Comp flow lec 081119 - University of Pittsburgh · 160914_B_ST0_ST_new.jo Layout_cells_D256_SP...

44
Lisa Borghesi Associate Professor of Immunology Director, Unified Flow Core FLOWvergnügen the power and pleasure of flow cytometry!

Transcript of Comp flow lec 081119 - University of Pittsburgh · 160914_B_ST0_ST_new.jo Layout_cells_D256_SP...

  • Lisa BorghesiAssociate Professor of Immunology

    Director, Unified Flow Core

    FLOWvergnügenthe power and pleasure of flow cytometry!

  • Intro to Computational Flow Outline

    Cytometry technologiesconventional

    spectralCyTOF

    Power of algorithmic approachesunbiased, high-dimensional

    access algorithms at Pittprinciples of algorithmic operations

  • Unified Flow Core Website

  • Conventional flow cytometry“one detector, one color”

    PMT 1

    PMT 2

    PMT 5

    PMT 4

    DichroicFilters

    BandpassFilters

    Laser

    Flow cell

    PMT 3

    forwardscatter

    Sample

  • From Practical Flow Cytometry Third Edition, Howard M. Shapiro p.164.

    Spectral Overlap

  • Our high speed analyzers

    3 Cytek Auroras= spectral

    3 BD LSRFortessa, 2 BD LSRII= conventional

  • Spectral flow cytometry: Cytek Aurora

    collect ALL of the light àincreased sensitivity

    discriminate fluors with overlapping spectra à not

    possible with conventional flow cytometry

    48 channels

  • FACSAntibodies labelled

    with fluorochromes

    CyTOFAntibodies labelled with

    elemental isotopes

    Conventional cytometry, 10-15 colors; beyond that

    gets tough

    Spectral technologies = game changer, 48

    channels

    40-50 parameters in a single tube

    Ex. gadolinium (Gd), samarium (Sm), terbium

    (Tb), thorium (Th), ytterbium (Yb)

    Spectral cytometry rivals CyTOF

  • Advantages of Full Spectrum Flow Cytometry over CyTOF

    • SPEED, flow cytometry is high-throughput at >35,000 cell/s while CyTOFprocesses at one-tenth this rate (

  • Power of Algorithmic Analysis

  • Power of Algorithmic Analysis

    High-dimensional analysis – Human brain is not so hot at >3 dimensions. What does 18 dimensional data (18 color) even look like in high dimensional space?

    Highlight patterns in the data – Manual analysis with a plethora of iterative bivariate plots is highly inefficient.

    Facilitates population discovery – Meaningful populations can overlooked b/c biases and a priori knowledge dictate analysis.

    Automated/more unbiased – Manual analysis is subjective and biased.

    Fun!

  • spleen

    blood

    ILN

    MLN

    colon

    LLN

    jejunum

    Creating a Human B cell Atlas

    BM

    CD19CD27CD38CD138IgMIgDIgGCD10CD95

    CD45RBCD69CD21CD200CD218aCD370etc.

    ERK/MAPKS6AKTmTORstat3zbtb32bach2

    30+ donors

  • Courtesy: Florian Weisel

    A day in the life of a FlowJo analyst

    Donor 1, Tissue 1

  • D256 various samples – subsets CD45RB/ CD69

    Naive B cellsCD21+ CD27-

    atypical B cellsCD21- CD27-

    classical MBCCD21+ CD27+

    activated MBCCD21- CD27+

    CD27

    CD21

    D256_SP D256_B D256_Col D256_T

    160914_B_ST0_ST_new.jo Layout_cells_D256_SP

    20.09.2016 11:34 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105

    0102

    103

    104

    105

    6.23

    89.2

    0 102 103 104 105

    0102

    103

    104

    105

    8.34

    88.8

    160914_B_ST0_ST_new.jo Layout_cells_D256_B

    20.09.2016 11:35 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105: CD27

    0102

    103

    104

    105

    : C

    D21

    2.93

    96.4

    0 102 103 104 105: CD27

    0102

    103

    104

    105

    : C

    D21

    7.96

    90.4

    160902_gut_ST0_STnew.jo Layout_cells_D256_Col

    20.09.2016 10:09 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105: CD27

    0102

    103

    104

    105

    : C

    D21

    3.4

    96.3

    0 102 103 104 105: CD27

    0102

    103

    104

    105

    : C

    D21

    5.36

    94.3

    160713_LS_screen.jo Layout: diff B cells

    20.09.2016 11:44 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105

    0102

    103

    104

    105

    2

    97.3

    0 102 103 104 105

    0102

    103

    104

    105

    7.35

    91.4

    160914_B_ST0_ST_new.jo Layout: D256_SP_CD45RB_CD69_diffBcells

    20.09.2016 11:27 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105

    0102

    103

    104

    105

    2.61 1.84

    11.284.3

    0 102 103 104 105

    0102

    103

    104

    105

    3.05 3.71

    7.3885.8

    0 102 103 104 105

    0102

    103

    104

    105

    22.6 32.6

    2420.7

    0 102 103 104 105

    0102

    103

    104

    105

    48.3 13.3

    7.131.4

    160914_B_ST0_ST_new.jo Layout: D256_B_CD45RB_CD69_diffBcells

    20.09.2016 11:26 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105: CD69

    0102

    103

    104

    105

    : CD4

    5RB

    4.08 0.0227

    0.22795.7

    0 102 103 104 105: CD69

    0102

    103

    104

    105

    : C

    D45R

    B

    2.98 0

    1.9995.3

    0 102 103 104 105: CD69

    0102

    103

    104

    105

    : CD4

    5RB

    82.9 0.286

    0.15916.6

    0 102 103 104 105: CD69

    0102

    103

    104

    105

    : CD4

    5RB

    40.1 0.361

    0.36158.5

    160902_gut_ST0_STnew.jo Layout: CD45RB_CD69_diffBcells_D256_Col

    20.09.2016 10:04 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105: CD69

    0102

    103

    104

    105

    : CD4

    5RB

    5.45 2.89

    9.2282.4

    0 102 103 104 105: CD69

    0102

    103

    104

    105

    : CD4

    5RB

    14.8 22.7

    18.244.3

    0 102 103 104 105: CD69

    0102

    103

    104

    105

    : CD4

    5RB

    11.2 73.7

    11.63.55

    0 102 103 104 105: CD69

    0102

    103

    104

    105

    : CD4

    5RB

    16.4 57.2

    15.410.9

    160713_LS_screen.jo Layout: D256_T_CD45RB_CD69

    20.09.2016 11:40 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105

    0102

    103

    104

    105

    6.13 3.22

    12.678.1

    0 102 103 104 105

    0102

    103

    104

    105

    8.57 5.99

    9.0876.5

    0 102 103 104 105

    0102

    103

    104

    105

    30.1 39

    18.112.8

    0 102 103 104 105

    0102

    103

    104

    105

    36.1 41.7

    11.310.9

    CD69

    CD45

    RB

    Courtesy:Nadine Weisel

  • D256 various samples – IgG/ IgM distribution in B cell populations160914_B_ST0_ST_new.jo Layout_cells_D256_SP

    20.09.2016 11:34 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105

    0102

    103

    104

    105

    6.23

    89.2

    0 102 103 104 105

    0102

    103

    104

    105

    8.34

    88.8

    160914_B_ST0_ST_new.jo Layout_cells_D256_B

    20.09.2016 11:35 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105: CD27

    0102

    103

    104

    105

    : C

    D21

    2.93

    96.4

    0 102 103 104 105: CD27

    0102

    103

    104

    105

    : C

    D21

    7.96

    90.4

    160902_gut_ST0_STnew.jo Layout_cells_D256_Col

    20.09.2016 10:09 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105: CD27

    0102

    103

    104

    105

    : C

    D21

    3.4

    96.3

    0 102 103 104 105: CD27

    0102

    103

    104

    105

    : C

    D21

    5.36

    94.3

    160713_LS_screen.jo Layout: diff B cells

    20.09.2016 11:44 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105

    0102

    103

    104

    105

    2

    97.3

    0 102 103 104 105

    0102

    103

    104

    105

    7.35

    91.4

    160914_B_ST0_ST_new.jo Layout: D256_SP_IgG_IgM_diffBcells

    20.09.2016 11:25 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105

    0102

    103

    104

    105

    5.48 1.38

    71.821.2

    0 102 103 104 105

    0102

    103

    104

    105

    2.06 2.82

    74.220.9

    0 102 103 104 105

    0102

    103

    104

    105

    43.4 0.684

    26.829.1

    0 102 103 104 105

    0102

    103

    104

    105

    40.8 3.79

    34.321.1

    160914_B_ST0_ST_new.jo Layout: D256_B_IgG_IgM_diffBcells

    20.09.2016 11:23 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105: IgM

    0102

    103

    104

    105

    : I

    gG

    0.128 1.31

    95.82.75

    0 102 103 104 105: IgM

    0102

    103

    104

    105

    : I

    gG

    1.24 7.44

    81.69.93

    0 102 103 104 105: IgM

    0102

    103

    104

    105

    : I

    gG

    8.01 1.4

    68.522.1

    0 102 103 104 105: IgM

    0102

    103

    104

    105

    : I

    gG

    20.6 14.1

    32.132.5

    160902_gut_ST0_STnew.jo Layout: IgG_IgM_diffBcells_D256_Col

    20.09.2016 10:06 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105: IgM

    0102

    103

    104

    105

    : I

    gG

    1.04 0.12

    79.219.7

    0 102 103 104 105: IgM

    0102

    103

    104

    105

    : I

    gG

    9.09 0

    31.859.1

    0 102 103 104 105: IgM

    0102

    103

    104

    105

    : I

    gG

    9.47 0.0999

    29.660.8

    0 102 103 104 105: IgM

    0102

    103

    104

    105

    : I

    gG

    15 0

    11.773.2

    160713_LS_screen.jo Layout: D256_T_IgG_IgM

    20.09.2016 11:39 Uhr Page 1 of 1 (FlowJo v9.7.6)

    0 102 103 104 105

    0102

    103

    104

    105

    2.5 2.39

    64.530.6

    0 102 103 104 105

    0102

    103

    104

    105

    8.46 1.7

    61.128.9

    0 102 103 104 105

    0102

    103

    104

    105

    34.9 1.89

    30.432.8

    0 102 103 104 105

    0102

    103

    104

    105

    44.5 0.655

    17.237.6

    D256_SP D256_B D256_Col D256_T

    Naive B cellsCD21+ CD27-

    atypical B cellsCD21- CD27-

    classical MBCCD21+ CD27+

    activated MBCCD21- CD27+

    CD27

    CD21

    IgM

    IgG

    Courtesy:Nadine Weisel

  • Problem: how do you visualize millions of cells marked by a rainbow of colors in order to establish the underlying structure or principles of organization?

    Solution: take high-D spaces and embed this information into low-D spaces that our brains can understand

    à algorithms identify local patterns and global patterns that our brains may miss when performing manual analysis via iterative pairwise plots

  • D182 D205 D243D256 D269

    Blood

    D181D182 D205 D243D256

    SPL

    BM

    merge

    merge

    merge

    manual gateoverlaysindividual donors

    D193 D260D182 D205 D215 D246D256

    D164

    2K10K 2K 2K 2K 2K

    2K12K 2K 2K 2K 2K

    2K14K 2K 2K 2K 2K 2K 2K

    2K

    Donor distance:

    D181

    D182

    D205

    D243

    D256

    D18

    1

    D18

    2

    D20

    5

    D24

    3

    D25

    6

    D164D182D205D243D256D269

    D16

    4D

    182

    D20

    5D

    243

    D25

    6D

    269

    D182D193D205D215D246D256D260

    D18

    2D

    193

    D20

    5D

    215

    D24

    6D

    256

    D26

    0

    BMBloodSPL

    Naive BASCMBC IgM+MBC IgG+MBC swAg-exper. IgG+Ag-exper. sw

    Unbiased analysis of across-donor heterogeneity

  • -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    Blood BM SPL T LLN Col

    D260

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    -40 -30 -20 -10 0 10 20 30 40bh-SNE1

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    bh-SNE2

    D256

    merge

    Naive BASCMBC IgM+IgD-MBC IgD+MBC swAg-exper. sw

    manual gating

    Tissue-specific B cell signatures

  • t-SNE FlowSOMSPADE

    Algorithm Overview

    CD19CD27IgDIgMCD38CD21

    CD45RBCD69CD200CD218aCD370

    star chart

    CITRUS

    PhenoGraph

    Single cell resolution Tree of relationships

    Automated population identification

    Tree of relationships

  • Computational algorithms

    Kimball 2017 JI

    Choosing an Algorithm

  • Algorithms on site, actually free or basically free

    1) FlowJo v.10+: t-SNE, SPADE, FlowMeans ($200/yr site license)

    2) Cyt package: viSNE, PhenoGraph, Wishbone, Wanderlust, PCA, K-means, other statistical tools (free for faculty and students and $100/yr for everyone else)

    3) SPADE http://pengqiu.gatech.edu/software/SPADE/ (free)

    4) ExCYT https://github.com/sidhomj/ExCYT (free)

    5) High performance cluster: viSNE, SPADE (free)

    see supplemental slides at end of ppt for instructions on #2-5

  • Commercial Options

    Cytobank: viSNE, SPADE, CITRUS, Sunburst; FlowSOM beta ($1,500/yr/user) www.cytobank.org

    FCS Express: t-SNE, SPADE, K-means, PCAalso handles raw image files from the ImageStream($234-500/yr/license) www.denovosoftware.com

  • t-SNE – dimensionality reduction algorithm

    Goal: find a low dimensional visualization that best reflects population structure in high dimensional space

    à colloquially, get a feel for how objects are arranged in data space

    tSNE_X

    tSN

    E_Y

    Laurens van der Maaten explains t-SNE (UCSD seminar) – fun and informative!!

    https://www.youtube.com/watch?v=EMD106bB2vY

  • PCA Swiss roll problem

    • Principal Components Analysis (PCA) preserves large pairwise distances• Euclidean distance between two points on the Swiss roll does not

    accurately reflect local structure

    Why not just use PCA?

  • t-SNE preserves local distances and global distances

    Amir 2013 Nature Biotech, Suppl.

    PCA tSNE

  • High-D data space. Draw Gaussian bell (circle) around data point. Measure density of all other points relative to that Gaussian bell, and establish probability distribution that represents their similarity. Computes local densities to get a distribution of pairs of points. à Pij

    Low-D 2D map. Repeat above. à Qij

    Mathematically minimize P||Q difference. Zero would be if two points were the same.

    t-SNE operation

  • Barnes-Hut Modification of t-SNE (bh-SNE)

  • t-SNE

    Advantages

    • single cell information

    • non-linear assumptions (as opposed to PCA)

    • preserves local and global structure

    Limitations• computationally expensive; obligate downsampling means data are discarded

    • plot axes are arbitrary and have no intrinsic meaning

    • no population identification; follow up approaches required to assign identity

    to clusters and cells

    • distance between clusters is not meaningful; no hierarchy

    tSNE_X

    tSN

    E_Y

  • SPADE: Hierarchical clustering algorithm

    Goal: organize cells into a hierarchy using unsupervised approaches

    à colloquially, generate a tree of relationships

    spanning tree progression of density normalized events

    Output minimal spanning tree (MST) highlights the relationships between most closely related cell type clusters

  • SPADE

    SPADE views data as a cloud of points (cells) where the dimensions = # markers

    Density-dependent downsamplingto equalize density in different parts of cloud, ensures rare cells not lost

    Agglomerative clustering based on marker intensity

    Connect clusters in minimal spanning tree that best reflects geometry of the original cloud

    Upsampling, map each cell in the original data set to the clusters

  • SPADE

    Advantages

    • rare pops preserved through density-dependent downsampling

    • enables visualization of continuity of phenotypes

    • can combine data sets that share common markers, and then co-map

    any markers unique to each data set (see orig. paper)

    Limitations

    • loss of single cell information

    • user chooses cluster number

    • MSTs are non-cyclic and paths can be artificially split

    SPADE

    t-SNE

  • PhenoGraph

    Goal: automated partitioning of high-dimensional single-cell data into subpopulations

    à colloquially, map nearest neighbors

  • PhenoGraph

    First order relationship – find the k nearest neighbors for each cell using Euclidean distance

    Second order relationships – cells with shared neighbors should be placed near one another

    Third, identify communities – Louvain method that measures the density of edges inside communities to edges outside communities

  • PhenoGraph: Number of neighbors

    Neighbors = 5 Neighbors = 30 Neighbors = 200

  • Manual gate overlays PhenoGraph

    Naive BASCMBC (total)Ag-exper.

    PhenoGraph – population discovery

  • PhenoGraph

    Advantages

    • opportunity for population discovery

    • can resolve subpopulations as rare as 1 in 2000 cells

    • robust to cluster shape (e.g., need not be spherical)

    Limitations• user specifies number of neighbors

    • ideal cluster number, or biologically relevant cluster number, is largely

    unconstrained

  • Harinder Singh, PhD

    • 2 Cytek Aurora instruments + computational flow toolset

    • algorithms installed on HPC

    • Center for Systems Immunology (CSI)

    • harness newly emerging experimental and computational approaches

    • programmatic analysis pipelines

    Looking Forward

  • 2019 Cytometry Bootcamp

    AugustIntro to Flow Cytometry - Tue, August 6, 10-12pm E1095Intro to Computational Flow Cytometry - Mon, August 12, 10-11am E1095Algorithm Installation - Tue, August 20, 10-11am E1095

    SeptHelp Session for Computational Flow Cytometry - Tue, Sept 10, 10:30-11:30am E1095Basic Flow Cytometry Panel Design - Thu, September 26, 9:30-10:30am E1095

    OctAurora Advanced Panel Design - Wed, October 9, 9-10am W1039Intro to Computational Flow Cytometry - Thu, November 7, 9-10am E1095

    NovAlgorithm Installation - Mon, November 11, 3-4pm E1095Help Session for Computational Flow Cytometry - Thu, November 21, 9-10am E1095

  • Acknowledgements

    Dewayne FalknerDirector of Operations

    Aarika MacIntyreSenior Technologist

    Ailing LiuApplications Specialist

    Unified Core, BoardMark ShlomchikFadi LakkisMark GladwinLarry MorelandJohn McDyer

    Center for Research ComputingKim Wong

    Nan ShengCore Technician

    Heidi GunzelmanSenior Flow Cytometry Specialist

  • ResourcesUseful starting places - reviews1. Kimball AK, Oko LM, Bullock BL, Nemenoff RA, van Dyk LF, Clambey ET. A Beginner's Guide to Analyzing and

    Visualizing Mass Cytometry Data. J Immunol. 2018 Jan 1;200(1):3-22.2. Saeys Y, Gassen SV, Lambrecht BN. Computational flow cytometry: helping to make sense of high-dimensional

    immunology data. Nat Rev Immunol. 2016 Jul;16(7):449-62.3. Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C, Becher B. The end of gating? An introduction to automated

    analysis of high dimensional cytometry data. Eur J Immunol. 2016 Jan;46(1):34-43.4. Chester C & Maecker HT. J Immunol. 2015 Aug 1;195(3):773-9. doi: 10.4049/jimmunol.1500633. Algorithmic Tools

    for Mining High-Dimensional Cytometry Data. J Immunol. 2015 Aug 1;195(3):773-9.

    Original application of algorithms1. Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK.

    Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011 Oct 2;29(10):886-91. SPADE

    2. Amir el-AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe'er D. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Amir el-AD, Davis KL, 3. Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe'er D. Nat Biotechnol. 2013 Jun;31(6):545-52. viSNE

    3. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir el-AD, Tadmor MD, Litvin O, Fienberg HG, Jager A, ZunderER, Finck R, Gedman AL, Radtke I, Downing JR, Pe'er D, Nolan GP. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell. 2015 Jul 2;162(1):184-97. PhenoGraph

    4. Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP. Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):E2770-7. CITRUS

    5. Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P, Choi K, Bendall S, Friedman N, Pe'er D. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol. 2016 Jun;34(6):637-45. Wishbone

    6. Bendall SC, Davis KL, Amir el-AD, Tadmor MD, Simonds EF, Chen TJ, Shenfeld DK, Nolan GP, Pe'er D. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2014 Apr 24;157(3):714-25. Wanderlust

  • Install Cyt3 on Your Personal ComputerviSNE, PhenoGraph, (Wanderlust, Wishbone, and more)

    1. Install Matlab from my.pitt.edu software downloads• Free for students and teaching faculty• Everyone else, $100/yr license

    2. Install Cyt3, obtain installer from Unified Flow CoreMac People – Cyt3 installer for MacWindows People – Master Cyt3 installer, bh_tsne_win64 file

    • Then, in the Cyt3 à src à 3rdparty à bh_tsne folder remove bh_tsne_mac64 and replace with bh_tsne_win64

    3. Follow CyTutorial ppt instructions provided by installer to perform analysis• CyTutorial instructions lean toward the skeletal• implementation can be tricky• no longer supported by developer Dana Pe’er

    viSNE

    Amir et al. Nat Biotechnol. 2013 Jun;31(6):545-52

  • Install SPADE 3.0 on Your Personal Computer

    Easy to install and use!

    1. For Mac or Windows2. Stand-alone (or via Matlab)3. Great instructions provided at URL4. Supported by developer Peng Qiu

    http://pengqiu.gatech.edu/software/SPADE/

    Qiu et al. Nat Biotechnol. 2011 Oct 2;29(10):886-91

  • ExCYT

    • interactive gating• gate directly on tSNE plots• tSNE and then re-tSNE on gated subsets• novel high-dimensional flow plots

    Manuscript & video:https://www.jove.com/video/57473/excyt-graphical-user-interface-for-streamlining-analysis-high?status=a59479k&fbclid=IwAR2i0i-M51YhAkrEermEwtpinvPLPccc_n88pXmrfZPwhhu9tZLbZTzvQuA

    Software:https://github.com/sidhomj/ExCYT

    https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.jove.com%2Fvideo%2F57473%2Fexcyt-graphical-user-interface-for-streamlining-analysis-high%3Fstatus%3Da59479k%26fbclid%3DIwAR2i0i-M51YhAkrEermEwtpinvPLPccc_n88pXmrfZPwhhu9tZLbZTzvQuA&data=02%7C01%7Cborghesi%40pitt.edu%7C90fd12c6477440e018b808d65addcbc0%7C9ef9f489e0a04eeb87cc3a526112fd0d%7C1%7C0%7C636796305975445391&sdata=X6LbX0ZaywG0l2eJMzwbtZ2YyX0nqH9z3bdM8%2F0U9xE%3D&reserved=0https://github.com/sidhomj/ExCYT

  • ExCYT