Combinational Logic Gates in CMOS - College of … · Combinational Logic Gates in CMOS ... np-CMOS...

49
Combinational Logic Gates in CMOS Prof. Kaushik Roy @ Purdue Univ. References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey © UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian EE216A Lecture Notes by Prof. K. Bult © UCLA

Transcript of Combinational Logic Gates in CMOS - College of … · Combinational Logic Gates in CMOS ... np-CMOS...

Combinational Logic Gates

in CMOS

Prof. Kaushik Roy

@ Purdue Univ.

References:

Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey © UCB

Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed.,

N. H. E. Weste and K. Eshraghian

EE216A Lecture Notes by Prof. K. Bult © UCLA

Improved Loads

Prof. Kaushik Roy

@ Purdue Univ.

Differential Cascade Voltage Switch Logic (DCVSL)

Example

Prof. Kaushik Roy

@ Purdue Univ.

Pass Transistor Logic

Prof. Kaushik Roy

@ Purdue Univ.

Pass-Transistor Logic

Prof. Kaushik Roy

@ Purdue Univ.

Switch

Network

A

B

B

B

• Reduced number of transistors

• No static power consumption

Pass Transistor Logic

Prof. Kaushik Roy

@ Purdue Univ.

F = Product Term

Control Signal

Pass

Signal

V

P

1 if

0 if

PV

P ZF

Basic Pass Transistor Logic Model

Prof. Kaushik Roy

@ Purdue Univ.

F = Sum of Products

Control Signals

Pass

Signals Vi

Pi

)()()( 2211 nn VPVPVPF

XNOR Gate

Prof. Kaushik Roy

@ Purdue Univ.

A

0

0

1

1

B

0

1

0

1

OUT

1

0

0

1

Pass Function

-A + -B

A + -B

-A + B

A + B

-A

A

-B

-B

Truth Table

B

Modified Karnaugh Map

0

1

-A

A

B

B

A

0 1

Boolean Function Unit

Prof. Kaushik Roy

@ Purdue Univ.

Operation

AND(A,B)

XOR(A,B)

OR(A,B)

NOR(A,B)

NAND(A,B)

P1

0

0

0

1

1

P2

0

1

1

0

1

P3

0

1

1

0

1

P4

1

0

1

0

0

NMOS-only switch

Prof. Kaushik Roy

@ Purdue Univ.

Problem: VB does not pull up to VDD, only to VDD - Vtn(body-effect)

Cannot completely turn off the PMOS transistor

Causes static power consumption

Solution 1

Prof. Kaushik Roy

@ Purdue Univ.

Transmission Gate

Transmission Gate Implementation

Prof. Kaushik Roy

@ Purdue Univ.

P1

P2

P3

P4

-B B -A A

-B

B

F(A,B)

P1

P2

P3

P4

-B B -A A

F(A,B)

Transmission Gate XNOR

Prof. Kaushik Roy

@ Purdue Univ.

OUT

-B

B

-A

A

A

Transmission Gate (Inverting) Multiplexer

Prof. Kaushik Roy

@ Purdue Univ.

AM2

M1

B

S

S

S F

VDD

GND

VDD

In1 In2 S S

S S

Transmission Gate XOR

Prof. Kaushik Roy

@ Purdue Univ.

Resistance of Transmission Gate

Prof. Kaushik Roy

@ Purdue Univ.

B is discharged originally

For NMOS, VGS = VDS, saturated or cutoff

For PMOS, VGS = -VDD, VDS increases from

-VDD to 0, starts out in saturation, then

transitions into non-saturation

:tpout VV

:tnDDouttp VVVV

:outtnDD VVV

NMOS saturated, PMOS saturated

NMOS saturated, PMOS linear

NMOS cutoff, PMOS linear

Resistance of Transmission Gate

Prof. Kaushik Roy

@ Purdue Univ.

Vout

Approximations

Prof. Kaushik Roy

@ Purdue Univ.

)()(

)(

))((

)(

))((

1

tpDDptnDDn

BA

BAtpDDp

BA

BAtnBDDn

eq

eq

VVVV

VV

VVVV

VV

VVVVV

RG

• Assume both in linear region, ignore body effect

• Assume both in saturated region

DD

tpDDptnDDn

DD

pn

eq

V

VVVV

V

IIG

2

)()( 22

When Output Closely follows Input

Prof. Kaushik Roy

@ Purdue Univ.

Ron

Vin

nmost pmost

Transmission gate

Region A:

NMOS unsaturated, PMOS off

Region B:

NMOS unsaturated, PMOS unsaturated

Region C:

NMOS off, PMOS unsaturated

Delay in Transmission Gate Networks

Prof. Kaushik Roy

@ Purdue Univ.

Distributed RC network

Elmore Delay

Prof. Kaushik Roy

@ Purdue Univ.

Estimate the dominant time constant:

assume all internal nodes are pre-charged to VDD,

and a step input is applied

)(2)()(1)(

11 tVtVtVCRdt

tdViii

eq

i

CRnn

CRRC eq

N

k

N

kj

N

k

N

kj

eqeqN2

)1(

1 1

To solve for actual delay

Delay Optimization by Buffer Insertion

Prof. Kaushik Roy

@ Purdue Univ.

• Delay of RC chain

• Delay of buffered chain

CRnn

t eqNp2

)1(69.069.0

CR

tm

tm

nCR

mn

tm

nCR

mm

m

nt

eq

pbuf

opt

pbufeq

pbufeqp

7.1

12

)1(69.0

12

)1(69.0

Transmission Gate Full Adder

Prof. Kaushik Roy

@ Purdue Univ.

A

B

P

Ci

VDDA

A A

VDD

Ci

A

P

AB

VDD

VDD

Ci

Ci

Co

S

Ci

P

P

P

P

P

Sum Generation

Carry Generation

Setup

Adder Truth Table

Prof. Kaushik Roy

@ Purdue Univ.

C

0

0

0

0

1

1

1

1

A

0

0

1

1

0

0

1

1

B

0

1

0

1

0

1

0

1

A.B(G)

0

0

0

1

0

0

0

1

A+B

0

1

1

1

0

1

1

1

A + B(P)

0

1

1

0

0

1

1

0

SUM

0

1

1

0

1

0

0

1

CARRY

0

0

0

1

0

1

1

1

SUM = A + B + C

CARRY = C if A + B = 1

CARRY = A (or B) if A + B = 0

Solution 2

Prof. Kaushik Roy

@ Purdue Univ.

Level Restoring Transistor for NMOS Only Logic

• Full Swing

• Disadvantage: More complex, larger capacitance

Proper Sizing of Level Restoring Transistor

Prof. Kaushik Roy

@ Purdue Univ.

• In transient, conducting path from Mr to M3 via Mn

when A is low, B switches from low to high, and X is

high

• Mr must not be too large, otherwise, X cannot be

brought below threshold voltage, VM, of inverter, Mr

cannot be turned off

Pass-Transistors

Prof. Kaushik Roy

@ Purdue Univ.

Single Transistor Pass Gate with VT=0

Out

VDD

VDD

5V

VDD

0V 5V

0V

WATCH OUT FOR LEAKAGE CURRENTS

Complimentary Pass Transistor Logic

Prof. Kaushik Roy

@ Purdue Univ.

A

B

A

B

B B B B

A

B

A

B

F=AB

F=AB

F=A+B

F=A+B

B B

A

A

A

A

F=AÝ

F=AÝ

OR/NOR EXOR/NEXORAND/NAND

F

F

Pass-Transistor

Network

Pass-Transistor

Network

A

ABB

A

ABB

Inverse

(a)

(b)

4 Input NAND in CPL

Prof. Kaushik Roy

@ Purdue Univ.

• Total number of transistors needed = 14 (including

the final buffer)

• But AND function is simultaneously present

• tpHL = 1.05ns, tpLH = 0.45ns

Dynamic Logic

Prof. Kaushik Roy

@ Purdue Univ.

Dynamic Logic

Prof. Kaushik Roy

@ Purdue Univ.

Mp

Me

VDD

PDN

In1

In2

In3

Out

Me

Mp

VDD

PUN

In1

In2

In3

Out

CL

CL

p networkn network

2 phase operation:• Evaluation

• Precharge

Example

Prof. Kaushik Roy

@ Purdue Univ.

• N + 2 transistors

• Ratioless

• No static power consumption

• Small Noise Margins (NML)

• Requires Clock

• Pull-down resistance increases

due to the evaluation transistor

Transient Response

Prof. Kaushik Roy

@ Purdue Univ.

0.00e+00 2.00e-09 4.00e-09 6.00e-09t (nsec)

0.0

2.0

4.0

6.0

Vout (V

olt)

Vout

PRECHARGEEVALUATION

Dynamic 4 Input NAND Gate

In1

In2

In3

In4

Out

VDD

GND

Prof. Kaushik Roy

@ Purdue Univ.

Reliability Problems — Charge Leakage

Prof. Kaushik Roy

@ Purdue Univ.

Mp

Me

VDD

Out

A

CL(1)

(2)

t

t

Vout

(b) Effect on waveforms(a) Leakage sources

precharge evaluate

Minimum Clock Frequency: > 1 MHzDynamic circuits require a minimal clock rate

Charge Sharing (redistribution)

Prof. Kaushik Roy

@ Purdue Univ.

Mp

Me

VDD

Out

A

B = 0

CL

Ca

Cb

Ma

Mb

X

CL

VDD

CL

Vout

t Ca

VDD

VTn

VX – +=

or

Vout Vout t VDD–Ca

CL

-------- VDD VTn VX – –= =

Vout VDD

Ca

Ca

CL

+----------------------

–=

case 1) if Vout < VTn

case 2) if Vout > VTn

Minimize Charge Sharing

Prof. Kaushik Roy

@ Purdue Univ.

• Keep the change in storage voltage below | Vtp |

– the output might be connected to a static inverter as in

Domino logic

• Ca is normally smaller than CL, but if there is series

connection of NMOS transistors, internal

capacitances can be strung together and that can

increase the voltage change

2.0

tnDD

tp

L

a

VV

V

C

C

Charge Redistribution - Solutions

Prof. Kaushik Roy

@ Purdue Univ.

Mp

Me

VDD

Out

A

B

Ma

Mb

Mbl Mp

Me

VDD

Out

A

B

Ma

Mb

Mbl

(b) Precharge of internal nodes

(a) Static bleeder

Clock Feedthrough

Prof. Kaushik Roy

@ Purdue Univ.

Mp

Me

VDD

Out

A

B

CL

Ca

Cb

Ma

Mb

X

5V

overshoot

out

could potentially forwardbias the diode

Clock Feedthrough and Charge Sharing

Prof. Kaushik Roy

@ Purdue Univ.

0 1 2 3

t (nsec)

0

2

4

6V

(V

olt)

out

internal node in PDN

output without redistribution (Ma off)

feed

thro

ug

h

Cascading Dynamic Gates

Prof. Kaushik Roy

@ Purdue Univ.

Mp

Me

VDD

Mp

Me

VDD

In

Out1 Out2

Out2

Out1

In

V

t

V

VTn

(a) (b)

Only 01 Transitions allowed at inputs!

Domino Logic

Prof. Kaushik Roy

@ Purdue Univ.

Mp

Me

VDD

PDN

In1

In2

In3

Out1

Mp

Me

VDD

PDN

In4

Out2

Mr

VDD

Static Inverter

with Level Restorer

Domino Logic - Characteristics

Prof. Kaushik Roy

@ Purdue Univ.

• Only non-inverting logic

• Very fast - Only 10 transitions at input of inverter

affects the next Domino

• Static inverter increases noise immunity, increase the

size of PMOS to increase VM

• Proper sizing of inverter to drive the fan-out in optimal

way

• Add a level-restoring transistor to overcome charge

sharing and charge loss

np-CMOS (Zipper CMOS)

Prof. Kaushik Roy

@ Purdue Univ.

Mp

Me

VDD

PDN

In1In2

In3

Me

Mp

VDD

PUN

In4

Out1

Out2

Only 10 transitions allowed at inputs of PUN

Reduced noise margins: NMH = | Vtp |, NML = | Vtn |

Full Adder Circuit

Prof. Kaushik Roy

@ Purdue Univ.

A

B

B

C

A

B

C B

A A

A B C A

A B C

B

C

C

B

A

-sum -carry

np-CMOS Adder

Prof. Kaushik Roy

@ Purdue Univ.

VDD

Ci0

A0 B0 B0

A0

VDD

B1

A1

VDD

A1 B1

Ci1

Ci2

Ci0

Ci0

B0

A0B0

S0

A0

VDD

VDD

VDD

B1 Ci1

B1

A1A1

VDD

S1

Ci1

Carry Path

Manchester Carry Chain Adder

Prof. Kaushik Roy

@ Purdue Univ.

P0

Ci,0

P1

G0

P2

G1

P3

G2

P4

G3 G4

VDD

M0 M1 M2 M3 M4

Co,4

11.522.53

3.5 3 2.5 2 1.5 1

1.522.533.54

0.5

Total Area:

225 m 48.6 m

Adder Truth Table

Prof. Kaushik Roy

@ Purdue Univ.

C

0

0

0

0

1

1

1

1

A

0

0

1

1

0

0

1

1

B

0

1

0

1

0

1

0

1

A.B(G)

0

0

0

1

0

0

0

1

A+B

0

1

1

1

0

1

1

1

A + B(P)

0

1

1

0

0

1

1

0

SUM

0

1

1

0

1

0

0

1

CARRY

0

0

0

1

0

1

1

1

SUM = A + B + C = P + C

CARRY = C if P = 1

CARRY = AB if P = 0

CARRY = G + PC

CMOS Circuit Styles - Summary

Prof. Kaushik Roy

@ Purdue Univ.