πœ’(π‘›π‘Ž

πœ‡+1)βˆ’πœ’(π‘›π‘Žπœ‡)); [π‘Žβ€ πœ‡, π‘Ž

β€ πœ‡β€² ] = 0.

Fermionic nilpotency holds (𝐴†𝛼)2 = 0. For nondeformed constituent

boson (πœ’(𝑛) ≑ 𝑛) the anticommutator yields

{𝐴𝛼, 𝐴†𝛽} = 𝛿𝛼𝛽 +

βˆ‘πœ‡πœ‡β€²

(Φ𝛽Φ†𝛼)

πœ‡β€²πœ‡π‘Žβ€ πœ‡β€²π‘Žπœ‡βˆ’βˆ‘

πœˆπœˆβ€²(Φ†

𝛼Φ𝛽)πœˆπœˆβ€²π‘β€ πœˆβ€²π‘πœˆ ,

So, the concerned CFs' operators are realized by fermion operators.The validity of the realization on one-CF states yields

(Φ𝛽Φ†𝛼Φ𝛾)

πœ‡πœˆ βˆ’ (Φ𝛾Φ†𝛼Φ𝛽)

πœ‡πœˆ+

+(πœ’(2)βˆ’ 2

)[(Φ𝛽Φ

†𝛼)

πœ‡πœ‡Ξ¦πœ‡πœˆπ›Ύ βˆ’ (Φ𝛾Φ

†𝛼)

πœ‡πœ‡Ξ¦πœ‡πœˆπ›½

]= 0. (12)

For non-deformed constituent boson realization conditions (12), ...reduce to {

Tr(Φ𝛽Φ†𝛼) = 𝛿𝛼𝛽,

Φ𝛽Φ†𝛼Φ𝛾 βˆ’ Φ𝛾Φ

†𝛼Φ𝛽 = 0.

(13)

Page 9: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

a) Single CF mode 𝛼 case. General solution:

Φ𝛼 = π‘ˆπ›Ό diag{πœ†(𝛼)1 , πœ†

(𝛼)2 , ...}𝑉 †

𝛼

with πœ†(𝛼)𝑖 β‰₯ 0,

βˆ‘π‘–(πœ†

(𝛼)𝑖 )2 = 1, and arbitrary unitary π‘ˆπ›Ό, 𝑉𝛼.

General remark. The number of modes for realized compositefermions 𝐷𝐢𝐹 and the constituent fermions 𝐷𝑓 satisfy: 𝐷𝐢𝐹 ≀ 𝐷𝑓 .b) CFs in 2 modes & non-deformed constituents in 3 modes.

The parametrization of two orthonormal vectors (πœ†(𝛼)1 , πœ†

(𝛼)2 , πœ†

(𝛼)3 ),

𝛼 = 1, 2 follows from π‘†π‘ˆ(3) parametrization, e.g.

πœ†(1)1 = cos πœƒ1 cos πœƒ2, πœ†

(2)2 = cos πœƒ1 sin πœƒ2, πœ†

(3)3 = sin πœƒ1;

and πœ†(2)1 = βˆ’ sin πœƒ1 cos πœƒ2 cos πœƒ3 βˆ’ sin πœƒ2 sin πœƒ3𝑒

𝑖𝛾 ,

πœ†(2)2 = cos πœƒ2 sin πœƒ3𝑒

𝑖𝛾 βˆ’ sin πœƒ1 sin πœƒ2 cos πœƒ3, (14)

πœ†(2)3 = cos πœƒ1 cos πœƒ3, 0 ≀ πœƒ1, πœƒ2, πœƒ3 ≀ πœ‹/2, 0 ≀ 𝛾 ≀ 2πœ‹.

Solution for any number of modes (non-def. CF constituents).

Φ𝛼 = π‘ˆ diag{πœ†(𝛼)1 , πœ†

(𝛼)2 , ...}𝑉 †

where π‘ˆ , 𝑉 are οΏ½xed (for any 𝛼) unitary matrices, πœ†(𝛼) =

(πœ†(𝛼)1 , πœ†

(𝛼)2 , ...) are complex orthonormal vectors. Compare with (6).

Page 10: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Interpretation of the involved parameters The concerned pa-rameters πœƒπ‘–, 𝑖 = 1, 3, and 𝛾 (the 3-mode case) should correspondto CF internal quantum numbers like spin, the ones determining CFbinding energy, etc.

Possible applications: trions, baryons. The results of thiswork involving nontrivial deformation πœ’ may be applied to the ef-fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled byπœ’-deformed boson. For such modeling of composite constituent bo-son, the quasibosons realization could be relevant. Proper combina-tion of the two realizations, quasibosonic and CF ones, can providean alternative eοΏ½ective description of tripartite complexes like trions(e.g. exciton-electron or οΏ½electron + electron + holeοΏ½ composites)or baryons (viewed either as three quark bound state, or as quark-diquark composite particles) signiοΏ½cantly simpler than their directtreatment. These issues deserve special detailed study.

Page 11: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

II. Entanglement in composite boson vs deformationparameter [A. Gavrilik, Yu. Mishchenko, PLA 376, 1596 (2012)]

The state of the quasiboson which can be realized by deformedoscillator is entangled (inter-component entanglement):

|Ξ¨π›ΌβŸ©=βˆ‘π‘š

π‘˜=1

1βˆšπ‘š|π‘£π›Όπ‘˜ βŸ©βŠ—|𝑀𝛼

π‘˜ ⟩, |π‘£π›Όπ‘˜ ⟩=π‘ˆπœ‡π‘˜1 |π‘Žπœ‡βŸ©, |𝑀𝛼

π‘˜ ⟩= οΏ½οΏ½π‘˜πœˆ2 |π‘πœˆβŸ©,

πœ†π›Όπ‘˜ = πœ† =

βˆšπ‘“/2 =

√1/π‘š. (15)

Calculation of the entanglement characteristics yields:I Schmidt rank π‘Ÿ = π‘š;I Schmidt number (𝑃 οΏ½ the purity of subsystems)

𝐾 =

[βˆ‘π‘˜(πœ†π›Ό

π‘˜ )4

]βˆ’1

= 1/𝑃 = π‘š; (16)

I Entanglement entropy 𝑆entang = βˆ’βˆ‘

π‘˜(πœ†π›Ό

π‘˜ )2 ln(πœ†π›Ό

π‘˜ )2= ln(π‘š);

I Concurrence 𝐢 =

[π‘Ÿ

π‘Ÿ βˆ’ 1

(1βˆ’

βˆ‘π‘˜(πœ†π›Ό

π‘˜ )4)]1/2

= 1.

Remark. Strongly entangled composite boson (high π‘š) ap-proaches standard boson at small quantum numbers 𝑛:

πœ‘(𝑛) β‰ˆ πœ‘π‘π‘œπ‘ π‘œπ‘›(𝑛) ≑ 𝑛, 𝑛 β‰ͺ π‘š, π‘š ≫ 1.

Page 12: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Generalization to multi-quasiboson statesExample 1. Multi-quasiboson state, one mode

|π‘›π›ΌβŸ© = [πœ‘(𝑛𝛼)!]βˆ’1/2(𝐴†

𝛼)𝑛𝛼 |0⟩ (17)

(πœ‘-factorial πœ‘(𝑛)!𝑑𝑒𝑓= πœ‘(1) Β· ... Β· πœ‘(𝑛)).

Entanglement characteristics for (17):

πΎπœ–=+1=πΆπ‘šπ‘›π›Ό , πΎπœ–=βˆ’1=𝐢𝑛𝛼

π‘š+π‘›π›Όβˆ’1;

𝑆entang|πœ–=+1=lnπΆπ‘šπ‘›π›Ό , 𝑆entang|πœ–=βˆ’1=ln𝐢𝑛𝛼

π‘š+π‘›π›Όβˆ’1.

Example 2. 𝑛-quasiboson Fock states with 1 quasiboson per mode:

|Ψ⟩ = 𝐴†𝛾1 Β· ... ·𝐴

†𝛾𝑛 |0⟩, 𝛾𝑖 = 𝛾𝑗 , 𝑖 = 𝑗, 𝑖, 𝑗 = 1, ..., 𝑛.

Entanglement characteristics:πΎπœ–=+1 = πΎπœ–=βˆ’1 = π‘šπ‘›;

𝑆entang|πœ–=+1 = 𝑆entang|πœ–=βˆ’1 = 𝑛 ln(π‘š).

Example 3. For the coherent state (two bosonic constituents)

|Ξ¨π›ΌβŸ©=𝐢(π’œ;π‘š)βˆ‘βˆž

𝑛=0

π’œπ‘›

πœ‘(𝑛)!(𝐴†

𝛼)𝑛|0⟩, 𝐴𝛼|Ξ¨π›ΌβŸ© = π’œπ›Ό|Ξ¨π›ΌβŸ©

Schmidt number and Entanglement entropy were also calculated.

Page 13: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

CFs: three modes πœ‡, 𝜈 = 1, 3 for constituents:

Figure 1: Left: Equi-entropic curves (for constant CF entanglement entropy

𝑆(𝛼)ent ) versus parameters πœƒ1, πœƒ2, at a fixed mode 𝛼 = 1 or 2.

Right: Entanglement entropy 𝑆(2)ent(πœƒ

(2)1 , 𝛾′), 𝛾′ ≑ arg(πœ†

(1)1 πœ†

(1)2 πœ‘11πœ‘22), for

a CF in 𝛼 = 2 mode at fixed entanglement entropy 𝑆(1)ent = ln 3 for 𝛼 = 1

mode of CF.

Page 14: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Energy dependence of entanglement entropy for thestates of composite boson (quasiboson) systems

[A.M. Gavrilik, Yu.A. Mishchenko, J. Phys. A 46, 145301 (2013)]

Entanglement characteristics between the constituents of a quasi-boson and their energy dependence are important in quantum infor-mation research: in quantum communication, entanglement produc-tion/enhancement, quantum dissociation processes, particle additionor subtraction in general and in the teleportation problem, etc.We take the Hamiltonian of deformed oscillators system as

𝐻 =1

2

βˆ‘π›Ό

~πœ”π›Ό

(πœ™(𝑁𝛼) + πœ™(𝑁𝛼 + 1)

). (18)

Single quasiboson case

𝑆ent(𝐸) = lnπœ–

32 βˆ’ 𝐸

~πœ”=

⎧βŽͺ⎨βŽͺβŽ©βˆ’ ln

(32βˆ’ 𝐸

~πœ”

), πœ– = 1,

1

2≀ 𝐸

~πœ”β‰€ 3

2,

βˆ’ ln( 𝐸

~πœ”βˆ’ 3

2

), πœ– = βˆ’1,

3

2≀ 𝐸

~πœ”β‰€ 5

2.

The corresponding plots are presented on Fig. 2 and Fig. 3.

Page 15: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Figure 2: Dependence of the entan-glement entropy 𝑆ent on the energy𝐸𝛼 for a single composite boson inthe case of fermionic componentsi.e. at πœ– = +1.

Figure 3: Dependence of the entan-glement entropy 𝑆ent on the energy𝐸𝛼 for a single composite boson inthe case of bosonic components i.e.at πœ– = βˆ’1.

Page 16: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Hydrogen atom viewed as quasiboson. οΏ½ Cannot be realizedby quadratically deformed oscillators. The creation operator for hy-drogen atom1 with zero total momentum and quantum number 𝑛

𝐴†0𝑛 =

(2πœ‹~)3/2βˆšπ‘‰

βˆ‘p

πœ‘pπ‘›π‘Ž(𝑒)†p 𝑏

(𝑝)β€ βˆ’p , (19)

where π‘Ž(𝑒)†p and 𝑏

(𝑝)β€ βˆ’p are the creation operators for electron and

proton respectively taken with opposite momenta. The momentum-space wavefunction πœ‘p𝑛 is determined by the Schrodinger equation:

πœ‘p𝑛=

βˆ«π‘’

𝑖~pr

(2πœ‹~)3/2πœ‘π‘›(r)𝑑

3r; βˆ’~2βˆ‡2

2π‘šπœ‘π‘›(r)+π‘ˆ(r)πœ‘π‘›(r)=πΈπ‘›πœ‘π‘›(r).

Expansion (19) can be viewed directly as the Schmidt decomposition

for the state 𝐴†0𝑛|0⟩ with Schmidt coeοΏ½cients πœ†p = (2πœ‹~)3/2√

π‘‰πœ‘p𝑛.

Then the entanglement entropy for the hydrogen atom is given by

𝑆ent = βˆ’βˆ‘p

|πœ†p|2 ln |πœ†p|2 = βˆ’βˆ‘p

(2πœ‹~)3

𝑉|πœ‘p𝑛|2 ln

((2πœ‹~)3𝑉

|πœ‘p𝑛|2).

1Note that similar ansatz is used for the excitonic creation operators

Page 17: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Let us consider the simplest case of quantum numbers 𝑙=0 & π‘š=0.

Figure 4: Dependence of the entanglement entropy Δ𝑆 = 𝑆ent βˆ’ 𝑆(0)ent on the

energy 𝐸 for Hydrogen atom.

Page 18: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

III. Deformed Bose gas models. Preliminaries

Approach I. Standard relations apply to deformed physical quantities(dependent on deformation parameter(s) π‘ž):

𝐹𝑖 β†’ 𝐹(π‘ž)𝑖 , 𝑅(𝐹𝑖) = 0 β†’ 𝑅(𝐹

(π‘ž)𝑖 ) = 0. (20)

In [N. Swamy, 2009] π‘ž-Bose gas model involves the deformed parti-

cle number 𝑁 (π‘ž)=π‘§π’Ÿ(π‘ž)𝑧 ln𝑍(0), obtained using deformed derivative

π’Ÿ(π‘ž)𝑧 . Then, other thermodyn. quantities can be derived. E.g., π‘ž-

deformed virial expansion π‘ƒπ‘£π‘˜B𝑇

=βˆ‘βˆž

π‘˜=1π‘Žπ‘˜(πœ–)(πœ†3/𝑣)π‘˜βˆ’1, πœ– ≑ π‘ž βˆ’ 1,

along with a few virial coeοΏ½cients π‘Žπ‘˜(πœ–) was found.Approach II. Deform defining relations for a physical system (saycommutation rel-ns): 𝑅(𝐹𝑖) = 0 β†’ π‘…π‘ž(𝐹𝑖) = 0.For instance, deformed (nonlinear) oscillator is deοΏ½ned by deforma-tion structure function πœ™ and the relations:

π‘Žβ€ π‘Ž = πœ™(𝑁), π‘Žπ‘Žβ€  = πœ™(𝑁+1), [𝑁, π‘Žβ€ ] = π‘Žβ€ , [𝑁, π‘Ž] = βˆ’π‘Ž,

then [π‘Ž, π‘Žβ€ ] = 1 + π›Ώπœ™(𝑁), π›Ώπœ™(𝑁) ≑ πœ™(𝑁+1)βˆ’πœ™(𝑁)βˆ’1.

Page 19: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Deformation of thermodynamics rel-s using πœ™-derivativeIn πœ™-Bose gas model def. number of particles (𝑧=π‘’π›½πœ‡ οΏ½ fugacity)

𝑁 (πœ™)=πœ™(𝑧𝑑

𝑑𝑧

)ln𝑍(0) β‰‘π‘§π’Ÿ(πœ™)

𝑧 ln𝑍(0)=𝑉

πœ†3

βˆ‘βˆž

𝑛=1πœ™(𝑛)

𝑧𝑛

𝑛5/2,

where ln𝑍(0) = βˆ’βˆ‘

𝑖 ln(1 βˆ’ π‘§π‘’βˆ’π›½πœ€π‘–) and the πœ™-derivative π’Ÿ(πœ™)𝑧 is

used (analog of Jackson's π‘ž-derivative): 𝑧 𝑑𝑑𝑧 β†’ π‘§π’Ÿ(πœ™)

𝑧 = πœ™(𝑧 𝑑𝑑𝑧

).

Recovering def. partition function 𝑍(πœ™) from 𝑁 (πœ™) =(𝑧 𝑑𝑑𝑧

)ln𝑍(πœ™)

we obtain πœ™-deformed virial (πœ†3/𝑣)-expansion (let πœ™(1)=1)

𝑃 (πœ™)

π‘˜B𝑇=

(𝑣(πœ™)

)βˆ’1{βˆ‘βˆž

π‘˜=1𝑉

(πœ™)π‘˜

( πœ†3

𝑣(πœ™)

)π‘˜βˆ’1}=

(𝑣(πœ™)

)βˆ’1{1βˆ’πœ™(2)

27/2πœ†3

𝑣(πœ™)+

+(πœ™(2)2

25βˆ’2πœ™(3)

37/2

)( πœ†3

𝑣(πœ™)

)2+(βˆ’3πœ™(4)

47/2+πœ™(2)πœ™(3)

25/233/2βˆ’5πœ™(2)3

217/2

)( πœ†3

𝑣(πœ™)

)3+

+(βˆ’4πœ™(5)

57/2+πœ™(2)πœ™(4)

211/2βˆ’2πœ™(3)3

35βˆ’πœ™(2)2πœ™(3)

2333/2+7πœ™(2)4

210

)( πœ†3

𝑣(πœ™)

)4+...

},

where 𝑣(πœ™) = 𝑉𝑁(πœ™) is speciοΏ½c volume, πœ† οΏ½ thermal wavelength,

𝑉(πœ™)π‘˜ , π‘˜ = 1, 2, ..., are πœ™-deformed virial coeοΏ½cients.

Page 20: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Second virial coefficient for a gas with interactionAs known,

𝑉2βˆ’π‘‰(0)2 =βˆ’81/2

βˆ‘π΅

π‘’βˆ’π›½πœ€π΅ βˆ’ 81/2

πœ‹

βˆ‘β€²

𝑙

(2𝑙+1)

∫ ∞

0π‘’βˆ’π›½ ~2π‘˜2

π‘šπœ•π›Ώπ‘™(π‘˜)

πœ•π‘˜π‘‘π‘˜

where 𝐡 runs over bound states, 𝑙 is the angular momentum, and𝛿𝑙(π‘˜) partial wave phaseshift. In low-energy approximation we retainonly the 𝑙 = 0 summand (𝑠-wave approximation). Resp. phaseshift𝛿0(π‘˜) is determined by Schrodinger eq. for a speciοΏ½ed interaction.Low-energy limit and 𝑠-wave approximation (𝑙 = 1 eοΏ½ects arenegligible). The following expansion οΏ½ effective range (or β€œshape-

independent”) approximation holds:

π‘˜ ctg 𝛿0=βˆ’1

π‘Ž+1

2π‘Ÿ0π‘˜

2+..., π‘Ÿ0=2

∫ ∞

0π‘‘π‘Ÿ[(

1βˆ’ π‘Ÿ

π‘Ž

)2βˆ’πœ’2

0(π‘Ÿ)], (21)

where π‘Ž is the scattering length, π‘Ÿ0 οΏ½ eοΏ½ective range (radius), andπœ’0(π‘Ÿ) οΏ½ the radial wavefunction of the lowest state multiplied by π‘Ÿ.

β‡’ πœ•π›Ώ0/πœ•π‘˜ = βˆ’π‘Ž+ (π‘Žβˆ’ 3π‘Ÿ0/2)π‘Ž2π‘˜2 +𝑂(π‘˜4).

For 𝑠-wave approximation we obtain

𝑉2βˆ’π‘‰(0)2 =βˆ’81/2

βˆ‘π΅

π‘’βˆ’π›½πœ€π΅+2π‘Ž

πœ†π‘‡βˆ’2πœ‹2

(1βˆ’3

2

π‘Ÿ0π‘Ž

)( π‘Ž

πœ†π‘‡

)3+... . (22)

Page 21: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

βˆ™ Hard spheres interaction potential [Pathria]:

π‘ˆ(π‘Ÿ)=

{+∞, π‘Ÿ<𝐷;

0, π‘Ÿ>𝐷.β‡’ 𝑉2βˆ’π‘‰

(0)2 =2

𝐷

πœ†π‘‡+10πœ‹2

3

( 𝐷

πœ†π‘‡

)5+... (𝑙=0, 2).

We also considered: constant repulsive, square-well, anomalous scat-tering, scattering resonances, modiοΏ½ed Poschl-Teller and inversepower repulsive potentials.

With listed π‘Ž and π‘Ÿ0 the second virial coeοΏ½cient can be evalu-ated (22) for mentioned potentials of interparticle interaction.The gas of non-interacting but composite bosons. Using theanzats 𝐴†

𝛼 =βˆ‘

πœ‡πœˆ Ξ¦πœ‡πœˆπ›Ό π‘Žβ€ πœ‡π‘

β€ πœˆ and the known formula

𝑉2 =1

2!𝑉

[(Tr1 𝑒

βˆ’π›½π»1)2 βˆ’ Tr2 π‘’βˆ’π›½π»2

]. (23)

if for all (k, 𝑛)-modes (𝐴†k,𝑛)

2|0⟩ = 0 we obtain that in the absenceof explicit interaction between composite bosons

𝑉2(𝑇 )βˆ’ 𝑉(0)2 = βˆ’ 1

25/2

(βˆ‘π‘›π‘’βˆ’2π›½πœ€π‘–π‘›π‘‘

𝑛 βˆ’ 1). (24)

Page 22: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Effective account for the interaction/compositeness ofparticles by π‘ž- resp. οΏ½οΏ½-deformations

Interparticle interaction. In [N. Swamy, J.Stat.Mech (2009)] the π‘ž-

deformation given by structure function [𝑁 ]π‘ž ≑ 1βˆ’π‘žπ‘

1βˆ’π‘ž was interpretedas incorporating the eοΏ½ects of interparticle interaction. That lead toπ‘ž-deformed virial expansion

𝑃𝑣

π‘˜B𝑇=

βˆ‘βˆž

π‘˜=1π‘Žπ‘˜(πœ–)

(πœ†3

𝑣

)π‘˜βˆ’1, πœ– = π‘ž βˆ’ 1, (25)

with virial coeοΏ½cients π‘Žπ‘˜(πœ–). They utilized Jackson derivative π’Ÿ(π‘ž)𝑧 .

Compositeness of particles. In [Gavrilik et al, J.Phys.A (2011)]composite (two-fermion or two-boson) quasi-bosons with cre-ation/annihilation operators (1) were realized by def. bosons withquadratic DSF πœ™οΏ½οΏ½(𝑁).Unification of οΏ½οΏ½- and π‘ž-deformations. The eοΏ½ective descriptionof the both mentioned factors may be expected from a combinationof DSFs [𝑁 ]π‘ž and πœ™οΏ½οΏ½(𝑁). The simplest (but non-unique) variant is

πœ™οΏ½οΏ½,π‘ž(𝑁)=πœ™οΏ½οΏ½([𝑁 ]π‘ž)=(1+οΏ½οΏ½)[𝑁 ]π‘žβˆ’οΏ½οΏ½[𝑁 ]2π‘ž (26)The respective οΏ½οΏ½, π‘ž-deformed Bose gas model was recently proposedin [Gavrilik, Mishchenko, Ukr. J. Phys., 2013].

Page 23: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Deformed second virial coefficient vs. microscopicallycalculated one. Consequences for def. parameters

We use the obtained deformed virial expansion based on πœ™οΏ½οΏ½,π‘ž(𝑁),see (26), to juxtapose with the resp. results in microscopic descrip-tion. So, the οΏ½rst virial coeοΏ½cients are

𝑉(οΏ½οΏ½,π‘ž)2 = βˆ’πœ™οΏ½οΏ½,π‘ž(2)

27/2, 𝑉

(οΏ½οΏ½,π‘ž)3 =

πœ™οΏ½οΏ½,π‘ž(2)2

25βˆ’ 2πœ™οΏ½οΏ½,π‘ž(3)

37/2. (27)

In our approach, parameter π‘ž from πœ™οΏ½οΏ½,π‘ž(𝑁) corresponds to eοΏ½ectiveaccount for interparticle interaction, and οΏ½οΏ½ οΏ½ for compositeness.Effective account for interaction up to (πœ†3/𝑣)2. Microscopictreatment yields, see (22),

𝑉2βˆ’π‘‰(0)2 =βˆ’81/2

βˆ‘π΅

π‘’βˆ’π›½πœ€π΅+2π‘Ž

πœ†π‘‡βˆ’2πœ‹2

(1βˆ’3

2

π‘Ÿ0π‘Ž

)( π‘Ž

πœ†π‘‡

)3+... . (28)

According to our interpretation 𝑉(οΏ½οΏ½,π‘ž)2 βˆ’π‘‰

(0)2 |οΏ½οΏ½=0=

2βˆ’πœ™οΏ½οΏ½,π‘ž(2)

27/2|οΏ½οΏ½=0=

1βˆ’π‘ž27/2

. Equating to (28) yields

π‘ž=π‘ž(π‘Ž, π‘Ÿ0, 𝑇 )=1βˆ’29/2π‘Ž

πœ†π‘‡+29/2πœ‹2

(1βˆ’3

2

π‘Ÿ0π‘Ž

)( π‘Ž

πœ†π‘‡

)3+...+25

βˆ‘π΅

π‘’βˆ’π›½πœ€π΅ ,

where πœ†π‘‡ = β„Ž/√2πœ‹π‘šπ‘˜π΅π‘‡ is thermal wavelength.

Page 24: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Effective account for the compositeness up to (πœ†3/𝑣)2-terms.In the absence of explicit interaction between quasibosons, cf. (24),

𝑉2(𝑇 ) = βˆ’ 1

25/2

βˆ‘π‘›π‘’βˆ’2π›½πœ€π‘–π‘›π‘‘

𝑛

On the other hand, according to our interpretation 𝑉(οΏ½οΏ½,π‘ž)2 βˆ’π‘‰ (0)

2 |π‘ž=1=2βˆ’πœ™οΏ½οΏ½,π‘ž(2)

27/2|π‘ž=1=

οΏ½οΏ½25/2

. After equating,

β‡’ οΏ½οΏ½ = οΏ½οΏ½(πœ€π‘–π‘›π‘‘π‘› ,Ξ¦πœ‡πœˆπ›Ό , 𝑇 ) = 1βˆ’

βˆ‘π‘›π‘’βˆ’2π›½πœ€π‘–π‘›π‘‘

𝑛 . (29)

Structure function πœ™οΏ½οΏ½,π‘ž(𝑁) with π‘ž=π‘ž(π‘Ž, π‘Ÿ0, 𝑇 ), οΏ½οΏ½= οΏ½οΏ½(πœ€π‘–π‘›π‘‘π‘› ,Ξ¦πœ‡πœˆπ›Ό , 𝑇 )

is chosen for eοΏ½ective account (in certain approximation) for thefactors of interaction and of composite structure of particles.* The temperature dependence of def. parameter π‘ž(. . . , 𝑇 ) appearsunexpected since in our interpretation def. parameter characterizesthe nonideality of deformed Bose gas.

Page 25: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

III. Correlation function intercept for οΏ½οΏ½, π‘ž-Bose gas model[Nucl. Phys. B 891, 466 (2015)]

Figure 5: STAR(RHIC)-data

STAR (RHIC) experiment on πœ‹πœ‹-correlations

shows that for intercept πœ†(2)(k) ≑ 𝑛(2)k,k

(𝑛k)2βˆ’ 1:

1) πœ†(2)(π‘˜) =const (depends on momentum);2) all exper. values are < 1 (for usual Bosegas πœ†(2) = const = 1).

The οΏ½οΏ½, π‘ž-deformed Bose gas model is basedon a system of οΏ½οΏ½, π‘ž-deformed oscillators withstructure function πœ™οΏ½οΏ½,π‘ž(𝑁), see (26) (just thecommut. relations are deformed). Intercept of2nd order as momentum k function is deοΏ½ned in the model as:

πœ†(2)πœ™ (k) =

⟨(π‘Žβ€ k)2(π‘Žk)

2βŸ©βŸ¨π‘Žβ€ kπ‘Žk⟩2

βˆ’ 1 =βŸ¨πœ™(𝑁k)πœ™(𝑁k βˆ’ 1)⟩

βŸ¨πœ™(𝑁k)⟩2βˆ’ 1, (30)

where ⟨...⟩ is statistical average: ⟨𝐹 ⟩= Tr𝐹 exp(βˆ’π›½π»)Tr exp(βˆ’π›½π») .

Hamiltonian is taken linear: 𝐻 =βˆ‘

k πœ€k𝑁k.

Page 26: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Deformed analogs of one- and two-particle distributions inοΏ½οΏ½, π‘ž-deformed Bose gas model

Here we calculate the deformed one- and two-particle distributionsfor οΏ½οΏ½, π‘ž-def. Bose gas model deοΏ½ned by DSF

πœ™οΏ½οΏ½,π‘ž(𝑁) = πœ™οΏ½οΏ½([𝑁 ]π‘ž) = (1 + οΏ½οΏ½)[𝑁 ]π‘ž βˆ’ οΏ½οΏ½([𝑁 ]π‘ž)2 ≑ [𝑁 ]οΏ½οΏ½,π‘ž,

[𝑁 ]π‘žβ‰‘ 1βˆ’π‘žπ‘

1βˆ’π‘ž , with the interpretation of π‘ž and οΏ½οΏ½ as responsible resp.for the interaction [N. Swamy, 2009] and compositeness [Gavrilik et

al, 2011]. The deοΏ½nition of the distributions formally coincides withthe non-deformed ones,

𝑛k = βŸ¨π‘Žβ€ kπ‘Žk⟩, 𝑛(2)k,kβ€² = βŸ¨π‘Žβ€ kπ‘Ž

†kβ€²π‘Žkβ€²π‘Žk⟩, (31)

but involves creation and annihilation operators, π‘Žβ€ k resp. π‘Žk forthe πœ™οΏ½οΏ½,π‘ž-def. bosons which obey the following set of commutationrelations given by DSF πœ™οΏ½οΏ½,π‘ž:

[𝑁k, π‘Žβ€ kβ€² ] = 𝛿kkβ€²π‘Žβ€ k, [𝑁k, π‘Žkβ€² ] = βˆ’π›Ώkkβ€²π‘Žk,

[π‘Žk, π‘Žβ€ k] = πœ™οΏ½οΏ½,π‘ž(𝑁k + 1)βˆ’ πœ™οΏ½οΏ½,π‘ž(𝑁k), π‘Žβ€ kπ‘Žk = πœ™οΏ½οΏ½,π‘ž(𝑁k).

Page 27: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

One- and two-particle deformed distributionsDetailed analysis of the applicability of chosen struct. function yieldstwo possibilities: discrete or continuous (οΏ½οΏ½, π‘ž). In the discrete case:

βŸ¨π‘Žβ€ kπ‘Žk⟩=1

π‘§βˆ’π‘ž+(πœ™οΏ½οΏ½,π‘ž(2)βˆ’[2]π‘ž)

(1βˆ’ [𝑁max+1]π‘ž2

[𝑁max+1]𝑧

)(π‘§βˆ’π‘ž)(π‘§βˆ’π‘ž2)

=1

π‘§βˆ’π‘ž+π›Ώπœ™οΏ½οΏ½,π‘ž(2)(1βˆ’π‘…)

(π‘§βˆ’π‘ž)(π‘§βˆ’π‘ž2),

where π›Ώπœ™οΏ½οΏ½,π‘ž(𝑛)β‰‘πœ™οΏ½οΏ½,π‘ž(𝑛)βˆ’[𝑛]π‘ž, 𝑅≑𝑅��,π‘ž(𝑧)=[𝑁max+1]π‘ž2

[𝑁max+1]𝑧, (32)

𝑧=𝑒π‘₯, π‘₯=𝛽~πœ”k, 𝛽=(π‘˜π΅π‘‡ )βˆ’1. For ⟨(π‘Žβ€ k)

2π‘Ž2k⟩ we οΏ½nd:

⟨(π‘Žβ€ k)2π‘Ž2k⟩=

πœ™οΏ½οΏ½,π‘ž(2)

(π‘§βˆ’π‘ž)(π‘§βˆ’π‘ž2)

{1 + (1βˆ’π‘…)

π›Ώπœ™οΏ½οΏ½,π‘ž(3)(𝑧+π‘ž2βˆ’ π‘ž2[4]π‘ž

πœ™οΏ½οΏ½,π‘ž(2)

)(𝑧 βˆ’ π‘ž3)(𝑧 βˆ’ π‘ž4)

βˆ’

βˆ’π‘ž2[2]π‘žπ‘…

([2]π‘ž [3]π‘žπœ™οΏ½οΏ½,π‘ž(2)

βˆ’2π‘žβˆ’1)(π‘§βˆ’π‘ž2) + π‘ž2(π‘žβˆ’1)2

(𝑧 βˆ’ π‘ž3)(𝑧 βˆ’ π‘ž4)

}. (33)

In the continuous case, take the limit 𝑁max β†’ ∞ to obtain

βŸ¨π‘Žβ€ kπ‘Žk⟩ =𝑧 + πœ™οΏ½οΏ½,π‘ž(2)βˆ’ [3]π‘ž(𝑧 βˆ’ π‘ž)(𝑧 βˆ’ π‘ž2)

,

⟨(π‘Žβ€ k)2π‘Ž2k⟩ =

πœ™οΏ½οΏ½,π‘ž(2)

(π‘§βˆ’π‘ž)(π‘§βˆ’π‘ž2)

{1+

(πœ™οΏ½οΏ½,π‘ž(3)βˆ’[3]π‘ž)(π‘§βˆ’π‘ž2

( [4]π‘žπœ™οΏ½οΏ½,π‘ž(2)

βˆ’1))

(𝑧 βˆ’ π‘ž3)(𝑧 βˆ’ π‘ž4)

}.

Page 28: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Intercept of two-particle correlation function andcomparison with experiment

Plugging (32)-(33) in (30) yields the resulting expression for the

intercept πœ†(2)(k).The dependence πœ†(2)(𝐾) on the momentum 𝐾 = |k| for some

values of οΏ½οΏ½, π‘ž and temperature 𝑇 versus exper. data for πœ‹-mesonintercepts from RHIC/STAR is shown in Fig. 6, where we take ~πœ” =βˆšπ‘š2 +𝐾2, and for π‘š the πœ‹-meson mass (139.5 MeV).

Figure 6: Intercept πœ†(2)(𝐾) vs. mo-mentum 𝐾, for different values of π‘ž,οΏ½οΏ½ and 𝑇 chosen to fit experimentaldata. Exper. dots [STAR] are shownby boxes.

Page 29: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Conclusionsβˆ™ For quasibosons built of 2 fermions, 2 bosons or 2 π‘ž-fermionstheir operator realization by deformed oscillators (deformed bosons)with quadr. struct. function is found. The οΏ½fermion + def. bosonοΏ½composite fermi-particles are also treated.

βˆ™ The deformation parameter is established to be unambiguously de-termined by the entanglement characteristics for the realized compos-ite bosons. Thus, inter-component entanglement reveals the physicalmeaning of the deformation parameter.

βˆ™ The relation of the 2nd vir. coeοΏ½cient of the οΏ½οΏ½, π‘ž-def. Bose gasmodel to the parameters of interaction and compositeness is found.Def. parameter π‘ž is linked to the scattering length and effective radiusof interaction, and οΏ½οΏ½ relates to internal energy levels of quasibosons.

βˆ™ Deformed 2-particle distribution and correlation function interceptin resp. οΏ½οΏ½, π‘ž-deformed Bose gas model are explicitly obtained. Thecomparison of the obtained 2-particle correlation intercept with 2-pion intercepts from RHIC/LHC experiments is made. It shows aqualitative agreement.

Page 30: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Publications:

1. Gavrilik A.M., Kachurik I. I. and Mishchenko Yu. A. it Quasi-bosons composed of two π‘ž-fermions: realization by deformedoscillators. J. Phys. A: Math. Theor., 2011, 44, 475303.

2. Gavrilik A.M. and Mishchenko Yu. A. Entanglement in compos-

ite bosons realized by deformed oscillators. Phys. Lett. A,2012, 376, P. 1596οΏ½1600.

3. Gavrilik A.M. and Mishchenko Yu. A. Energy dependence of

the entanglement entropy of composite boson (quasiboson) sys-

tems. J. Phys. A: Math. Theor., 2013, 46, 145301.

4. Gavrilik A. M. and Mishchenko Yu. A. Virial coefficients in the

(οΏ½οΏ½, π‘ž)-deformed Bose gas model related to compositeness of par-

ticles and their interaction: Temperature-dependence problem.Phys. Rev. E 90, 052147 (2014).

5. Gavrilik A. M. and Mishchenko Yu. A. Correlation function in-

tercepts for οΏ½οΏ½, π‘ž-deformed Bose gas model implying effective ac-

counting for interaction and compositeness of particles. Nucl.Phys. B 891, 466 (2015).

Page 31: Composite particles viewed as deformed oscillators ...fective description of tripartite (three-component) composite parti-cles e.g. when two constituents form a bound state modeled

Thank you for your attention!