Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile...

31
Combined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas Baumgartner Varun Reddy Thomas Bauschert Chair of Communication Networks Technische Universit¨ at Chemnitz October 2, 2015

Transcript of Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile...

Page 1: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Combined Virtual Mobile Core Network Function Placementand Topology Optimization with Latency bounds

Andreas BaumgartnerVarun Reddy

Thomas Bauschert

Chair of Communication NetworksTechnische Universitat Chemnitz

October 2, 2015

Page 2: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Overview

1 Introduction

2 Problem Formulation

3 Performance Evaluation

4 Summary

2 of 31

Page 3: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Overview

1 Introduction

2 Problem Formulation

3 Performance Evaluation

4 Summary

3 of 31

Page 4: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Introduction

Placement decisions for virtualized network functions in a fullyvirtualized mobile core network scenario:

4 of 31

Page 5: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Introduction

Mathematical optimization model:

� Find optimum topology for virtual mobile core network topology

� Find optimum embedding for virtual mobile core network

� Assure roundtrip time (RRT) delay bounds for service chains

VINO Project (BMBF funded)

Virtual Network Optimization

5 of 31

Page 6: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Overview

1 Introduction

2 Problem Formulation

3 Performance Evaluation

4 Summary

6 of 31

Page 7: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Problem StatementFind an optimum embedding with respect to embedding costs of thevirtual mobile core network on a physical substrate network

GoalMinimization of the overall link embedding costs and the costs forVNF placement on physical substrate nodes

7 of 31

Page 8: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Approach

Virtual core network topology not given, but subject to optimization

� Do not focus on the embedding of a fixed topology but on theembedding of multiple service chains where each service chaincomprises a single RAN traffic aggregation point (TAP) as trafficend point

� Mixed Integer Linear Programming Formulation

8 of 31

Page 9: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Considered LTE network functions and service chains

E-UTRAN EPC

S11

S1-MME

S1-U

S6

S5 SGi

MME

SGW PGW

HSS

IXP

TrafficAggregationPoint (TAP)

Control Plane Service Chain

User Plane Service Chain

S1-MME

S1-U

S5 SGi

Virtual SGW Virtual PGW Internet Exchange Point (IXP)

Virtual MME

S6

S11

Virtual HSS

������������������������������������

Virtual SGW

TrafficAggregationPoint (TAP)

9 of 31

Page 10: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Consider Delay caused by:

� Propagation: Depending on link length→ linear

� Packet Forwarding/Queueing: Depending on node’s traffic utilization→ Non-Linear, typically convex curve

� Processing: Depending on CPU utilization→ Non-Linear, typically convex curve

M/M/1 model assumed for convex delay

curve

0 10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

Node Utilisation (%)

Late

ncy

(ms)

M/M/1 Delayi=1i=2i=3i=4

10 of 31

Page 11: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Given input data

� Physical (substrate) network: Directed graph (Ns , Ls)

� Capacity c(ns1,ns2) of every physical link (ns1, ns2) ∈ Ls

� Set of traffic aggregation points T ⊆ Ns

� Processing/Storage/Switching capacity of every node ns ∈ Ns , cmns

(m ∈ {pro,stor,bdw})� Link costs per occupied bandwidth unit: cost(nsi , nsj ) for (nsi , nsj ) ∈ Ls

� Basic node costs cost(ns) for ns ∈ Ns

� Cost per occupied pro, sto, bdw unit at node ns :

cost(x , ns), ∀x ∈ {pro,stor,bdw}

11 of 31

Page 12: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Assumptions I

� Consider one virtual mobile core network for the embedding

� Single path routing

� Every node t ∈ T is a traffic aggregation point for RAN traffic with demand

dVNF,mt (VNF ∈ {SGW, PGW, IXP, MME, HSS},m ∈ {pro,stor,bdw}, t ∈ T )

� Only certain nodes are capable of hosting certain virtual network functionsVNF ∈ {SGW, PGW, IXP, MME, HSS}

suitVNFns =

{1 if VNF can be embedded on ns ,

0 else.

12 of 31

Page 13: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Assumptions II

� Convex delay curves

� αi , βi , γi , δi Linearization parameters for the convex delay curve� zpro, max

ns , zbdw, maxns Big constants

13 of 31

Page 14: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Variables I

� x t,VNFns ∀ns ∈ Ns ,VNF ∈ {SGW, PGW, IXP, MME, HSS}, t ∈ TBinary variable: True, if a virtual network function of type VNF isembedded on node ns for the traffic aggregation point t ∈ T

� ft,(VNF1,VNF2)(ns1,ns2)

∀t ∈ T , (ns1, ns2) ∈ Ls , (VNF1,VNF2) ∈{(TAB,SGW), (SGW,PGW), . . . }Binary variable: True, if the virtual link between (VNF1,VNF2) isembedded on the physical link (ns1, ns2) for the demand of trafficaggregation point t ∈ T

� z(ns1, ns2) Delay on the physical link from ns1 to ns2

14 of 31

Page 15: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Variables II

� z t,VNF,prons Delay caused by the processing of VNF for TAP t ∈ Ton the physical node ns

� z t,bdwns Delay caused by packet queueing for TAP t on thephysical node ns

� uprons , ubdwns Auxiliary variables for the utilization of the

processing/forwarding resources at the physical node ns

15 of 31

Page 16: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Objective FunctionMinimize:

a ·∑ns∈Ns

xns · cost(ns) + b ·∑ns∈Ns

∑t∈T

∑VNF∈Nv

∑x∈{pro,stor,bdw}

x t,VNFns · dVNF,x

t · cost(x , ns)

+ c ·∑

(ns1,ns2)∈Ls

cost(ns1, ns2) ·∑t∈T

∑(VNF1,VNF2)∈Lv

ft,(VNF1,VNF2)(ns1,ns2)

· d (VNF1,VNF2)t

16 of 31

Page 17: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Constraints I

∑ns∈Ns

x t,VNFns · suitVNFns = 1 ∀t ∈ T ,VNF ∈ Nv

x t,VNFns ≤ suitVNFns ∀t ∈ T , ns ∈ Ns ,VNF ∈ Nv

∑(w ,ns )∈Ls

∑t∈T

∑(VNF1,VNF2)∈Lv

ft,(VNF1,VNF2)(w ,ns )

· d (VNF1,VNF2)t ≤ cbdwns∑

t∈T

∑VNF∈Nv

x t,VNFns · dVNF,prot ≤ cprons∑

t∈T

∑VNF∈Nv

x t,VNFns · dVNF,stort ≤ cstorns ∀ns ∈ Ns

17 of 31

Page 18: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Constraints II

∑t∈T

∑(VNF1,VNF2)∈Lv

ft,(VNF1,VNF2)(ns1,ns2)

· d (VNF1,VNF2)t ≤ c(ns1, ns2) ∀(ns1, ns2) ∈ Ls

∑(ns1,w)∈Ls

ft,(VNF1,VNF2)(w ,ns1)

− ft,(VNF1,VNF2)(ns1,w) = x t,VNF1ns1 − x t,VNF2ns1

∀t ∈ T , ns1 ∈ Ns , (VNF1,VNF2) ∈ Lv

18 of 31

Page 19: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Constraints III

αi + βi · uprons ≤ z t,VNF,prons + (1− x t,VNFns ) · zpro,maxns

z t,VNF,prons ≤ zpro,maxns · x t,VNFns ∀ns ∈ Ns ,VNF, t ∈ T , i ∈ I

γi + δi · ubdwns ≤ z t,bdwns + (1− f tns ) · zbdw,maxns

z t,bdwns ≤ zbdw,maxns · f tns ∀ns ∈ Ns , t ∈ T , i ∈ I

19 of 31

Page 20: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Constraints IV

∑ns∈Ns

∑VNF∈Nv

z t,VNF,prons +∑

(ns1,ns2)∈Ls

∑lv∈Lv

f t,lv(ns1,ns2)· z(ns1, ns2) +

∑ns∈Ns

z t,bdwns ≤ duser

∀t ∈ T ,∀Nv , Lv

∑ns∈Ns

∑VNF∈Nv

z t,VNF,prons +∑

(ns1,ns2)∈Ls

∑lv∈Lv

f t,lv(ns1,ns2)· z(ns1, ns2) +

∑ns∈Ns

z t,bdwns ≤ dcontrol

∀t ∈ T ,∀Nv , Lv

20 of 31

Page 21: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Problem Formulation

Constraints V

x t,VNFns , xns , ft,(VNF1,VNF2)(ns1,ns2)

, f tns , xns ∈ {0, 1}

z t,VNF,prons , z t,bdwns ∈ R+ ∀t ∈ T ,VNF ∈ Nv , ns ∈ Ns , (VNF1,VNF2) ∈ Lv , (ns1, ns2) ∈ Ls

Nv = {TAP,SGW,MME,HSS,PGW,IXP}Lv = {(TAP,SGW), (SGW,TAP), (TAP,MME), (MME,TAP), (SGW,PGW), (PGW,SGW),

(SGW,MME), (MME,SGW), (PGW,IXP), (IXP,PGW), (MME,HSS), (HSS,MME)}

Nv = {TAP,SGW,PGW,IXP}

Lv = {(TAP,SGW), (SGW,TAP), (SGW,PGW), (PGW,SGW), (PGW,IXP), (IXP,PGW)}

Nv = {TAP,MME}, {MME,HSS}, {MME,SGW}

Lv = {(TAP,MME), (MME,TAP)}, {(MME,HSS), (HSS,MME)}, {(MME,SGW), (SGW,MME)}

21 of 31

Page 22: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Overview

1 Introduction

2 Problem Formulation

3 Performance Evaluation

4 Summary

22 of 31

Page 23: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Performance Evaluation

Performance Evaluation using network topology examples fromSNDlib

Considered Scenarios

� I: Given IXP nodes and givennodes for VNF placement

� II: Given IXP nodes, every nodecan host any type of VNF

� III: Every node can be IXP nodeand host any type of VNF

23 of 31

Page 24: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Performance Evaluation

Example: Nobel-EU network (28 nodes, 41 links)

� Node costs with respect of the GDP of the specific country

� Each node is assumed to be a traffic aggregation point (TAP)

� Traffic demand scales with number of Internet users in the specificcountry

� Different utilization scenarios realized by a global demand scaling factor k

� Signal propagation speed 0.67 · clight (fiber connections)

� Linearized M/M/1 delay curve for processing and switching (Centralbuffer model)

� Use of Python/CPLEX 12.5 on Intel i7-3930K CPU, 64Gbyte RAM

24 of 31

Page 25: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Performance Evaluation

VNF placement and TAP allocation example

P HMS

P HMS

PS

P HMS

P HMS

P HMS

P HMS

X

XAmsterdam

Frankfurt

Zagreb

Brussels

Budapest

Dublin

Copenhagen

Zurich

k = 3, dcontrol = duser = 25 ms

PS

XX

P HMS

P HMS

P HMS

P HMS

Copenhagen

Amsterdam

Brussels

London

Dublin

Zagreb

k = 3, dcontrol = duser = 50 ms

25 of 31

Page 26: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Performance Evaluation

Scenario I

0.5 1 1.5 2 2.50

10

20

30

40

50

Demand scaling factor k

Op

tim

alit

yG

ap(%

)

Fixed IXP and VNF placement locations

d = 25ms

d = 30ms

d = 40ms

d = 50ms

d = 60ms

0.5 1 1.5 2 2.50

2000

4000

6000

Demand scaling factor k

Com

pu

tati

onT

ime

(s)

Fixed IXP and VNF placement locations

d = 25ms

d = 30ms

d = 40ms

d = 50ms

d = 60ms

Optimality gaps and solution times for different demand scaling factors anddelay bounds, Scenario I.

26 of 31

Page 27: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Performance Evaluation

Scenario II

1 2 3 4 50

10

20

30

40

50

Demand scaling factor k

Op

tim

alit

yG

ap(%

)

Fixed IXP locations

d = 25ms

d = 30ms

d = 40ms

d = 50ms

d = 60ms

1 2 3 4 50

2000

4000

6000

Demand scaling factor k

Com

pu

tati

onT

ime

(s)

Fixed IXP locations

d = 25ms

d = 30ms

d = 40ms

d = 50ms

d = 60ms

Optimality gaps and solution times for different demand scaling factors anddelay bounds, Scenario II.

27 of 31

Page 28: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Performance Evaluation

Scenario III

1 2 3 4 50

10

20

30

40

50

Demand scaling factor k

Op

tim

alit

yG

ap(%

)

No restrictions for IXP/VNF placement

d = 25ms

d = 30ms

d = 40ms

d = 50ms

d = 60ms

1 2 3 4 50

2000

4000

6000

Demand scaling factor k

Com

pu

tati

onT

ime

(s)

No restrictions for IXP/VNF placement

d = 25ms

d = 30ms

d = 40ms

d = 50ms

d = 60ms

Optimality gaps and solution times for different demand scaling factors anddelay bounds, Scenario III.

28 of 31

Page 29: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Overview

1 Introduction

2 Problem Formulation

3 Performance Evaluation

4 Summary

29 of 31

Page 30: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Summary

MILP formulation for virtual mobile core network embedding

� Finding optimum virtual network topology together with it’s embeddingon a given physical substrate network

� Delay bounds are considered for each specific service chain and subchain

� Solvable in reasonable time with standard CPLEX settings for moderatenetwork sizes

30 of 31

Page 31: Combined Virtual Mobile Core Network Function Placement ... · PDF fileCombined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds Andreas

Summary

Ongoing work

� Consider robustness of VNF placement with respect to trafficvariation (robust optimization)

� Consider robustness of VNF placement with respect to substratenetwork failures (reliability)

� Develop mathematical model for service chain embedding withindata centers

� Consider control and user plane separation (SDN controllerplacement)

31 of 31