Compact modeling of junctionless nanowire MOSFETs

21
MOS-AK Venice 2014/9/26 1 Compact modeling of junctionless nanowire MOSFETs B.Iñiguez, O. Moldovan, F.Lime, URV, DEEEA [email protected]

Transcript of Compact modeling of junctionless nanowire MOSFETs

MOS-AK Venice 2014/9/26 1

Compact modeling of junctionless nanowire

MOSFETs

B.Iñiguez, O. Moldovan, F.Lime,

URV, DEEEA [email protected]

MOS-AK Venice 2014/9/26

2

Outline l  Introduction l  Drain current and charge models in depletion l  Drain current and charge models in

accumulation l  Unified drain current model l  Capacitance model l  Results l  Conclusion

MOS-AK Venice 2014/9/26

3

Importance of the Junctionless Transistors

l  Do not need source and drain junctions[1,2] • EASY to down-scale • EASY to fabricate

LETI’s JLT Nanowire (FinFET)

[1] J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain et al.Nanowire transistors without junctionsNat Nanotechnol, 5 (2010), pp. 225–229 [2] C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, J.P. Colinge Junction-less multigate field-effect transistor Appl Phys Lett, 94 (2009), p. 053511

MOS-AK Venice 2014/9/26

4 4

Junctionless Transistors

l  Implementation in integrated circuits is NECESSARY

•  NEED of compact models adequate for circuit simulators • better computation speed

l  Circuit design requires a complete small-signal model •  analytical expressions of total capacitances

MOS-AK Venice 2014/9/26

5

Junctionless SGT l  Allows excellent control of the channel

charge in the Si film l  Total charges and analytical intrinsic

capacitance expressions for J-SGT are presented for the first time

Simulation of a J-SGT Schematics of a J-SGT

MOS-AK Venice 2014/9/26

6

Electrostatic analysis

Parabolic potential approximation

This leads to:

MOS-AK Venice 2014/9/26

7

Drain Current and Charge Models

l  Depletion mode

eq

m

cp

m

cp

dopox

dopg

QQ

QQ

QQ

t

VCQ

V+⎟⎟⎠

⎞⎜⎜⎝

⎛=+

−+

ln

*

φ

meqm

dQQQ

tdV ⎟⎟⎠

⎞⎜⎜⎝

⎛+−=11

φ

dVQLRI

DSV

mdsdep ∫=0

2 µπ

d

s

d

s

QQ

eq

mmm

Q

Q eqmmdsdep Q

QQtLRdQ

QQQt

LRI ⎟

⎟⎠

⎞⎜⎜⎝

⎛+=⎟

⎟⎠

⎞⎜⎜⎝

⎛+−= ∫ 2

2112 2

φµπ

φµπ

MOS-AK Venice 2014/9/26

8

Drain Current and Charge Models

l  Depletion mode

( ) dVQI

RdxQRQDSV

mdsdep

L

mtotdep ∫∫ −=−=0

22

0

22 µππ

( ) d

s

QQ

eq

mm

dsdeptotdep Q

QQt

IRQ ⎟

⎟⎠

⎞⎜⎜⎝

⎛+=32

232

2 φµ

π

meqmeq

smsm

Q

Qm

dsdepm

L

Ddep dQQQQ

QQQQQ

LItRdxQ

LxRQ

d

s

⎟⎟⎠

⎞⎜⎜⎝

⎛+⋅⎟

⎟⎠

⎞⎜⎜⎝

⎛ −+−

−=−= ∫∫

112

)2(222

22

223

0

φµππ

DdeptotdepSdep QQQ −=

MOS-AK Venice 2014/9/26

9

Drain Current and Charge Models

l  Accumulation Mode

tCQ

QQQ

t

VCQ

V

ox

m

cpdop

mox

dopg

φφ+⎟⎟⎠

⎞⎜⎜⎝

⎛=

−+ 2*

ln

moxm

dQtCQ

tdV ⎟⎟⎠

⎞⎜⎜⎝

⎛+−=

φφ

12

d

s

QQ

ox

mmdsacc tC

QQt

LRI ⎟⎟

⎞⎜⎜⎝

⎛+−=

φφ

µπ2

22 2

MOS-AK Venice 2014/9/26

10

Drain Current and Charge Models

l  Accumulation Mode

( ) d

s

QQ

ox

mm

dsacctotacc tC

QQtI

RQ ⎟⎟⎠

⎞⎜⎜⎝

⎛+=

φφ

µπ

32

322

moxmox

smsm

Q

Qm

dsaccm

L

Dacc

dQtCQtC

QQQQQ

LItRdxQ

LxRQ

d

s

⎟⎟⎠

⎞⎜⎜⎝

⎛+⋅⎟⎟

⎞⎜⎜⎝

⎛ −+−

−=−=

φφ

φµππ

122

)(2

)2(2

222

2

223

0

DacctotaccSacc QQQ −=

MOS-AK Venice 2014/9/26

11

Unified Drain Current Model

l  An approximate solution of:

MOS-AK Venice 2014/9/26

12

Unified Drain Current Model

With A=1,425

MOS-AK Venice 2014/9/26

13

Intrinsic Capacitance Model

l  The complete capacitance model = sum of

capacitances in depletion and accumulation modes sewed together by a tanh function

jiVQ

QQ

VQ

C

jiVQ

QQ

VQ

C

j

j

j

accidep

j

accidepaccijdep

j

j

j

accidep

j

accidepaccijdep

=∂

∂=

∂=

≠∂

∂−=

∂−=

.

.

///

///

( )[ ] ( )[ ]⎟⎟⎠

⎞⎜⎜⎝

⎛ +−+⎟⎟⎠

⎞⎜⎜⎝

⎛ +−=

221tanh1

221tanh1 ** qqV

CqqV

CC gijacc

gijdepij

MOS-AK Venice 2014/9/26

14

ATLAS simulations vs MODEL

Comparison of the modeled I-V characteristics with TCAD simulations

MOS-AK Venice 2014/9/26

15

ATLAS simulations vs MODEL

Comparison of the modeled I-V characteristics with TCAD simulations for different values of the gate oxide

MOS-AK Venice 2014/9/26

16

ATLAS simulations vs MODEL

-0.5 0 0.5 1 1.5 2 2.5 3-2

0

2

4

6

8

10

12

14

16 x 10-17

VGS [V]

Capa

citan

ce [F

]

CDS

CGS

CGD

CDD

Ndop

=1x1019cm-3

VDS

=0.05VR=5nmtox

=5nmL=1um

----------- Model results Symbol- Atlas simulations

-0.5 0 0.5 1 1.5 2 2.5 3-5

0

5

10

15

20 x 10-17

VGS [V]

Capa

citan

ce [F

]

CGS

CGD

CDS

CDD

Ndop=1x1019cm-3

VDS=1VR=5nmtox=5nmL=1um

----------- Model resultsSymbol- Atlas simulations

By computing four out of the nine possible intrinsic capacitances we can, afterwards, calculate the other five

MOS-AK Venice 2014/9/26

17

ATLAS simulations vs MODEL

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 10-16

VDS [V]

Capa

citan

ce [F

]

CGD

CDD

CDS

CGS

----------- Model resultsSymbol- Atlas simulations

Ndop

=1x1019cm-3

VGS

=2V R=5nm t

ox=5nm

L= 1um

-0.5 0 0.5 1 1.5 2 2.5 3-2

0

2

4

6

8

10

12

14

16x 10-17

VGS

[V]

Capac

itance

[F] C

DD

CDS

CGS

=CGD

Ndop

=1x1019cm-3

VDS

=0VR=5nmtox

=5nmL=1um

----------- Model results Symbol- Atlas simulations

0/0 Instability d

dgg V

QRLC∂

∂−= π2

DSSDDDSSDGSGGDGSgg CCCCCCCCC 663·32222 −=−=======

MOS-AK Venice 2014/9/26

18

CGG =CGS+CGD for R=5nm and R=10nm

l  R=5nm–no ‘distorsions’ l  similar capacitance curve as for inversion transistors l  R=10nm – see ‘distorsions’

-2 -1 0 1 2 30

1

2

3

4

5

6 x 10-16

VGS [V]

CG

G [

F]

Ndop=1x1019cm-3

VDS=1Vtox=5nmL=1um

- Model results for R=5nm---Model results for R=10nm Symbol- Atlas simulations

Vth

VFB VFB

Vth

MOS-AK Venice 2014/9/26

19

-2 -1 0 1 2 30

0.5

1

1.5

2

2.5

3

3.5x 10-16

VGS [V]

C GG [F

]

--- Model results Ndop=2x1019cm-3

-Model results Ndop=4x1019cm-3

Symbol- Atlas simulations

VDS=1VR=5nmtox=5nmL=1um

CGG for different Ndop

As Vth becomes more negative, the transition part becomes

more visible

Which is the optimum Si thickness versus doping combination???

MOS-AK Venice 2014/9/26

20

Advantages of our model

l  Explicit and anlaytic l  Very simple and easy to implement l  Reproduces well the two different conduction

modes: accumulation & depletion l  Good agreement with 3D numerical

simulations l  Some limitations, but not regarding a real

device

MOS-AK Venice 2014/9/26

21

Thank you for your attention!