Combustion 

7
Lecturer: Ram Chandra Sapkota | Note prepared by Surya Narayan Mandal 1 Combustion Combustion is a chemical process in which a substance reacts rapidly with oxygen and gives off heat. The original substance is called FUEL, and the source of oxygen is called the OXYDISER. For combustion FUEL, OXYDISER and HEAT must be present. As a result of combustion EXHAUST are created and HEAT are produced. We can control or stop the combustion by controlling the amount of fuel or the amount of oxygen or source of heat. Reactants are the components that exist before the reaction of a combustion process. Products are the components that exist after the reaction. Why study Combustion? 1. Production and reduction of hostile fires which annually kill over thousands of people and leave many thousands more with life long physical and psychological scars. 2. Reduction of harmful liquid waste matter which are slowly but surely damaging the civilization that grew to depend on combustion. 3. It promotes to design of efficient and safe furnace to dispose wastes. 4. It lets us to improve efficiency of chemical energy resources. 5. Innovation methods to extract energy from sources which are uneconomical before. Stoichiometry Stoichiometry air is the quantity of air required to burn a unit quantity of fuel completely with no oxygen appearing in the product of combustion. Air contains oxygen by mass 23.2% and by volume 21%. Also air contains Nitrogen by mass 76.8% and by volume 79%. Stoichiometric Combustion Equations: Take an example of combustion of carbon with oxygen

Transcript of Combustion 

Lecturer: Ram Chandra Sapkota | Note prepared by Surya Narayan Mandal 

1

Combustion Combustion  is a chemical process  in which a substance reacts rapidly with oxygen and gives off heat. The original substance  is called FUEL, and the source of oxygen  is called the OXYDISER. For combustion FUEL, OXYDISER and HEAT must be present. As a result of combustion EXHAUST are created and HEAT are produced. We can control or stop the combustion by  controlling  the  amount of  fuel or  the  amount of oxygen or  source of heat.   Reactants are the components that exist before the reaction of a combustion process.   Products are the components that exist after the reaction.  Why study Combustion? 

1. Production and reduction of hostile fires which annually kill over thousands of people and leave many thousands more with life  long physical and psychological scars. 

2. Reduction of harmful liquid waste matter which are slowly but surely damaging the civilization that grew to depend on combustion. 

3. It promotes to design of efficient and safe furnace to dispose wastes. 4. It lets us to improve efficiency of chemical energy resources. 5. Innovation methods to extract energy from sources which are uneconomical 

before. 

 Stoichiometry Stoichiometry air is the quantity of air required to burn a unit quantity of fuel completely with no oxygen appearing in the product of combustion.  Air contains  oxygen by mass 23.2% and by volume 21%. Also air contains Nitrogen by mass 76.8% and by volume 79%.  Stoichiometric Combustion Equations: Take an example of combustion of carbon with oxygen            

Lecturer: Ram Chandra Sapkota | Note prepared by Surya Narayan Mandal 

2

C   +   O2    =    CO2.      This is balanced equation.   Here carbon and oxygen are called reactants and CO2 is product. This is called Stoichiometric Combustion Equations.  Next Example: H2   +   O2      =   H2O.       This is unbalanced equation. 2 H2 +   O2        =    2 H2O.   This is balanced equation, which is called Stoichiometric Combustion Equations.  Third Example: C6H14      +         O2        =  CO2      +      H2O.       Which is unbalanced equation. 2 C6H14     +     19 O2     =  12 CO2  +  14 H2O.    Which is balanced equation which is called Stoichiometric Combustion Equations.  

Analysis on mass basis: Let us take an example.   2 H2 +   O2        =    2 H2O  This equation says that 4 mass of H2 combined with 32 mass of O2 to produce 36 mass of  H2O. i.e. 

1 mass of H2 + 8 mass of O2   = 9 mass of  H2O.  1 kg H2           + 8 kg O2   = 9 kg  H2O if unit is kg.  

Oxygen is combined in air and is 23.2%  by mass. So the 8 kg O2 = 8kg/0.232 = 34.5 kg air. It means N2 contains 34.5‐8 = 26.5 kg.  Analysis on volume basis:  It is based on Avogadro’s Law which states that “ equal volume of different gases at same temperature and pressure contain the same number of molecules”.     2 H2O  +  O2 = 2 H2O  That is,   

1 volume of H2 + 0.5 volume of O2= 1 volume of H2O.  

Lecturer: Ram Chandra Sapkota | Note prepared by Surya Narayan Mandal 

3

If the volume is derived in m3, 1 m3 H2 + 0.5 m

3 O2   = 1 m3 of H2O. 0.5/0.21    = 2.38 m3 air. 

 Amount of N2 = 2.38‐0.5 

=1.88 m3  N2.  Stoichiometric or theoretical air :‐  It is minimum amount of air which supplies the required amount of oxygen for complete combustion.  Molar Mass:‐ The mass of  one mole of a substance is called molar mass. It is assumed that the atmospheric air is the mixture of N2 and O2 in the mole ratio of 79:21. One mole of air represents 0.79 mole of N2 and 0.21 mole of oxygen. Now, 

Molar mass of N2   = 28 X 10‐3 kg. Molar mass of O2   = 32 X 10‐3 kg. Molar mass of air    = 0.79X28X10‐3 + 0.21X32X10‐3  

= 29X10‐3 kg.  

1 Kmol O2 + 3.76 Kmol N2 = 4.76 Kmol air 

 

Air‐ Fuel Ratio:‐  It is the ratio of the mass of air to the mass of fuel for a combustion process. That is  

 

   

 

 Where  

m = N X M = Number of moles X Molar Mass.   

 

Lecturer: Ram Chandra Sapkota | Note prepared by Surya Narayan Mandal 

4

Numerical Problems:  

1. Calculate the air‐fuel ratio required for burning of propane (C3H8) with 150% theoretical air.  Solution: The chemical equation for this chemical process can be written as  

      C3H8 +  5 O2  = 3CO2 + 4 H2O 

with 150% theoretical air, combustion equation becomes  

C3H8  +1.5 [5O2 + 5*3.76 N2]  = 3CO2 + 4 H2O + 2.5 O2 + 1.5*5*3.76 N2 

We have,  

  /  

  

           [1.5*5 + 1.5*5*3.76]Kmol*29 kg/Kmol       =  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐           [3*12 + 1*8]kg 

       = 23.53 kg air/kg fuel   

Problem.  2.Calculate stoichiometric air fuel ratio on mass basis and on molar basis for combustion of butane (C4H10).    Solution: The chemical equation for this chemical process can be written as        C4H10 + 6.5O2  + 6.5*3.76 N2 = 4 CO2 + 5 H2O + 6.5*3.76 N2  Mass Basis We see here that for complete combustion of butane 6.5 mole of O2 and 24.44 mole of N2 is to be supplied. 

Lecturer: Ram Chandra Sapkota | Note prepared by Surya Narayan Mandal 

5

Molar mass of air   = Molar mass of O2 + Molar mass  of N2  = 6.5 + 24.44  = 30.94 mole  

Thus stoichiometric AF = 30.94 mole air / mole of fuel  Molar Basis 

  /  

 

      = [30.94*29]kg/ (4*12+10)kg       = 15.45  Problem:  3.During combustion process , C3H15 is burnt with 130% theoretical air. Assuming the complete combustion determine the  

a) air fuel ratio b) equivalence  ratio c) composition of the product of combustion 

  Solution: The chemical equation for this chemical process can be written as  

C8H15 + 11.75 O2 = 8 CO2 + 7.5 H2O  with 130% theoretical air, combustion equation becomes  C8H15  + 1.3 [11.75 O2 + 11.75*3.76 N2]  = 8 CO2 + 7.5 H2O +(1.3*11.75‐11.75)O2 +         1.3*11.75*3.76 N2  We have,  

  /  

 

           [1.3*11.75 + 1.3*11.75*3.76]Kmol*29 kg/Kmol       =‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐           [8*12 + 1*15]kg 

Lecturer: Ram Chandra Sapkota | Note prepared by Surya Narayan Mandal 

6

     = 19 kg air/kg fuel 

b) Equivalence Ratio: It is ratio when C8H15 react with 100% air. Then, 

C8H15 + 11.75 O2 + 11.75*3.76 N2 = 8 CO2 + 7.5 H2O + 11.75*3.76 N2   

  /  

           [11.75 + 11.75*3.76]Kmol*29 kg/Kmol       =‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐           [8*12 + 1*15]kg 

    = 14.61 kg air/kg fuel  c) 

Total number of moles = 8+7.5+3.525+57.434  = 76.459 Percentage of CO2   = [8/76.459]*100     = 10.46% Percentage of H2O   = [7.5/76.459]*100     = 9.80% Percentage of O2   = [3.525/76.459]*100   = 4.61% Percentage of N2   = [57.434/76.459]*100   = 75.11% 

 Problem:  4.An unknown hydrocarbon is burnt with dry air. The volumetric analysis of the products on a dry basis is 12.5% CO2, 0.5% CO, 3% O2 and 84% N2.  Determine  

(a) Air‐Fuel ratio  (b) Percentage of the theoretical air used. 

 Solution: By considering 100 kmol of dry products the combustion equation can be written as 

CxHy + a(O2 + 3.76N2) =  12.5CO2+0.5CO+3O2+84N2+bH2O  For finding unknown values of x,y,a & b 

For N2    3.76a=84  or, a=22.34 For C    x= 12.5+0.5=13 For H    y= 2b For O2    a= 12.5+0.5/2 +3+b/2 or, 22.34=15.75+b/2 or, b=13.18 

Lecturer: Ram Chandra Sapkota | Note prepared by Surya Narayan Mandal 

7

 Putting value of b , we get  

Y = 26.36 The combustion equation became C13H26.36 +22.34(O2+3.76 N2)  =  12.5 CO2+0.5 CO+3O2+84 N2+13.18 H2O  (a) Air Fuel Ratio      

  /          

 

           [22.34 + 22.34*3.76]Kmol*29 kg/Kmol       =‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐           [13*12 + 26.36]kg 

    = 16.91 kg air/kg fuel   

(b)Percentage of theoretical air used  C13H26.36 + a (O2+3.76N2)    =  13CO2 + 13.18 H2O+a 3.76N2 For O2  a  = 13+13.18/2 

= 19.59  Now, theoretical air used 

mactual/ mtheoritical  =  (22.34*4.76)/(19.59*4.76) = 1.14 = 114% 

Thus 14% excess air was used.