Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

download Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

of 11

Transcript of Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

  • 7/25/2019 Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

    1/11

    Colloids andSurfaces B: Biointerfaces 126 (2015) 426436

    Contents lists available at ScienceDirect

    Colloids and Surfaces B: Biointerfaces

    journal homepage: www.elsevier .com/ locate /colsur fb

    Comparative real-time study ofcellular uptake ofa formulatedconjugated linolenic acid rich nano and conventional macro emulsionsand their bioactivity in ex vivomodels for parenteral applications

    Debjyoti Paul a,b, Sayani Mukherjeea,b, Rajarshi Chakrabortyc, Sanjaya K. Mallickb,Pubali Dhara,b,

    a Laboratory of Food Science & Technology, Food & Nutrition Division, University of Calcutta, 20 B Judges Court Road, Kolkata, West Bengal 700027,Indiab Centre for Research in Nanoscience & Nanotechnology,University of Calcutta, JD 2, Sector III,Salt Lake City, Kolkata, West Bengal 700098, Indiac Department of Biochemistry, University of Calcutta, 35,Ballygunge Circular Road, Kolkata, West Bengal 700019, India

    a r t i c l e i n f o

    Article history:

    Received 10 September 2014

    Received in revised form 5 December 2014

    Accepted 26 December 2014

    Available online 4 January 2015

    Keywords:

    -Eleostearic acidFlowcytometry

    Nanoemulsion

    Reactive oxygen species

    Transmission electronmicroscopy

    a b s t r a c t

    The objective ofthe present study was to fabricate and monitor real-time, impact ofa stable conjugated

    linolenic acid, -eleostearic acid (ESA) rich nanoemulsion (NE) formulation (d

  • 7/25/2019 Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

    2/11

    D. Paul et al. / Colloids and Surfaces B: Biointerfaces 126 (2015) 426436 427

    Table 1

    Fatty acid composition of bittermelonseed oil as obtained by gas-liquid chromatography.

    Test fat Fatty acid composition (w/w %)

    C14:0 C16:0 C18:0 C18:1 C18:2 C18:3

    Bitter melon seed oil 2.40.001 31.30.002 8.00.002 7.90.001 50.40.001

    Results are expressedas meanSD for n=3 samples ofmethyl esters of fatty acids from theextracted andpurified bittermelonoil seeds.

    balance (HLB) of 8-18 is required, while for aW/O formulation HLB

    of 36 is required. However, in both instances of O/W and W/O

    emulsion system, the ideal HLB value varies according to the oil

    involved in the emulsification process [3]. Often, a single surfac-

    tant is not sufficient to provide for the optimum HLB to stabilize

    an emulsion formulation when the oil-excipient involved is con-

    siderably non-polar. For this reason, co-surfactants are involved

    withboth low and highHLB value. The optimumblend of suchsur-

    factants to balance hydrophilic and lipophilic tendency results in

    the formationof a stable emulsion formulation upon dilutionwith

    water. On the basis of particle size distribution, long-termstorage-

    related changes, thermodynamic stability andparticle structure of

    dispersed oil and surfactant within an aqueous continuous phase,

    O/W emulsion system can further be classified as conventional

    emulsion (random non-homogenous particle size distribution),

    nanoemulsion and microemulsions (homogenous nano-sized col-loidal dispersion systemswithd

  • 7/25/2019 Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

    3/11

  • 7/25/2019 Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

    4/11

    D. Paul et al. / Colloids and Surfaces B: Biointerfaces 126 (2015) 426436 429

    Fig. 1. Transmission ElectronMicroscopy (TEM) of theformulated ESANE:Particle size andappearance at differentmagnifications. (A)Mag= 32,000; (C) Mag = 15,600;

    (B) Mag = 33,000; (D) Mag = 20,000.

    the statistical analysis were carried outwith one-way ANOVA fol-

    lowed by TukeyKramerpost hocanalysis (IBM SPSS Statistics 20).

    Difference in results with P

  • 7/25/2019 Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

    5/11

    430 D. Paul et al. / Colloids andSurfaces B: Biointerfaces 126 (2015) 426436

    Fig. 2. (A)Time dependentuptake andmetabolism results of ESA NE & ESACE forlymphocytes(5105 cells perwell). Results areexpressed inmean fluorescence intensity

    (MFI) SD (n=3). The results indicate theMFI emitted by NileRed conjugatedwith intact ESA rich triglyceride (TG). Metabolized TGsdue to cytoplasmic esterases activity

    (inside lymphocytes) leading to release of free fatty acids show quenched MFI due to the extremely sensitive fluorescent expression of Nile Red under core hydrophobic

    conditions. (B) Flow cytometric representational analysis of Nile red conjugated ESA-NE and ESA-CE uptake andmetabolism. Lymphocyte population were electronically

    gated to study and compare the uptake and metabolism of ESA rich colloidal systems (NE and CE) via transcellular pathway (lymphocytes being non-adherent cells) on a

    time dependentmanner. Results are indicatedas MFI andwere carried out in triplicates for 5105 PBMCs perwell.

    conditions of 60%5% relative humidity without shaking. The

    particle size, zeta potential data of the system for 12 weeks

    has been recorded as Table 2. However, due to physicochem-

    ical conditions such as Oswald ripening, gravitational pull and

    Laplaces pressure adversely affecting the stability of the CE

    system had showed signs of cracking in 1 week of storage

    (Table 2).

    The zeta potential was found to be >25mV as per the electro-

    acoustic measurement for the ESA NE system during the entire

    storage period. The experimental ESA NE had a zeta potential of

    +33.72mV indicating good stability [14]. While the zeta potential

    dropped to +17.01mV indicating mild stability after 12 weeks of

    the storage period (Table 2).

    3.3. Absorption of formulated ESA NE and CE systems

    Time-dependentflowcytometric analysis of the PBMCs stained

    with Nile Red for intracellular lipid content estimation and

    grouped as per additional sample treatments of the formulated

    stocksamples comprising 700MESANEand CEsystems upto4 hwas carried out and recorded (Fig. 2A and B). From the meanfluo-

    rescence intensity paradigm corresponding to individual systems

    of the freshly formulatedNEand CEof ESA, itwas revealed that the

    absorptionofESANEwashigher thanESACE.Previousstudies have

    established Nile red as a very specific intracellular triglyceride

    fluorescent probe that shows no fluorescence inside the cyto-

    sol or in the nuclear compartment. Thus, lipase metabolism of

  • 7/25/2019 Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

    6/11

    D. Paul et al. / Colloids and Surfaces B: Biointerfaces 126 (2015) 426436 431

    triacylglycerol (TAG) molecules conjugated with Nile red fluores-

    cent dye will be quenched as compared to intact TAG molecules.

    The meanfluorescence intensity data for 1-h, 2-h and 4-h for both

    the ESA rich NE and CE systems indicated that the Nile red mean

    fluorescence intensitywas significantlyhigher inside lymphocytes

    for CE as compared to NE systems. The logical explanation of

    this time-dependent paradigm observation could be attributed

    to the fact that TAG metabolism of nano-sized oil droplets inside

    lymphocytes is higher than micron-sized oil molecules inside

    conventional emulsion systems. The results of the study also

    provide empirical evidence that the absorption rate of ESA NE is

    significantly higher thanESA-CE.

    3.4. Reactive oxygen species measurement

    Mean DCF fluorescence was proportionate to the increase in

    intracellular (cellpopulationgated: lymphocytes) ROS.ROSgener-

    ation for all the pre-treated test samples were comparedwith LPS

    (pathogenic mitogen) induced control group and untreated sam-

    ple/normal cells control grouptodeterminethe impact of different

    doses of ESA-CE and ESA-NE on altering the excess ROS generated

    due to activation of Toll-family of receptors [15] in LPS-treated

    groups. Theintracellular ROSMFI(Mean Fluorescence Intensity) in

    LPS-untreated group, served as the basal reference of ROS presentunder un-stimulated conditions for quantitative analysis.Here,we

    found that 70M ESA NE reduced ROS level (proportionated withMFI) by 41% as compared to the positive control group (P

  • 7/25/2019 Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

    7/11

    432 D. Paul et al. / Colloids andSurfaces B: Biointerfaces 126 (2015) 426436

    Fig. 3. (A) Reactive Oxygen Species analysis (ROS) analysis of electronically gated lymphocyte population (5105 PBMCs per well) following pre-incubation with

    variously dosed ESA rich colloidal systems and 1 (g/ml) LPS (pathogenic mitogen) challenge: A. NEGATIVE CONTROL: ROS analysis of the population of PBMC(thus, lymphocytes) unexposed to LPS challenge; B. POSITIVE CONTROL: ROS analysis of the population of untreated lymphocytes exposed to LPS induced chal-

    lenge; C. 700M ESA CE: ROS analysis of the population of lymphocytes pre-incubated (1h) with 700M ESA CE followed by exposure to LPS challenge; D.700M ESA NE: ROS analysis of the population of lymphocytes pre-incubated (1h) with 700M ESA NE followed by exposure to LPS challenge; E. 70M ESACE: ROS analysis of the population of lymphocytes pre-incubated (1h) with 70M ESA CE followed by exposure to LPS challenge; F. 70M ESA NE: ROS analysis

  • 7/25/2019 Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

    8/11

    D. Paul et al. / Colloids and Surfaces B: Biointerfaces 126 (2015) 426436 433

    viscosity and interfacial tension as compared to short chain (SCT)

    ormedium chain triacylglycerols (MCT). Yet onceformulated, LCTs

    have higherphysical stability than the rest. Detailed perspicacious

    modifications are thus required in conventional homogenization

    techniques to formulate o/wnanoemulsions of LCTs [16]. We suc-

    cessfullydevisedand incorporatedoptimization in formulating the

    ESA NE in question to improve its stability and distribution. The

    fabricated food-grade nanoemulsion system comprising non-toxic

    excipients following high pressure homogenization was found to

    be reflectingmonomodal distribution ranging frompolydispersity

    (PdI)of 0.161 to0.247duringthe entirestorageperiodof 12weeks.

    Although the systemwas stabilized withnon-ionic co-surfactants,

    i.e. Tween 20 and Span 80, it was found to possess a high positive

    charge of +33.72mV during the first week and the period dur-

    ingbiological experimentationwith it as evinced by zeta potential

    analysis. This aspect of the results is in agreement with the results

    obtained by Li et al. [17] during their respective analysis of a PMF-

    nanoemulsionsystemcomprisingnon-ionic surfactant (Tween20).

    The zeta potential dropped to +17.2 only after 12 weeks of the

    storage period and throughout the period indicated a stable for-

    mulationdevoidof droplet creaming(i.e. throughout their volume,

    uniformopaque appearancewas observed). The initial zeta poten-

    tial analysis of the formulated ESA-NE up to 4 weeks indicated

    results of good stability parameters to resist droplet aggregation[14]. On the contrary, the freshly prepared conventional emulsion

    system of ESA with PdI of +12.4 indicated lower colloidal stability

    prone to particle sedimentation. This parameter could well be the

    genesis of the consequent fate of ESA-CE which showed creaming

    at the end of 1 week with the oil component sedimenting by the

    walls of the borosilicate container.

    Initialstudiestoanalyzethe fateof triacylglycerol-emulsionsys-

    tem in lymphocytes after 48h culture has shown that the activity

    of lipoprotein lipase in hydrolysing oleic acid rich triacylglyce-

    rols into free fatty acids is 10 units/mg protein [18]. Moreover,

    recent studies have also shed some light on the mechanistic

    pathway in the uptake of nanoparticles. Comparative studies in

    non-phagocyticcellsbetweenuptakeofnanoparticles(d200nm, have revealed that internaliza-tion of the nanoparticles (d200nm, enter cells by caveolae dependent endocy-

    tosis. It has also been established that processing of particles is

    extremely rapid in clathrin-mediated endocytosis (although even

    inclathrin-mediatedpathway, particlesizeswitha diameterbelow

    100nm are even rapider than particles with diameter between

    100 and 200nm) as such particles reach lysosomal compartments

    within 30min of internalization by cells. On the contrary, caveo-

    lae dependent endocytosis rarely reach lysosomal compartment

    even after 4h of incubation. Now, since lipoprotein lipases are

    present inside these lysosomal chambers, thedegree of hydrolysis

    of triacylglycerols should logically be higher for clathrin-mediated

    endocytosis for nanoparticles than caveolae dependent endocyto-sis forparticleswith a diameter greater than200nm [19]. Ourflow

    cytometric results of non-phagocytic, non-adherent lymphocytes

    thus are in excellent agreement with this experimentally estab-

    lished theory.Nileredbeing anextremelyhydrophobicfluorescent

    probe fluoresced till the TAG molecules accumulated inside the

    lymphocytes would remain intact and will show a proportionate

    increase in MFI. The flow cytometer acquired results thus cor-

    responded to this un-metabolized, accumulated internalized TAG

    fraction.

    The MFI of Nile Red conjugated with the ESA-NE system dur-

    ing the time-dependent analysis showed that both internalization

    and metabolism were high during the first 30min of incubation

    as compared to the ESA-CE system conjugated with Nile red. The

    quenchedMFI of nile red associated with ESA-NE during the later

    course of the incubation period could be attributed to the fact that

    theclathrin-mediatedendocytosisof ESA-NE(particlesize lessthan

    200nm)wasgettingrapidlymetabolizedandin theincreasedpolar

    environment of free fatty acids inside the lysosomal chamber (site

    of TAG metabolism). This paradigm of ESA-CE linked Nile red MFI

    got conspicuously increased during the course of the incubation

    period, aptly implying that thesystemgot internalizedvide caveo-

    laemediated pathway, thereby getting accumulated at the cellular

    periphery as they did not reach the lysosomal chambers before

    4h. Thus, it can be logically asserted that the release and accumu-

    lation of ESA being internalized vide clathrin-mediated pathway

    were much higher in nanoemulsion systemthan internalizationof

    thecaveolaemediated conventional emulsion system. It shouldbe

    pointed out that non-specific macropinocytosis internalization of

    theESA rich colloidalsystemscouldnot have been significant since

    lymphocytes are non-phagocytic cells.Reactive oxygen species (ROS) have been identified as major

    contributors towards the regulation and modulation of various

    cellular processes including cellular survival, autophagy and cell

    death.ROSreferstothefamilyof reactivemoleculesproducedin the

    cells by the metabolism of oxygen capable of causing destruction

    at higher concentrations. In addition to other non-radical species,

    ROS are derived from oxygen metabolism and are present in cells

    and tissues at low but measurable concentrations. This concen-

    tration is dependent on the rate of production and its clearance

    by inter-play of a multitude of antioxidative-enzyme systems and

    non-enzymatic antioxidants. Moreover, the maintenance of this

    redox homeostasis is crucial for the normal physiological func-

    tioning of livingcells and tissues [20].

    Investigativestudiesonidentifying thenodesof redox signallinghaveidentifiedmitochondria,endoplasmicreticulum,peroxisomes

    and NADPH oxidase (NOX) as the major intracellular ROS gen-

    erating sources, which includes singlet oxygen (1O2), superoxide

    (O2), hydroxyl radical (OH), nitric oxide (NO) and hydrogen

    peroxide (H2O2). In this context, the role of ROS in inducing

    autophagy through a signalling cascade has also been established,

    although precise mechanisms and effective therapeutic strategies

    ofROS-regulatedautophagy remain stochastic [21]. Bacterialendo-

    toxins such as lipopolysaccharide have been reported to induce

    ROS generation in excess amounts and disrupting the redox-

    homeostasis by activating Toll-like receptor 4 (TLR4)pathway and

    simultaneouslyreducingperoxisome-activated receptor (PPAR)invitro [11,15]. This leadstoexcessnecrosisandatrophy of infected

    cells, and this further accentuates intracellular pro-inflammatoryresponses overriding the anti-inflammatory counter balance.

    Conjugated fatty acids such as ESA have been reported to

    contributesignificantly incounter-balancingtheetiologicalparam-

    eters causing oxidative stress in biological systems through a

    multi-prong mechanism. ESA up-regulates intracellular PPARexpression [22] which in turn modulates the LPS mediated

    of the population of lymphocytes pre-incubated (1h) with 70M ESA NE followed by exposure to LPS challenge. (B) Reactive Oxygen Species analysis (ROS) analysis ofPeripheral Blood Mononuclear cells (PBMC) population (5105 PBMCs per well) comprising lymphocytes, monocytes and granulocytes following pre-incubation with

    variouslydosedESA rich colloidal systems and1 (g/ml) LPS(pathogenicmitogen)challenge:A. NEGATIVECONTROL: ROSanalysisof thepopulation of PBMCunexposedtoLPS challenge; B.POSITIVECONTROL:ROS analysis ofthe population of untreatedPBMCsexposedto LPSinducedchallenge; C. 700MESACE: ROSanalysisof thepopulationofPBMCs pre-incubatedfor 1h with 700M ESA CEfollowedby exposureto LPS challenge;D. 700M ESA NE:ROS analysis of thepopulation of PBMCs pre-incubated (1h)with 700M ESA NE followed by exposure to LPS challenge; E. 70M ESA CE: ROSanalysis of the populationof PBMCs pre-incubated (1h) with 70M ESA CE followed by

    exposure to LPS challenge; F. 70M ESA NE: ROS analysis of the population of PBMCspre-incubated (1h) with 70M ESANE followed by exposure to LPS challenge.

  • 7/25/2019 Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

    9/11

    434 D. Paul et al. / Colloids andSurfaces B: Biointerfaces 126 (2015) 426436

    Fig. 4. Analysis of compromised (necrotized) electronically gated lymphocytes from a 100% population of 5105 PBMCs(per well) by PI staining due to 120min exposure

    to 5g/ml LPS exposure in variously treated marked groups (analysis for each group were carried out in triplicates) with reflected results indicating statistical significanceofP

  • 7/25/2019 Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

    10/11

  • 7/25/2019 Comparative Real-time Study of Cellular Uptake of a Formulated Conjugated Linolenic Acid

    11/11

    436 D. Paul et al. / Colloids andSurfaces B: Biointerfaces 126 (2015) 426436

    formulations. In our previous studies also, on an in vivomodel we

    had reported and explained the role of ESA NE in a reduced dose

    to counter alloxan induced diabetes by providing for an additional

    sourceof antioxidants to counter theabnormal ROSgenerateddue

    to toxic accumulation of GSH-alloxan adducts [6]. This study thus

    paves a way for further investigations on exploring the molecu-

    lar mechanisms of the cellular mediators stimulated by the ESA

    involved in mitigating parameters affected by excess intracellular

    and exogenousROS.

    In summary, a comparative analysis of a stable formulation

    of ESA NE with an ESA CE formulation to enhance prophylaxis

    against both endogenous and exogenous ROS in live cells is being

    reported in this study. The findings of the present study havebeen

    derived by tracking, interpreting and correlating the metabolic

    fate of the ESA rich subject formulations in modulating molec-

    ular parameters aggravated by a disturbed redox equilibrium in

    non-phagocyticcells. Previousstudieshave alreadyhighlightedthe

    therapeutic/prophylactic benefits of ESA as free fatty acids in vitro

    and in silicomodels [25,26]. However,owing to thetransientnature

    of free PUFAs such as ESA due to their proneness to oxidation,

    it becomes a mounting challenge to deliver them in a stable un-

    oxidized state through a stable formulation in vivo. In our reported

    formulationusingcolloidalnanotechnologyhowever,we havesuc-

    cessfully addressed this issue to fabricate a stable system of ESANE.A holistic picture of bioavailability of ESA and the implications

    of its various doses to counter endogenous and exogenous ROS

    in primary cells has been projected in this study. Moreover, since

    the studies have been carried out only in human and human-like

    (like that of rats) ex vivomodels, the clinical aspects of the ESA NE

    & CE formulations too, if delivered parenterally at the optimized

    dose becomes evident whichis partially in similar lines of previous

    reports of other TAG rich parenteral emulsion systems [27].

    Conflict of interest

    The authors have no conflict of interest to report.

    Acknowledgement

    This work was supported by the Indian Council of Medi-

    cal Research grant and Centre for Research in Nanoscience and

    Nanotechnology,University of Calcutta infrastructure. Theauthors

    would also like to acknowledge the immense technical help ren-

    dered byMiss Urmila Goswami of JEOL India.

    Appendix A. Supplementary data

    Supplementary data associated with this article can be

    found, in theonlineversion,athttp://dx.doi.org/10.1016/j.colsurfb.

    2014.12.046.

    References

    [1] H.S. Ribeiro, J.M.M. Guerrero, K. Briviba, G. Rechkemmer, H.P. Schuchmann, H.

    Schubert, J. Agric. Food Chem. 54 (2006) 9366.[2] M.A. Neves,H.S. Ribeiro, K.B. Fujiu, I. Kobayashi, M. Nakajima, Ind. Eng. Chem.

    Res. 47 (2008) 6405.[3] N. Ahmad, R. Ramsch, M. Llins, C. Solans, R. Hashim, H.A. Tajuddin, Colloid

    Surf. B 115 (2014) 267.[4] D.J. McClements, Soft Matter8 (2012) 1719.[5] Q. Huang, H.Yu, Q. Ru,J. Food Sci. 75 (2010) R50.[6] D. Paul, T.K. Dey, S. Mukherjee, M. Ghosh, P. Dhar, J. Food Sci. Tech. Mys. 51

    (2014) 1724, http://dx.doi.org/10.1007/s13197-014-1257-2.[7] X.C. Yang, B. Samanta, S.S. Agasti, Y. Jeong, Z.J. Zhu, S. Rana, O.R. Miranda, V.M.

    Rotello, Angew. Chem. 123 (2011) 497.[8] G.F. Yuan, X.E. Chen,D. Li,FoodFunct, Advancearticle(2014),http://dx.doi.org/

    10.1039/C4FO00037D.[9] P. Dhar, S. Ghosh,D.K. Bhattacharyya,Lipids 34 (1999) 109.

    [10] R. Carvalho Silva, L. AlexandreMuehlmann, J. RodriguesDa Silva, R. de BentesAzevedo, C. Madeira Lucci,Microsc. Res. Tech. (2014).

    [11] C. Bulua, A. Simon, R. Maddipati, M. Pelletier, H. Park, K.Y. Kim, M.N. Sack, D.L.Kastner, R.M. Siege, J. Exp. Med. 208 (2011) 519.

    [12] H. Zhao, J. Oczos, P. Janowski, D. Trembecka, J. Dobrucki, Z. Darzynkiewicz, D.Wlodkowic, Cytometry 77 (2010) 399,Top of Form.[13] E.S. Henle, Y. Luo,W. Gassman, S. Linn, J. Biol. Chem. 271 (1996) 21177.[14] T. Tadros, P. Izquierdo, J. Esquena, C. Solans, Adv. Colloid Interfac. 108 (2004)

    303.[15] B.M. Necela, W. Su, E.A. Thompson, Immunology 125 (2008) 344.[16] D.J. McClements, J. Rao, Crit. Rev. Food Sci. Nutr. 51 (2011) 285.[17] Y. L i, J. Zheng, H. Xiao, D.J. McClements, Food Hydrocolloid 27 (2012)

    517.[18] P.C.Calder,P. Yaqoob, E.A.Newsholme,Triacylglycerolmetabolismby lympho-

    cytes and the effect of triacylglycerols on lymphocyte proliferation, Biochem.J. 298 (2012) 605.

    [19] J. Rejman, V. Oberle, I.S. Zuhorn, D. Hoekstra, Biochem. J. 377 (2004)159.

    [20] B. Halliwell, Plant Physiol. 141 (2006) 312.[21] X.Wen,J.Wu,F.Wang,B.Liu, C.Huang, Y.Wei,FreeRadicalBiol.Med. 65(2013)

    402.[22] H.-S.Moon,D.-D. Guo, H.-G.Lee,Y.-J.Choi,J.-S. Kang, K.Jo, J.-M. Eom,C.-H. Yun,

    C.-S. Cho, Cancer Sci. 101 (2010) 396.

    [23] B. Levine, G. Kroemer, Cell 132 (2008) 27.[24] J. Eom, -M. Seo,-J. Baek, -. Chu, H. Han, S.H.Min,T.S.Cho,C-.C-. Yun, Biochem.

    Biophys. Res. Co. 391 (2010) 903.[25] M.E. Grossmann, N.K. Mizuno, M.L. Dammen, T. Schuster, A. Ray, M.P. Cleary,

    Cancer Prev. Res. 2 (2009) 879.[26] S.N. Lewis, L. Brannan, A.J. Guri, P. Lu, R. Hontecillas, J. Bassaganya-Riera, D.R.

    Bevan, PLoSOne 6 (2011), Top of Form.[27] J. Boisram-Helms, X. Delabranche, A. Klymchenko, J. Drai, E. Blond, F. Zobairi,

    Y. Mely, M. Hasselmann, F. Toti, F. Meziani, Lipids (2014).

    http://dx.doi.org/10.1016/j.colsurfb.2014.12.046http://dx.doi.org/10.1016/j.colsurfb.2014.12.046http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0155http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1007/s13197-014-1257-2http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1039/C4FO00037Dhttp://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1039/C4FO00037Dhttp://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1039/C4FO00037Dhttp://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0180http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0210http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0210http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0235http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0250http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0270http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0265http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0260http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0255http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0250http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0250http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0250http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0250http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0250http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0250http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0250http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0250http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0245http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0240http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0235http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0235http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0235http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0235http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0235http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0235http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0235http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0230http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0225http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0220http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0215http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0210http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0210http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0210http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0210http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0210http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0210http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0210http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0210http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0210http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0210http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0205http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0200http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0195http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0190http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0185http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0180http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0180http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0180http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0180http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0180http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0180http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0180http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0180http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0180http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0180http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1039/C4FO00037Dhttp://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1039/C4FO00037Dhttp://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0170http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1007/s13197-014-1257-2http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0160http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0155http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0155http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0155http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0155http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0155http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0155http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0155http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0150http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0145http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://refhub.elsevier.com/S0927-7765(14)00733-4/sbref0140http://dx.doi.org/10.1016/j.colsurfb.2014.12.046http://dx.doi.org/10.1016/j.colsurfb.2014.12.046