Comparison of Hardware Tests with SIMULINK Models of UW...

24
1 Comparison of Hardware Tests with SIMULINK Models of UW Microgrid Introduction This report includes a detailed discussion of the microsources available on the UniversityofWisconsin microgrid. This includes details of the SIMULINK models and their comparison with actual dynamic tests. Critical model parameters are also provided. The microsources include inverter based sources, AC storage and a field wound synchronous generator. The appendix includes SIMULINK models and the network parameters for the network studies in Phase VIII. Note there is a significant differences in the system presented at the start of this project. The loads are different representing the actual loads available in at Wisconsin. Current UW Microgrid Parameters This section documents the current actual microgrid circuit used a University of Wisconsin. This includes line impedances and transformer data. This is the system for providing the hardware test data of the system’s dynamics. Figure 1 shows the UW Microgrid diagram. Power Cable Static Switch Grid (4.16 kV) PC1 SS T1 T 2 Power Cable PC 2 Resistive Load Bank R1 ES Power Cable PC 3 Resistive Load Bank R2 Power Cable PC4 Power Cable PC5 Synchronisation Circuit SC R3 GENSET IC SM MS UPC1 UPC2 UPC3 Power Cable PC6 SW Resistive Load Bank n n n 4.16 kV / 0.48 kV 0.48 kV / 0. 208 kV Figure 1. Three Phase Diagram of UW Microgrid

Transcript of Comparison of Hardware Tests with SIMULINK Models of UW...

Page 1: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

1    

Comparison of Hardware Tests with SIMULINK Models of UW Microgrid

   

Introduction This  report  includes  a  detailed  discussion  of  the  microsources  available  on  the  University-­‐of-­‐Wisconsin  microgrid.  This  includes  details  of  the  SIMULINK  models  and  their  comparison  with  actual  dynamic  tests.  

Critical  model  parameters  are  also  provided.  The  microsources  include  inverter  based  sources,  AC  storage  and  a  field  wound  synchronous  generator.  The  appendix  includes  SIMULINK  models  and  the  

network  parameters  for  the  network  studies  in  Phase  VIII.  Note  there  is  a  significant  differences  in  the  system  presented  at  the  start  of  this  project.  The  loads  are  different  representing  the    actual  loads  available  in  at  Wisconsin.  

Current UW Microgrid Parameters This  section  documents  the  current  actual  microgrid  circuit  used  a  University  of  Wisconsin.  This  includes  

line  impedances  and  transformer  data.  This  is  the  system  for  providing  the  hardware  test  data  of  the  system’s  dynamics.  

Figure  1  shows  the  UW  Microgrid  diagram.    

Power CableStatic SwitchGrid

(4.16 kV)

PC1 SS

T1 T 2 Power Cable

PC 2

Resistive Load Bank

R1

ES

Power Cable

PC 3

Resistive Load Bank

R2

Power Cable

PC4

Power Cable

PC5

SynchronisationCircuit

SC

R3

GENSET

IC SM

MS

UPC1

UPC2

UPC3Power Cable

PC6

SW

Resistive Load Bank

n nn

4.16 kV / 0.48 kV 0.48 kV / 0.208 kV

 

Figure  1.  Three  Phase  Diagram  of  UW  Microgrid  

Page 2: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

2    

Impedances  of  microgrid  lines  and  transformers  are  listed  in  Table  1  and  2  respectively.  

Table  1.  Line  impedances  of  UW  microgrid  

Line  Impedance   Length  [ft]   R  [Ω]   XL  [Ω]   XC  [Ω]  

PC1   366   0.093400   0.025500    

PC2   18   0.002810   0.000679    

PC3   175   0.027352   0.006600   288.6  

PC4   108   0.016880   0.004070   336.7  

PC5   17   0.002657   0.000641   2020.2  

PC6   105   0.065600   0.002100   345.6  

 

Table  2.  Transformer  impedances  of  UW  microgrid  

Tag  Volt-­‐Amp    Rating  

Impedance  HV  Side  

Resistance[Ω]    HV  Side  

Reactance[Ω]  LV  Side  

Resistance[Ω]  LV  Side  

Reactance[Ω]  

T1 2500 kVA 5.50% 0.04707123 0.1882849 0.000627 0.0025068 T2 75 kVA 4.40% 0.01689600 0.0675840 0.003173 0.0126908 T3 45 kVA 4.20% 0.02688000 0.1075200 0.005047 0.0201899 T4 45 kVA 4.20% 0.00671900 0.0268800 0.005047 0.0201899 T5 45 kVA 4.20% 0.02688000 0.1075200 0.005047 0.0201899

 

Inverter Microsource Details Microsource  (MS)    is  illustrated  in  Figure  2.  

!" VDC

Inverter

Inverter Firing System

m

!(t)

CF3

LF3

Ideal Source

CKMS

Controller

Lt3PC3 UPC3T5

Ia ,

Vab ,Vcb

Ic

n

0.48 kV / 0.208 kV

MS

 

Figure  2.  MS  components  

Inverter   voltage   and   currents   have   a   fundamental   component   and  higher   harmonics   due   to   the   turn-­‐on/off  effects  of  the  switches.  Harmonics  are  significantly  eliminated  by  means  of  LC  filter  and  the  10kHz  switching  frequency.  The  inverter  is  represented  from  the  microgrid  point  of  view  as  an  ideal,  balanced  voltage   source   with   only   fundamental   components.   The   output   of   the   inverter   is   modeled   as   a  controlled  voltage  source  as  shown  in  Figure  3.  

Page 3: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

3    

Uab

Ubc

Uca

Ideal Source

m

!(t)

PC3

 Figure  3.  Ideal  source  model    

Instantaneous  voltages  of  the  controlled  voltage  sources  can  be  written  as  following;  

 

 

 

The  quantities  m  and  θ(t)  are  the  outputs  of  the  control  block.  The  quantity  m   is  a  modulating  index,  a  

scalar  coefficient  that  when  is  multiplied  by  the  DC  voltage  yields  the  magnitude  of  the  desired  voltage  

at  the  inverter  terminals.  The  quantity  θ(t)  is  the  desired  instantaneous  value  of  angle  for  the  voltage  at  

the  inverter  terminals.    

 

Control  quantities  used   in  this  model  are  voltage  (Vmeas),  real  power  (Pmeas)  and  reactive  power  (Qmeas).  Detail  of  the  controller  is  shown  in  Figure  4.  

Page 4: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

4    

Calculation of Control Quantities

from Measurements

Voltage (V)Real Powers (P)

Reactive Power (Q)

FILTERS

+ --

mQ

- ++ ++

++

-+

-+

V*

Q*

P*

m

Vreq

Preq

!base

"(t)

Pmax

Pmin

1s

- #!

0

VBASE

SBASE

mP

++ Kvi

s

Kvp

0

PI

PI

PI

++

Kpis

Kpp

++

Kpis

Kpp

#!

Vab,Vcb

Ia,Ic

Vmeas

Qmeas

Pmeas

Pmeas

 

Figure  4.  Detailed  MS  controller  scheme,  CKMS  

Real  and  reactive  power  (in  pu)  injected  from  MS  and  terminal  voltage  (in  pu)  are  calculated  by  signal  processing  block  illustrated  in  Figure  5.  

Vab-cb

Ia-c

)( qddq IVIV !23

Vdq

Idq

V*

P*

Q*..

..

.

.

Vbase

Sbase

)( qqdd IVIV +23

+

22qd VV +

+

"#

$%&

'"#

$%&

'

!="

#

$%&

'

cb

ab

q

d

ff

ff

/30

1/2-2

132

"#

$%&

'"#

$%&

'

!!="#

$%&

'

c

a

q

d

ff

ff

/

3/23230

32

 

Figure  5.  Control  quantities  calculation  block  

Page 5: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

5    

Instantaneous  P,  Q  and  V  are  calculated  using   the  rotating  d-­‐q  reference  frame.   Instantaneous  voltage  (current)   magnitude   is   calculated   by   obtaining   the   in-­‐phase   (direct)   and   out   of   phase   (quadrature)  

voltages  (current)  with  respect  to  phase-­‐a.      

The   calculated   V,   P   and   Q   quantities   are   passed   through   the   low   pass   filters   to   attenuate   the   high  frequency  components  which  occur  at  step  load  or  power  changes.  Filter  diagram  is  shown  in  Figure  6.  

s11

VQP!+

V* Vmeass1

1VQP!+

s11VQP!+

Q* Qmeas

P* Pmeas

 

Figure  6.  Filter  diagram  

 

 Experimental  vs.  Simulation  Results  for  MS  

Experimental  setup  in  which  MS  is  island  mode  and  grid-­‐connected  mode  is  shown  in  Figure  7.    

 

 

Figure  7.  Experimental  setup  diagram  for  MS  

MS  parameters  are  listed  in  Table  3.    

Page 6: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

6    

Table  3.  MS  parameters  

VDC 750 V SBASE 15 kVA VBASE 208 V ωbase 376.9911 (2π60) Δω 3.1416 (2π0.5) Pmax 15 kW (1 pu) Pmin 0 kW Preq 4 kW (0.2667 pu) Vreq 208 V (1 pu) Kpp 3 Kpi 30 Kvp 0.01 Kvi 5 mQ 0.05 mP 3.1416 τVQP 0.01

In  this  islanded  case  study  the  inverter  has  two  resistive  loads  .    

R2=10.8Ω     R3=22.2Ω  

Initially  the  load  R3  is  supplied  by  the  inverter.  R2  is  switched  in  at  t1≅1.7  sec  and  out  at  t2≅  6.8.  

Results  of  simulation  and  experiment  are  shown  in  Figure  8  through  11.  

 Figure  8.  Real  and  reactive  power  variation  of  MS  

Page 7: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

7    

 Figure  9.  Frequency  variation  of  MS  

 Figure  10.  Voltage  variation  of  MS  during  load  step  up  

 Figure  11.  Current  variation  of  MS  during  load  step  up  

 

Page 8: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

8    

Energy Storage, ES, Details Energy   storage   (ES)   modeling   details   are   illustrated   in   Figure   12.   ES   is   also   modeled   as   a   controlled  voltage  source.  

ES

!" VDC

Inverter

Inverter Firing System

m

!(t)

CF1

LF1

Ideal Source

CKES

Controller

Lt1PC1 UPC1T3

Ia ,

Vab ,Vcb

Ic

n

0.48 kV / 0.208 kV

 

Figure  12.  ES  components  

Detailed  controller  of  ES  is  shown  in  Figure  13.  As  shown,  the  controller  is  same  as  that  of  MS.  However,  Pmin  can  have  negative  value  which  correspond  that  of  battery  charging.  

Calculation of Control Quantities

from Measurements

Voltage (V)Real Powers (P)

Reactive Power (Q)

FILTERS

+ --

mQ

- ++ ++

++

-+

-+

V*

Q*

P*

m

Vreq

Preq

!base

"(t)

Pmax

Pmin

1s

- #!

0

VBASE

SBASE

mP

++ Kvi

s

Kvp

0

PI

PI

PI

++

Kpis

Kpp

++

Kpis

Kpp

#!

Vab,Vcb

Ia,Ic

Vmeas

Qmeas

Pmeas

Pmeas

 

Figure  13.  Detailed  ES  controller  scheme,  CKES  

Page 9: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

9    

2.1.  Experimental  vs.  Simulation  Results  for  ES  

Experimental  setup  for  ES  is  illustrated  in  Figure  14.    

 

Figure  14.  Experimental  setup  diagram  for  ES  

ES  parameters  are  listed  in  Table  4.    

Table  4.  ES  parameters  

VDC 750 V SBASE 15 kVA VBASE 208 V ωbase 376.9911 (2π60) Δω 3.1416 (2π0.5) Pmax 15 kW (1 pu) Pmin -2.5 kW (-0.1667 pu) Preq 4 kW (0.2667 pu) Vreq 208 V (1 pu) Kpp 3 Kpi 30 Kvp 0.01 Kvi 5 mQ 0.05 mP 3.1415 τVQP 0.01  

Page 10: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

10    

In  this  case  study,  the  ES  inverter  supplies  the  two  resistive  loads  in  islanding  mode.    The  load  values  are  fallowing:  

R1=20.5Ω                                    R2=10.8Ω      

Initially   the   load   R1   is   supplied  by   the   ES   inverter.   R2   switched   in   at   t1≅4.12   sec   and  out   at   t2≅   7.72,  

respectively.  

Results  of  simulation  and  experiment  are  shown  in  Figure  15  through  18.  

 Figure  15.  Real  and  reactive  power  variation  of  ES  

 Figure  16.  Frequency  variation  of  ES  

Page 11: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

11    

 Figure  17.  Voltage  variation  of  ES  during  load  step  up  

 Figure  18.  Current  variation  of  ES  during  load  step  up  

Page 12: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

12    

GENSET Details The  GENSET  block  is  shown  in  Figure  19.  It  comprises  of  an  internal  combustion  (IC)  engine  driven  and  a  12.5  KW  Kohler  field  wound  synchronous  generator.    

ControllerCKG

PSG

GENSET

IC Engine

!meas

Fcmd

UPC2T4

I a ,

Vab ,Vcb

Ic

n

0.24 kV / 0.208 kV

CG

Exciter

Ecmd

 

Figure  19.  GENSET  components  

Internal  combustion  (IC)  engine  is  illustrated  in  Figure  20.  The  exciter  model  is  shown  in  Figure  21.  +-

cmdthr Ffvev KK!Fcmd"-e

Nm

base

mmeas

SN_

mKmeas2_

Limiter 1

Pmec

Time Delay  

Figure  20.  IC  Engine  model  

 

s11

e!+

Exciter MachineLimiter 2

EfmeascmdE _Ecmd

 

Figure  21.  Exciter  model  

Control  quantities  used   in  this  model  are  voltage  (Vmeas),  real  power  (Pmeas),  reactive  power  (Qmeas)  and  speed  of  generator  (ωmeas).  Detail  of  the  controller  is  shown  in  Figure  22.  

The   speed   of   generator   is   directly   measured   from   synchronous   machine   measurement   terminal.  

Therefore  a  speed  observer  model  is  not  needed  in  this  study.  

Page 13: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

13    

Calculation of Control Quantities

from Measurements

Voltage (V)Real Powers (P)

Reactive Power (Q)

Vab,Vcb

Ia,Ic

+ --

mQ

-+++

Vmeas

Vreq

Preq

!base

VBASE

SBASE

mP

Genset Controller Diagram

Qmeas

Pmeas

Exciter Voltage

Command ControllerGv

Voltage Regulator

-+Controller

Gg

Fuel Command

!meas

Governor

++

-+

-+Pmax

Pmin

" #!

0

0

PI

PI

++

Kpi

s

Kpp

++

Kpi

s

Kpp

#!

+

Pmeas

From Synchronous

Generator shaft

VerrEcmd

Fcmd !err

 

Figure  22.  Detailed  GENSET  controller  scheme,  CKG  

The  controller  Gv  in  the  voltage  regulator  block  is  shown  in  detail  in  figure  23.  

++

sK vi

vpK

++

PI1

EcmdVerr

 

Figure  23.  Detailed  diagram  of  controller  Gv  

The  Gv  controller  is  the  sum  of  the  PI  controller  and    the  feed-­‐forward  value.  This  is  the  expected  value  required   for   nominal   voltage   at   the   terminals.     This   feed-­‐forward   constant   allows   for   quicker   initial  convergence  without  the  integrator  having  to  wind  up.  

Page 14: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

14    

The  controller  Gg  in  governor  block  is  shown  in  figure  24.  

++

sK gi

gpK

PI

++

Limiter 3

eTtfKTe

Fcmd!err

Pmeas

 

Figure  24.  Detailed  diagram  of  controller  Gg  

The  governor  controller  regulates  the  rotational  speed  of  the  genset  primarily  by  a  combination  of  fuel  

commands  calculated  from  the  speed  error  and  the  output  power  that   is  used  to  decouple  the  loading  of  the  machine.  

The   speed   error   is   fed   into   a   PI   controller   to   modify   the   torque   command.     The   output   of   the   PI  controller  is  the  output  power  at  the  terminals  of  the  machine.  The  limiter  before  the  torque  command  

output  (Te)  is  used  to  avoid  unrealistic  commands  during  large  load  transients.    The  torque  command  is  translated  into  fuel  unit  command  Fcmd.  

Results for GENSET Simulation  setup  for  the  GENSET  in  island  mode  is  illustrated  in  Figure  25.    

 

 

Figure  25.  Simulation  setup  diagram  for  GENSET  

Page 15: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

15    

ICE  parameters  and  Synchronous  generator  parameters  are  listed  in  Table  5  and  6,  respectively.    

Table  5.  GENSET  parameters  

SBASE 12.5 kVA ηthr 0.47 VBASE 208 V Kev 11.8238 ωbase 376.9911 (2π60) Kfv 3600 Δω 3.1416 (2π0.5) τ 0.022 Pmax 12.5 kW (1 pu) Km 0.36 Pmin 0 kW τe 0.001 Vreq 208V (1 pu) Kvp 100 Kpp 3 Kvi 30 Kpi 30 Kgp 10 mP 3.1416 Kgi 20

Ktf 0.625  

Table  6.  Synchronous  generator  parameters  

xd 1.204 Td0’ 0.35523

xd’ 0.125 Td0

” 0.00015 xd

” 0.056 Tq0” 0.0067

xq 0.533 Rs 0.0217 xq

’ 0.051 H 0.19 xq

” 0.037

p 2  

In  this  case  study,  the  GENSET  has  two  resistive  loads.    

R2=10.8Ω     R3=22.2Ω    

Initially  the  load  R3  is  supplied  by  the  GENSET.  R2  is  switched  in  at  t1=3  sec  and  out  at  t2=  7,  respectively.  

Results  are  shown  in  Figure  26  through  29.  

Page 16: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

16    

 

Figure  26.  Real  and  reactive  power  variation  of  GENSET  

 Figure  27.  Frequency  variation  of  GENSET  

 

Figure  28.  Voltage  variation  of  GENSET  during  load  step  up  

Page 17: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

17    

 

Figure  29.  Current  variation  of  GENSET  during  load  step  up  

 

Page 18: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

18    

Appendix A: SIMULINK data A. Microsource  MS  &  Energy  Storage  ES  

                                                       

Figure  A1.  MS  (ES)  components  

 

           

a)  MS  (ES)  controls  and  source  models   b)  Ideal  voltage  source  model  

Figure  A2.  MS  (ES)  Controls  and  Source  

Page 19: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

19    

 

Figure  A3.  SIMULINK  diagram  of  MS  (ES)  controller  

 

 

Figure  A4.  SIMULINK  diagram  of  measurement  calculation  

 

Figure  A5.  SIMULINK  diagram  of  abc  to  αβ  transformation  

 

 

Figure  A6.  SIMULINK  diagram  of  filters  

Page 20: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

20    

 

 

Figure  A7.  SIMULINK  diagram  of  Q-­‐V  droop  controller  

 

 

Figure  A8.  SIMULINK  diagram  of  voltage  control  

 

 

Figure  A9.  SIMULINK  diagram  of  P-­‐ω  droop  controller  

 

Page 21: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

21    

B. Genset  KG  

         

Figure  B1.  KG  components  

Note:  See  Figure  A4-­‐A5  for  PQV_Calc  block  detail  

 

 Figure  B2.  SIMULINK  diagram  of  Engine  &  Governor  

IC  Engine  Model  

Governor  Model  

Page 22: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

22    

 

 

Figure  B3.  SIMULINK  diagram  of  Exciter  &  Regulator  

Exciter  Model  

Voltage  Regulator      

Model  

Page 23: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

23    

Appendix B Meshed Microgrid Figure  1  shows  the  UW  Meshed  Microgrid  diagram  for  Task  VIII  test.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.  Single  Phase  Diagram  of  UW  Meshed  Microgrid  

Impedances  of  microgrid  lines  and  transformers  are  listed  in  Table  1  and  2  respectively.  

Table  1.  Line  impedances  of  UW  meshed  microgrid  

Line  Impedance   Length  [ft]   R  [Ω]   XL  [Ω]   XC  [Ω]  

PC1   366   0.093400   0.025500            82.7  

PC2   18   0.002810   0.000679   2894.3  

PC3   175   0.027352   0.006600        288.6  

PC4   108   0.016880   0.004070      336.7  

PC5   17   0.002600   0.000640   2020.2  

PC6   75   0.013700   0.003300      577.2  

 

From Outside Line

PC4  

25yds  PC3  

75yds  

PC5  

15yds  PC6  

25  yds   T

3  

 

T4

2  

 

SS

PC1  

T1  

PC2  

20yds  

Bus-2

Energy Storage (15 kW)

T

2  

 

Bus-

1 L11

L12

L22 L21

Kohler Genset (12.5 kW)

Bus- 4

L41 L42

Micro-Source

Inverter based

(15 kW)

Bus-3

L31 L32

P3,Q3

P6,Q6 P5,Q5

P4,Q4

Page 24: Comparison of Hardware Tests with SIMULINK Models of UW …lemmon/projects/Odyssian-2009/Vault/... · 2010. 11. 5. · 6" " Table"3."MS"parameters" V DC 750 V S BASE 15 kVA V BASE

24    

Table  2.  Transformer  impedances  of  UW  meshed  microgrid  

Tag  Volt-­‐Amp  

 Rating  Impedance  

HV  Side  

Resistance[Ω]    

HV  Side  

Reactance[Ω]  

LV  Side  

Resistance[Ω]  

LV  Side  

Reactance[Ω]  

T1 2500 kVA 5.50% 0.04707123 0.1882849 0.000627 0.0025068 T2 75 kVA 4.40% 0.01689600 0.0675840 0.003173 0.0126908 T3 45 kVA 4.20% 0.02688000 0.1075200 0.005047 0.0201899 T4 45 kVA 4.20% 0.00671900 0.0268800 0.005047 0.0201899 T5 45 kVA 4.20% 0.02688000 0.1075200 0.005047 0.0201899

 

Table  3.  Loads  of  UW  meshed  microgrid  

Tag  Power  Rating  

L11-L12 4 kW L21-L22 4 kW L31-L32 4 kW L41-L42 4 kW