Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al....

153
Colonization and Persistence of Acacia pennatula in Transformed Tropical Dry Forests The Role of Disturbances and Biotic Interactions Colonización y persistencia de Acacia pennatula en bosques tropicales secos transformados El rol de las perturbaciones y las interacciones bióticas

Transcript of Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al....

Page 1: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Colonization and Persistence of Acacia

pennatula in Transformed Tropical Dry Forests

The Role of Disturbances and Biotic Interactions

Colonización y persistencia de Acacia pennatula en

bosques tropicales secos transformados

El rol de las perturbaciones y las interacciones bióticas

Page 2: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de
Page 3: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Colonization and Persistence of Acacia pennatula in

Transformed Tropical Dry Forests

The Role of Disturbances and Biotic Interactions

Colonización y persistencia de Acacia pennatula en

bosques tropicales secos transformados

El rol de las perturbaciones y las interacciones bióticas

----------

Memoria presentada por:

Guillermo Peguero Gutiérrez

Para optar al grado de doctor.

Con la aprobación del director:

Dr. Josep Maria Espelta Morral

Bellaterra, junio del 2012

Page 4: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Peguero, G. (2012)

Tesis doctoral (Universitat Autònoma de Barcelona), Bellaterra, Catalunya (España)

Palabras clave: alelopatía, bosque secundario, bosque tropical seco, depredación de semillas,

dispersión, establecimiento de plántulas, frugivoría, fuego, germinación, perturbaciones,

rebrote, regeneración/restauración forestal, Nicaragua, Mesoamérica.

Keywords: allelopathy, secondary forest, tropical dry forest, seed predation, dispersal, seedling

establishment, frugivory, fire, germination, disturbances, resprouting, forest regeneration and

restoration, Nicaragua, Mesoamerica.

Todo el material gráfico es del autor.

Esta tesis se ha llevado a cabo en el ‘Centre de Recerca Ecològica i Aplicacions Forestals’

(CREAF), en el programa de doctorado de Ecología Terrestre de la Universidad Autónoma de

Barcelona y en colaboración con la Facultad Regional Multidisciplinaria de Estelí perteneciente

a la Universidad Nacional Autónoma de Nicaragua – Managua (FAREM-Estelí / UNAN-

Managua).

El autor ha recibido financiamiento procedente de una beca FI para estudios doctorales

concedida por la ‘Agència de Gestió d’Ajuts Universitaris i de Recerca’ (AGAUR / Generalitat de

Catalunya) y a través del proyecto D/026276/09 concedido por la Agencia Española de

Cooperación para el Desarrollo (AECID / Ministerio de Asuntos Exteriores y de Cooperación).

Page 5: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Carne de yugo, ha nacido

más humillado que bello,

con el cuello perseguido

por el yugo para el cuello.

[…]

¿Quién salvará este chiquillo

menor que un grano de avena?

¿De donde saldrá el martillo

verdugo de esta cadena?

[…]

Miguel Hernández, 1936-1937

Cuando te vayás octubre

voy a quedar lleno de invierno

como quien tiene

una gran reserva de lágrimas

para seguir llorando

Cuando llovés

lloro

y ya después lo veo todo limpio

porque es en tu llovida

que el paisaje se despeja.

Fernando Antonio Silva, Octubre 1979

Page 6: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de
Page 7: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Índice

Resumen

Introducción: Bosques Secos Mesoamericanos - Canción urgente para Nicaragua

Capítulo 1. La aptitud frugívora del ganado y la quema de pastos - Los primeros

ingredientes para una receta de éxito

Capítulo 2. Rebrota o muere – La inevitable presencia de perturbaciones repetidas

Capítulo 3. “Al cerro vengo subiendo…” – Depredación de semillas a lo largo de un

gradiente altitudinal

Capítulo 4. Demasiados depredadores para una misma semilla – ¿Una coexistencia

mediada por los frugívoros?

Capítulo 5. Una oportunidad o una barrera – Inhibición o facilitación del establecimiento

de plántulas

Resumen de las conclusiones principales

Retorno a Nicaragua - Implicaciones para la gestión

Publicaciones

Apéndice fotográfico

Agradecimientos

Page 8: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Resumen

El bosque tropical seco es uno de los biomas más ricos en biodiversidad y a la vez el sistema forestal más amenazado del planeta. Tras la masiva transformación de estos bosques en sistemas silvo-pastoriles para uso ganadero, muy pocas son las especies forestales que consiguen colonizar y persistir en estos nuevos ambientes. Mejorar el conocimiento del efecto de los principales impactos resultantes de esta transformación puede ayudar a mejorar la gestión actual del sistema y a proponer alternativas de manejo, ecológicamente razonables, encaminadas a la recuperación forestal. Esta tesis tiene por objetivo investigar qué papel juegan el cambio en el régimen de perturbaciones y en el conjunto de interacciones bióticas sobre el éxito colonizador de Acacia pennatula, una especie común en sistemas silvo-pastoriles de toda Mesoamérica. En el primer capítulo se investiga su capacidad de persistencia por rebrote tras perturbaciones de diversa intensidad (corte y fuego) aplicadas antes y después de la época seca y de manera repetida. Los resultados muestran que los individuos quemados sobreviven y rebrotan menos que los cortados y que al final de la estación seca es más difícil la recuperación, probablemente por la falta de recursos (N y especialmente P) almacenados en la raíz principal. En el segundo capítulo se estudia el papel que puede jugar el ganado como agente dispersor de semillas y la posible interacción entre la endozoocória y el fuego como factores desencadenantes de la germinación. El ganado es un eficaz agente dispersor de las semillas de diversas especies forestales, no obstante el paso por el tracto digestivo no estimuló la germinación de las especies testadas a diferencia del fuego el cual de manera general liberó las semillas de su latencia. En el tercer capítulo se investiga la variación en los mecanismos de defensa de semillas ante la depredación pre-dispersiva por parte de insectos (Bruchidae) a lo largo del rango de distribución altitudinal de A. pennatula. El saciado del predador mediante producciones masivas de frutos y el aborto de semillas que aumenta la mortalidad de las larvas, son mecanismos de defensa que actúan simultáneamente aunque su contribución relativa varía a lo largo del gradiente. En el cuarto capítulo se explora el rol que los frugívoros pueden tener controlando las poblaciones de insectos depredadores de semillas. La presencia de frugívoros reduce la proporción de semillas depredadas e incluso podría promover la coexistencia de varias especies de depredadores sobre la misma planta huésped. En el quinto se estudia el potencial de interferencia alelopática de A. pennatula sobre otras especies competidoras. Esta especie muestra indicios de interferir el desarrollo de las raíces de las plántulas que se establecen bajo su copa poniendo así en duda su capacidad de nucleación de la sucesión tras un eventual abandono de los sistemas silvo-pastoriles en los cuales es dominante. En conjunto A. pennatula es capaz de colonizar y persistir tras la transformación del bosque tropical seco gracias a: i) es eficazmente dispersada por el ganado y germina rápidamente tras el fuego en los pastos, ii) persiste tras perturbaciones repetidas (corte y fuego) mediante sucesivos rebrotes, iii) tiene mecanismos de defensa eficaces ante la depredación pre-dispersiva de sus semillas y es favorecida por la aptitud frugívora del ganado, y iv) es capaz de invadir los pastos e interferir alelopáticamente el establecimiento de plántulas bajo su copa. En la última sección de la presente tesis se proponen diversas alternativas de manejo para mejorar la gestión actual de los sistemas silvo-pastoriles en los cuales esta especie es dominante, y a fin de promover la recuperación forestal y el valor de conservación de la biodiversidad de los mismos.

Page 9: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Summary

Tropical Dry Forest (TDF) is one of the most biodiversity-rich biome and the most threatened forest ecosystem of the world. After the pervasive transformation of these forests into wooded rangelands, there are very few species able to colonize and to persist in this new environment. Improving the knowledge of the major impacts resulting from this land-use change may aid the current management practices and may provide ecologically sound alternatives aimed to the forest recovery. The general objective of this thesis is then to investigate the role played by the new disturbance regime and biotic interactions in colonization and persistence of Acacia pennatula, a tree species common in wooded rangelands throughout Mesoamerica. In the first chapter it is investigated its ability to resprout after disturbances (clipping and fire) applied before and after the dry season and repeatedly. The results show that those individuals burned had lower survival and resprouting vigor than those individuals only clipped. Additionally, recovering from a disturbance applied after the dry season was more difficult, and this was likely due to the lack of resources (N and especially P) stored in the main root. In the second chapter it is studied the role that cattle may play as a seed dispersal agent and the potential interaction between endozoochory and fire as triggers of germination. Cattle is currently an effective dispersal agent of several forest species, however, gut passage did not stimulate germination unlike fire which generally broke seeds’ physical dormancy. In the third chapter it is investigated the variation in seed defense mechanisms against pre-dispersal seed predators by insects (Bruchidae) along the altitudinal range of A. pennatula. Predator satiation by means of massive fruit crops and seed abortion which increases larval mortality, are both defense mechanisms that act simultaneously although its relative contribution vary along the altitudinal gradient. In the fourth chapter it is examined the role that frugivores may have in controlling seed predator populations. Frugivores reduced the proportion of seeds preyed upon by seed beetles and the results suggest that frugivores may promote coexistence of different predator species on the same plant host. In the fifth chapter it is studied the allelopathic interference of A. pennatula over other competitor species. The results show that this species may impair seedling establishment under its canopy by reducing root development. This warns about the ability of this species as a succession nuclei after an eventual abandonment of the wooded rangelands in which dominate. Overall, A. pennatula is able to colonize and to persist after TDF transformation thanks to: i) is effectively dispersed by cattle and germinate after pasture fires, ii) persists after repeated disturbances by successive resprouting, iii) has defense mechanisms against pre-dispersal seed predation and moreover is favored by cattle frugivory, and iv) is able to encroach pastures impairing seedling establishment under its canopy by means of an allelopathic interference. In the last section management proposals are provided in order to ameliorate current practices and to promote forest recovery in those wooded rangelands in which this species dominate.

Page 10: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

IntroducciónGeneral:

Bosques Secos Mesoamericanos –  

Canción urgente para Nicaragua 

Page 11: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

¿Por qué una tesis sobre Bosque Tropical Seco?

De acuerdo con la clasificación climática ya clásica de Holdridge (1967), los

bosques tropicales secos son aquellos que tienen lugar en áreas libres de heladas, con

temperaturas anuales medias mayores de 17ºC, precipitaciones de entre 250 hasta 2000

mm y con tasas anuales de evapo-transpiración potencial sobre precipitación que

exceden, a veces largamente, la unidad. Esta última característica, quizá la más

definitoria, es en parte resultado de la elevada estacionalidad de las precipitaciones que

resulta en un estricto déficit hídrico durante la estación seca que puede tener una

duración de 2 hasta 6 meses según aumenta la latitud.

No obstante, dentro de estas amplias categorías climáticas caben un gran número

de formaciones forestales cuyas características estructurales van desde ‘prados’ más o

menos densamente arbolados hasta bosques cerrados con dos o incluso tres estratos en

el dosel (Murphy & Lugo 1986, Pennington et al. 2009), de manera que la

diferenciación entre ‘bosque tropical seco’ y ‘sabana’ no ha sido siempre del todo clara

(Ratnam et al. 2011). Este hecho se refleja en las múltiples maneras por las que ha sido

y es denominado este bioma, a saber, bosque tropical estacionalmente seco (Bullock et

al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o

subtropicales de hoja ancha y de monzón (Olson & Dinerstein 1998), o mediante

nombres propios como “caatinga” en Brasil –formación colindante con el polimórfico

“cerrado” de discutida clasificación-, “bosque seco tumbesino” en Ecuador y Perú o

“bosque seco chiquitano” en Bolivia. Esta relativa indefinición no solo ha dificultado

las estimas de su distribución y grado de conservación actuales sino que también ha

complicado el estudio de su distribución potencial (Miles et al. 2006) y más aún, la

definición de los atributos y características funcionales que de manera general definen

Page 12: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

las especies arbóreas que habitan estos ecosistemas forestales (Murphy & Lugo 1986,

Pennington et al. 2009).

Si sabemos sin embargo, que la distribución extremadamente disyunta de los

bosques tropicales secos ha producido una elevada β-diversidad entre áreas así como

notables tasas de endemismo que a su vez han conferido características casi únicas a

cada uno de sus núcleos biogeográficos (Prado & Gibbs 1993, Trejo & Dirzo 2002,

Pennington et al. 2009, Linares-Palomino et al. 2011). Desafortunadamente sabemos

también que la conservación de esta biodiversidad tan característica, pasa hoy en día por

la revalorización y la gestión de los paisajes altamente fragmentados y modificados en

los que se encuentran prácticamente todos los bosques tropicales secos del planeta

(Janzen 1988, Miles et al. 2006, DeClerck et al. 2010). Así las cosas, parece que el

futuro del bosque tropical seco está íntimamente unido a los esfuerzos de restauración

ecológica que además no pueden más que partir de aquellos elementos forestales,

árboles dispersos, bosques secundarios y rodales remanentes, que aún persisten en estos

paisajes altamente humanizados (Manning et al. 2006, Chazdon et al. 2009, DeClerck et

al. 2010, Griscom & Ashton 2011).

En conclusión podemos apreciar que entre los ecosistemas con mayor

biodiversidad, el bosque tropical seco destaca especialmente por ser el sistema forestal

más amenazado y transformado del planeta, y tal vez también, el menos estudiado

(Janzen 1988, Sanchez-Azofeifa et al. 2005, Miles et al. 2006). Con todo, además de su

elevado valor ecológico, es también proveedor de bienes y servicios ambientales claves

para el sustento de millones de personas (e.g. bienes directos como agua dulce, madera

para construcción y como fuente energética, forraje, medicinas naturales, o servicios de

regulación como el mantenimiento de la fertilidad del suelo o el control de las

inundaciones etc., Maass et al. 2005). Por otro lado, también destaca el elevado

Page 13: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

potencial de secuestro de carbono que podría resultar de la reducción de las emisiones

procedentes de la deforestación y la degradación forestal de los bosques tropicales secos

(Angelsen 2010). Un almacenamiento de carbono que sería incluso mayor si se llegara

revertir esta tendencia en pro de una recuperación forestal generalizada (Silver et al.

2000, Angelsen 2010). Cabe señalar además, que bajo las incertidumbres derivadas del

actual cambio climático (IPCC 2007) esta función de almacenamiento cobra una

especial relevancia y sentido de oportunidad a escala mundial (Angelsen 2010).

¿Por qué Mesoamérica? El caso de Nicaragua.

La región Mesoamericana, que comprende desde la península de Yucatán hasta el istmo

de Panamá, es una unidad biogeográfica propia con un valor ecológico único (Flora

Mesoamericana 1994, Pennnington et al. 2009). Gracias a su singular condición de

corredor biológico natural, su biota se ha visto enriquecida por el intercambio entre los

dos grandes sub-continentes americanos y muy especialmente por haber actuado como

refugio durante la última glaciación (Gentry, 1982, Cody et al. 2010).

Por otra parte, la presencia humana en Mesoamérica ha sido constante desde su

llegada a finales del Pleistoceno, hace aproximadamente 11000 años, y por tanto

también ha sido continua su influencia sobre los ecosistemas (Denevan 1992, Cooke

2005, Griscom & Ashton 2011). El sistema de agricultura itinerante tradicional,

conocido por el descriptivo sobrenombre de “roza tumba y quema”, se basaba en el

aclareo del bosque y el cultivo siguiendo un patrón rotacional muy dinámico. No

obstante, con el advenimiento de las sucesivas civilizaciones precolombinas, la

modificación del paisaje llegó a ser tan profunda que lejos de ser un bosque prístino, lo

que encontraron los primeros conquistadores españoles fueron vastas extensiones de

cultivos y plantaciones de frutales que por otro lado eran las necesarias para alimentar

Page 14: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

una población estimada de varios millones de habitantes (Denevan, 1992). Así en 1544,

Fray Bartolomé de las Casas sostenía que en la “provincia de Nicaragua […] era cosa

verdaderamente de admiración ver cuán poblada de pueblos, que cuasi duraban tres y

cuatro leguas en luengo, llenos de admirables frutales que causaba ser inmensa en la

gente […] porque era la tierra llana y rasa, que no podían esconderse en los montes, y

deleitosa, que con mucha angustia y dificultad osaban dejarla…” (de las Casas 1544).

Incluso siendo la anterior una valoración un tanto exagerada, parece indiscutible

que roturar el bosque mediante la tala y la quema es una práctica que se remonta miles

de años atrás en Mesoamérica (Dull 2004). Sin embargo, los colonizadores españoles

aportaron ciertas innovaciones como la introducción del ganado doméstico, cuya

función en términos ecológicos había estado ausente del sistema desde la extinción

masiva de la megafauna herbívora pleistocénica (Janzen & Martin 1982). Este último

enfoque productivo, eminentemente silvo-pastoril y de carácter extensivo, ha sido el que

ha predominado hasta la actualidad y particularmente en Nicaragua, donde ciertas

políticas de desarrollo llevadas a cabo desde mediados del siglo XX bajo el auspicio de

determinadas instituciones financieras internacionales, impulsaron enormemente la

deforestación y la expansión de la llamada “frontera agrícola” hasta los preocupantes

límites actuales (Kaimowitz 1996, Larson 2001, Griscom & Ashton 2011).

Ante este escenario parece necesario conjugar los actuales usos productivos con

la conservación de la biodiversidad y los bienes y servicios ambientales que proporciona

el bosque tropical seco. Así, es oportuna aquella investigación que tenga por fin último

profundizar en el conocimiento básico de este ecosistema así como aquella que analice

los efectos de los principales impactos derivados de su transformación en sistemas

silvo-pastoriles. La información obtenida puede ser por tanto, de utilidad para mejorar

Page 15: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

su actual gestión e incluso para proponer alternativas de manejo, ecológicamente

razonables, ante un eventual y urgente marco favorable a la restauración forestal.

Cambios en el régimen de perturbaciones y en las interacciones bióticas

tras la transformación del bosque - Acacia pennatula como caso de

estudio.

La transformación del bosque en un sistema silvo-pastoril, es decir la conversión

del bosque cerrado en un pasto arbolado, conlleva un profundo cambio en el régimen de

perturbaciones que a menudo impide o dificulta la recuperación del sistema anterior a la

transformación. El ejemplo más evidente es el aumento de la frecuencia e intensidad de

las perturbaciones de origen antropogénico, normalmente aplicadas éstas como

herramientas de control del establecimiento de especies leñosas en el pasto. Estas

medidas generalmente pasan por la quema de los pastos durante la época seca, a veces

incluso precedida y/o seguida por el corte a mata rasa o chapia manual de aquellos

individuos ya establecidos y que por tanto solo pueden persistir a merced de su

capacidad de rebrote reiterado.

A diferencia de otros ecosistemas en los cuales la respuesta “rebrotadora” post-

perturbación ha sido extensamente investigada (e.g. áreas mediterráneas, sabana

africana etc., Bond & Keeley 2005), en el ámbito del bosque tropical seco son todavía

pocos los estudios sobre este extendido mecanismo de persistencia (no obstante ver,

Swaine 1992, Gould et al. 2001, McLaren & McDonald 2003, Otterstrom et al. 2006).

Por ejemplo, la movilización de reservas almacenadas (e.g. almidón, nitrógeno, fósforo)

parece ser un factor clave para rebrotar tras una perturbación (Chapin et al. 1990), sin

embargo, no hay un solo estudio que aborde esta cuestión en el ámbito del trópico seco

mesoamericano ni que analice la posible interacción entre la marcada estacionalidad

Page 16: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

(i.e. sequía prolongada) y la disponibilidad y movilización de reservas para rebrotar tras

una perturbación. Qué duda cabe que obtener información detallada sobre la variación

estacional en la supervivencia y en el vigor del rebrote tras una perturbación, bien sea

fuego o chapia como medidas de control, puede ser de gran utilidad a fin de proponer

alternativas de manejo que mejoren la gestión de las especies leñosas en los pastos.

Por otro lado, la transformación del bosque en un sistema silvo-pastoril también

provoca profundos cambios en el conjunto de interacciones bióticas. Por ejemplo, en

condiciones de bosque cerrado, una plántula estableciéndose típicamente debe competir

con otras plántulas y con los individuos ya establecidos por unos recursos limitados

(e.g. luz y nutrientes). Sin embargo, estas relaciones altamente competitivas entre

plantas pueden tornarse en relaciones de facilitación neta bajo condiciones de elevado

estrés ambiental, como por ejemplo elevados déficits hídricos (Bertness & Callaway

1994, Maestre et al. 2009). De ser así, las especies forestales pioneras, capaces de

establecer individuos aislados en los potreros, tendrían una importancia capital como

“nucleadoras” de la sucesión al facilitar el establecimiento de plántulas de otras especies

tras un eventual abandono del uso ganadero (Slocum 2001). No obstante, también se ha

descrito que algunas de estas especies pioneras, tras el abandono de los pastos

rápidamente invaden e incluso impiden el establecimiento de otras especies bajo sus

copas, bloqueando así la sucesión (“encorachment”) durante décadas (Burgos & Maass

2004, Álvarez-Yépiz et al. 2010) de manera que no todas las especies pioneras serían

igual de “buenas nucleadoras” a medio o largo plazo (Slocum 2001).

Otro de los factores limitantes para la regeneración del bosque como resultado

del cambio en las interacciones bióticas que tiene lugar tras su transformación, es la

falta de dispersión de semillas dentro del pasto (Holl et al. 2000). Muchas de las

especies de árboles del bosque tropical seco presentan síndromes de dispersión por

Page 17: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

zoocória de modo que son animales frugívoros (e.g. aves y murciélagos) los que

habitualmente dispersan sus semillas según patrones característicamente agregados

alrededor de “perchas” de alimentación y descanso (Holl et al. 2000). No obstante, la

falta de árboles aislados dentro del pasto, supone una ausencia casi total de estos

“núcleos” de dispersión de semillas reduciéndose así la capacidad de regeneración del

bosque. A pesar de esto, la dispersión de un número considerable de especies forestales

puede ser efectuada por el propio ganado doméstico a raíz de haber conservado éstas

especies diversos atributos “anacrónicos” en frutos y semillas, como la indehiscencia

del fruto o la dormición física de las semillas, los cuales probablemente fueron

seleccionados en el pasado para promover la dispersión de las semillas por la ya extinta

mega-fauna pleistocénica (Janzen & Martin 1982). No obstante, el ganado podría tener

ciertas preferencias de consumo de manera que fueran agentes dispersores

cuantitativamente más efectivos (i.e. mayor número de visitas y mayor número de frutos

consumidos por visita; sensu Schupp 1993) para unas determinadas especies que otras,

lo cual tendría consecuencias en los patrones de regeneración a nivel de paisaje (Eycott

et al. 2007). Por otro lado, se ha sugerido que el paso por el tracto intestinal del agente

dispersor (i.e. endozoocória) podría estimular la germinación de las semillas al romper

su latencia por escarificación de la cubierta (Traveset 1998) de manera similar al golpe

de calor producido por el fuego, cuyo rol estimulante de la germinación ya ha sido

ampliamente documentado en diversas especies y ecosistemas (Keeley & Fotheringam

2000). Sin embargo hasta la fecha no hay estudios que exploren una posible interacción

entre ambos factores: si la germinación es resultado directo del nivel de escarificación

de la cubierta de las semillas (Traveset et al. 2008), entonces el fuego podría tener un

efecto aditivo sobre el desgaste producido en la cubierta de la semilla tras el paso por el

tracto intestinal del agente dispersor de manera que ambos factores, endozoocória y

Page 18: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

fuego, se reforzarían mutuamente y gestionados adecuadamente podrían llegar a ser

netos promotores de la regeneración forestal.

Por último, otra interacción biótica que puede tener un gran impacto en la

dinámica poblacional de las plantas y por tanto limitar su reclutamiento de plántulas, es

la depredación de semillas (Louda, 1982, Crawley, 2000, Kolbe et al. 2007, Vaz-

Ferreira et al. 2011). En consecuencia, las plantas han desarrollado diversos

mecanismos de defensa o bien oponiendo “resistencia” a la depredación mediante

barreras físicas o químicas (Hulme & Benkman 2002) o bien “tolerándola” mediante el

saciado de los depredadores (Janzen 1971, Kelly & Sork 2002). Además, el aborto de

semillas, tanto si es resultado directo de la infestación por un depredador como si no,

también puede producir incrementos en la mortalidad de los depredadores actuando por

tanto como mecanismo de defensa del resto de semillas maduras (Stephenson 1981,

Holland et al. 2004, Östergård et al. 2007). Teniendo todo esto en cuenta, en el actual

escenario del bosque seco mesoamericano se pueden formular una serie de preguntas

aún muy poco exploradas y de interés tanto básico como aplicado. Por ejemplo, ¿la

depredación pre-dispersiva de semillas puede condicionar la capacidad de colonización

del pasto de una especie dada? Y de ser así, ¿varia esta presión de depredación a lo

largo del rango de distribución altitudinal de esta misma especie? Una respuesta

afirmativa a ambas preguntas podría tener implicaciones a la luz de una posible

migración en altura resultado del cambio climático (Colwell et al. 2008, Chen et al.

2011). Expansiones que ya han sido descritas para diversas especies de árboles

tropicales (Feeley et al. 2011) y en las que las interacciones bióticas como la

depredación de semillas, probablemente jueguen un papel destacado (Davis et al. 1998,

Hillyer & Silman 2011).

Page 19: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

En esta misma línea de interacciones antagónicas entre especies forestales y sus

depredadores de semillas, cabe preguntarse además sobre el posible rol que puede jugar

el ganado cuando es el agente dispersor de estas mismas especies. Es bien sabido que a

menudo los agentes dispersores también antagonizan con los depredadores pre-

dispersivos, especialmente si éstos últimos son insectos (Sallabanks & Courtney 1992).

Por un lado por el simple hecho de que dispersan su recurso clave, pero también porque

al alimentarse de los frutos, los agentes dispersores pueden depredarlos a ellos mismos

(accidentalmente o no) en caso de que aún se encuentren dentro del fruto o semilla

(Herrera 1989, Sallabanks & Courtney 1992). Por extensión, es fácil imaginar que

tiempos de permanencia dentro del fruto o semilla más largos quizá permiten un mejor

aprovechamiento del recurso pero a su vez conllevan mayores riesgos de ser

accidentalmente depredados por parte del agente dispersor. De ser así, la coexistencia de

diversas especies de depredadores pre-dispersivos explotando la misma planta huésped

podría venir en parte mediada por distintas vulnerabilidades ante mayores o menores

tasas de dispersión de frutos en caso que diverjan en sus tiempos de permanencia dentro

de los frutos o semillas.

En este marco de cambios dramáticos tanto en el régimen de perturbaciones

como en el conjunto de interacciones bióticas, una gran parte de las especies forestales

características del bosque seco mesoamericano no consiguen ni persistir ni propagarse

mientras que hay otras cuya abundancia y distribución se ha visto altamente favorecida

(Esquivel et al. 2008, Tarrasón et al. 2010). Este es el caso de Acacia pennatula Benth.,

una leguminosa mimosoide común como árbol disperso en potreros y en bosques

secundarios desde México hasta Ecuador (Ebinger et al. 2000). Esta especie pionera y

colonizadora de pastos está particularmente extendida por todo el centro Norte de

Nicaragua, principalmente en la frontera entre el bosque seco de tierras bajas y el

Page 20: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

bosque nublado de montaña (Stevens et al. 2001), donde además de proporcionar

diversos bienes directos para pobladores y productores locales (por ejemplo, madera

para postes y construcción, leña, forraje para el ganado, etc., Purata et al. 1999, Nieto

2000) también actúa de refugio para la biodiversidad (Greenberg et al. 1997).

Así, por su ubicuidad en nuestra zona de estudio en el centro norte de Nicaragua

(ver descripciones más detalladas en cada capítulo) como por su importancia social y

ecológica, Acacia pennatula es un modelo adecuado a partir de la cual investigar qué

papel juega el régimen de perturbaciones y las interacciones bióticas en la capacidad de

colonización y persistencia de esta especie tras la transformación del bosque seco en un

sistema silvo-pastoril. ¿Se trata solo de una gran capacidad de persistencia tras

perturbaciones intensas y frecuentes o también son el conjunto de interacciones bióticas

las que favorecen a esta especie en detrimento de otras tantas? Una respuesta a estas

preguntas, aún siendo ésta incompleta y preliminar, podría dar información valiosa

sobre los principales impactos y factores limitantes resultantes de la transformación del

bosque. Además ayudaría a vislumbrar si en último término esta capacidad de

colonización del espacio abierto que presenta tanto A. pennatula como otras especies de

características ecológicas similares, podría ser una oportunidad para la recuperación del

bosque seco mesoamericano mediante una gestión orientada a ello.

Objetivos y estructuración de la tesis.

El objetivo general de esta tesis es por tanto investigar qué papel juegan las

perturbaciones y las interacciones bióticas (e.g. dispersión y depredación de semillas,

alelopatía) en el éxito colonizador de Acacia pennatula tras la transformación del

bosque seco mesoamericano en sistemas silvo-pastoriles. A tal fin, esta tesis está

organizada en 5 capítulos en los que se abordan distintos aspectos del cambio en el

Page 21: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

régimen de perturbaciones y en el conjunto de interacciones bióticas, que tienen lugar

tras la transformación del bosque y que pueden ayudar a comprender porqué

determinadas especies forestales persisten e incluso prosperan en las actuales (aunque

quizá no tan nuevas) condiciones.

Así, en el primer capítulo se estudia experimentalmente la capacidad de

persistencia de A. pennatula en el pasto tras perturbaciones de distinta intensidad (i.e.

corta y fuego), estacionalidad y frecuencia (antes o después de la estación seca y en

ambos casos), con especial atención al papel que puede jugar la marcada estacionalidad

(i.e. sequía prolongada) en la disponibilidad de recursos almacenados en la raíz

principal (almidón, nitrógeno y fósforo) para la supervivencia y vigor del rebrote post-

perturbación.

En el segundo se aborda la importancia que tiene el ganado doméstico como

agente dispersor de semillas. En concreto se analiza de manera experimental si puede

ser un agente dispersor cuantitativamente más efectivo para algunas especies del bosque

tropical seco, si las semillas de determinadas especies resisten mejor el paso por su

tracto digestivo y/o germinan mejor ante el fuego y si puede existir alguna interacción

entre estos dos factores (endozoocória y fuego) en la germinación. Para responder a

estos objetivos comparamos Acacia pennatula con otras dos especies nativas y tambien

presentes en la zona de estudio, Guazuma ulmifolia (Malvaceae) y Enterolobium

cyclocarpum (Fabaceae), las cuales tienen tamaños de fruto, de semilla y de numero de

semillas/fruto muy contrastantes.

En el tercer capítulo se investiga la variación en la depredación pre-dispersiva de

semillas de A. pennatula por parte de insectos especialistas (Bruchidae, Mimosestes

sp.) a lo largo de su rango de distribución altitudinal. Se analiza concretamente el papel

que juega el saciado de los depredadores y el aborto de semillas como medidas

Page 22: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

defensivas así como su variación relativa a lo largo del gradiente. Se explora por último

si la depredación puede condicionar el reclutamiento de plántulas en el pasto y por

tanto, en último término, limitar o favorecer una posible expansión poblacional en altura

de esta especie en nuevos escenarios ecológicos (e.g. cambio climático).

En el cuarto se explora de manera preliminar el papel que pueden jugar los

frugívoros dispersores de semillas (en este caso el ganado) en la reducción de la presión

por depredación pre-dispersiva de semillas y en la posible mediación de la coexistencia

de distintas especies de depredadores explotando el mismo recurso o planta huésped.

Para explorar estas hipótesis se investigaron dos especies de árboles (A. pennatula y G.

ulmifolia) y sus respectivos gremios de insectos depredadores pre-dispersivos de

semillas (Bruchidae: Mimosestes anomalus/Mimosestes humeralis, y Amblycerus

cistelinus/Acanthoscelides guazumae respectivamente) en dos zonas contrastadas por la

presencia y la ausencia de larga duración de ganado.

En el quinto y último capítulo se investiga de manera experimental, en

laboratorio y en campo, el potencial de interferencia alelopática de A. pennatula en la

germinación y establecimiento de plántulas bajo su copa, explorando por extensión si

puede facilitar o más bien inhibir el establecimiento de plántulas bajos su copa y por

tanto nuclear o bien bloquear la sucesión tras un eventual cambio de uso de los pastos.

Finalmente en la última sección se proporciona un resumen de los principales

resultados obtenidos, junto con una breve síntesis subrayando las principales

implicaciones para la gestión de esta especie y del sistema en conjunto.

Page 23: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Nota Taxonómica:

Seigler & Ebinger en un artículo publicado el año 2006 apoyaron el origen polifilético

del género Acacia y propusieron nuevas combinaciones para los representantes

neotropicales del género. Así, Acacia pennatula junto con sus subsp. pennatula y

subsp. parvicephala fueron propuestas como Vachellia pennatula y V. pennatula var.

parvicephala respectivamente. Actualmente, A. pennatula y V. pennatula son

consideradas sinónimos aceptados e intercambiables (Tropicos.org/MOBOT). En la

presente tesis se mantiene la notación original siguiendo por tanto la nomenclatura

propuesta por Rico Arce (2007).

Referencias

Angelsen, A., ed. (2010) La implementación de REDD+. Center for International Forestry Research,

Bogor, Indonesia.

Bullock, S.H., Mooney, H.A., & Medina, E. (1995) Seasonally dry tropical forests Cambridge University

Press, Cambridge, UK.

Chazdon, R.L., Harvey, C.A., Komar, O., Griffith, D.M., Ferguson, B.G., Martínez-Ramos, M., Morales,

H., Nigh, R., Soto-Pinto, L., & Van Breugel, M. (2009) Beyond reserves: A research agenda for

conserving biodiversity in human-modified tropical landscapes. Biotropica, 41, 142-153.

Chen, I., Hill, J.K., Ohlemüller, R., Roy, D.B., & Thomas, C.D. (2011) Rapid range shifts of species

associated with high levels of climate warming. Science, 333, 1024-1026.

Cody, S., Richardson, J.E., Rull, V., Ellis, C., & Pennington, R.T. (2010) The great American biotic

interchange revisited. Ecography, 33, 326-332.

Colwell, R.K., Brehm, G., Cardelús, C.L., Gilman, A.C., & Longino, J.T. (2008) Global warming,

elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322, 258-261.

Cooke, R. (2005) Prehistory of Native Americans on the Central American land bridge: colonization,

dispersal, and divergence. Journal of Archaeological Research, 13, 129-187.

Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B., & Wood, S. (1998) Making mistakes when

predicting shifts in species range in response to global warming. Nature, 391, 783-786.

de Las Casas, B. (1544 ) Brevísima relación de la destruición de las Indias. Cátedra, Madrid, España.

DeClerck, F.A.J., Chazdon, R., Holl, K.D., Milder, J.C., Finegan, B., Martinez-Salinas, A., Imbach, P.,

Canet, L., & Ramos, Z. (2010) Biodiversity conservation in human-modified landscapes of

Mesoamerica: Past, present and future. Biological Conservation, 143, 2301-2313.

Denevan, W.M. (1992) The pristine myth: the landscape of the Americas in 1492. Annals of the

Association of American Geographers, 82, 369-385.

Page 24: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Dirzo, R., Young, H.S., Mooney, H.A., & Ceballos, G. (2011) Seasonally Dry Tropical Forests: Ecology

and Conservation Island Press, Washington, USA.

Dull, R.A. (2004) An 8000-year record of vegetation, climate, and human disturbance from the Sierra de

Apaneca, El Salvador. Quaternary Research, 61, 159-167.

Ebinger, J.E., Seigler, D.S., & Clarke, H.D. (2000) Taxonomic revision of South American species of the

genus Acacia subgenus Acacia (Fabaceae: Mimosoideae). Systematic Botany, 25, 588-617.

Esquivel, M.J., Harvey, C.A., Finegan, B., Casanoves, F., & Skarpe, C. (2008) Effects of pasture

management on the natural regeneration of neotropical trees. Journal of applied ecology, 45,

371-380.

Feeley, K.J., Silman, M.R., Bush, M.B., Farfan, W., Cabrera, K.G., Malhi, Y., Meir, P., Revilla, N.S.,

Quisiyupanqui, M.N.R., & Saatchi, S. (2011) Upslope migration of Andean trees. Journal of

Biogeography, 38, 783-791.

Gentry, A.H. (1982) Neotropical floristic diversity: phytogeographical connections between Central and

South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals

of the Missouri Botanical Garden, 69, 557-593.

Greenberg, R., Bichier, P., & Sterling, J. (1997) Acacia, cattle and migratory birds in southeastern

Mexico. Biological Conservation, 80, 235-247.

Griscom, H.P. & Ashton, M.S. (2011) Restoration of dry tropical forests in Central America: a review of

pattern and process. Forest Ecology and Management, 261, 1564-1579.

Herrera, C.M. (1989) Vertebrate frugivores and their interaction with invertebrate fruit predators:

supporting evidence from a Costa Rican dry forest. Oikos, 185-188.

Hillyer, R. & Silman, M.R. (2011) Changes in species interactions across a 2.5 km elevation gradient:

effects on plant migration in response to climate change. Global Change Biology, 16, 3205-

3214.

Holdridge, L.R. (1967) Life zone ecology Tropical Science Center, San José, CR.

IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the

Fourth Assessment Report of the Intergovernmental Panel on Climate Change IPCC, Geneva,

Switzerland.

Janzen, D.H. (1988). Tropical dry forests. In Biodiversity (ed E.O. Wilson), pp. 130-137. National

Academy Press, Washington, USA.

Janzen, D.H. & Martin, P.S. (1982) Neotropical anachronisms: the fruits the gomphotheres ate. Science,

215, 19-27.

Kaimowitz, D. (1996) Livestock and deforestation: Central America in the 1980s and 1990s: a policy

perspective. Center for International Forestry Research, Jakarta, Indonesia.

Larson, A. (2001) Recursos forestales y gobiernos municipales en Nicaragua: Hacia una gestión efectiva.

Universidad Centroamericana-Nitlapán Managua, Nicaragua.

Linares-Palomino, R., Oliveira-Filho, A.T., & Pennington, R.T. (2011). Neotropical seasonally dry

forests: Diversity, endemism, and biogeography of woody plants. In Seasonally Dry Tropical

Forests (eds R. Dirzo, H.S. Young, H.A. Mooney & G. Ceballos), pp. 3-21. Island Press,

Washington, USA.

Page 25: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Maass, J.M., Balvanera, P., Castillo, A., Daily, G.C., Mooney, H.A., Ehrlich, P., Quesada, M., Miranda,

A., Jaramillo, V.J., & García-Oliva, F. (2005) Ecosystem services of tropical dry forests: insights

from long-term ecological and social research on the Pacific Coast of Mexico. Ecology and

Society, 10, 17.

Manning, A.D., Fischer, J., & Lindenmayer, D.B. (2006) Scattered trees are keystone structures-

implications for conservation. Biological Conservation, 132, 311-321.

Miles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., Kapos, V., & Gordon, J.E.

(2006) A global overview of the conservation status of tropical dry forests. Journal of

Biogeography, 33, 491-505.

Murphy, P.G. & Lugo, A.E. (1986) Ecology of tropical dry forest. Annual review of ecology and

systematics, 17, 67-88.

Nieto, H. (2000) Contribución de Acacia pennatula (Carbón) a la productividad agroforestal sostenible de

la reserva natural Miraflor-Moropotente, Estelí, Nicaragua, Centro Agronómico Tropical de

Investigación y Enseñanza, Turrialba, Costa Rica.

Olson, D.M. & Dinerstein, E. (1998) The Global 200: a representation approach to conserving the Earth's

most biologically valuable ecoregions. Conservation Biology, 12, 502-515.

Pennington, R.T., Lavin, M., & Oliveira-Filho, A. (2009) Woody plant diversity, evolution, and ecology

in the tropics: perspectives from seasonally dry tropical forests. Annual Review of Ecology,

Evolution, and Systematics, 40, 437-457.

Prado, D.E. & Gibbs, P.E. (1993) Patterns of species distributions in the dry seasonal forests of South

America. Annals of the Missouri Botanical Garden, 80, 902-927.

Purata, S.E., Greenberg, R., Barrientos, V., & López-Portillo, J. (1999) Economic potential of the

huizache, Acacia pennatula (Mimosoideae) in central Veracruz, Mexico. Economic botany, 53,

15-29.

Ratnam, J., Bond, W.J., Fensham, R.J., Hoffmann, W.A., Archibald, S., Lehmann, C.E.R., Anderson,

M.T., Higgins, S.I., & Sankaran, M. (2011) When is a 'forest' a savanna, and why does it matter?

Global Ecology and Biogeography, 20, 653-660.

Rico Arce, M.L. (2007) A checklist and synopsis of American species of Acacia (Leguminosae:

Mimosoideae) Comision Nacional para el Conocimiento y Uso de la Biodiversidad, Tlalpan,

Mexico.

Sallabanks, R. & Courtney, S.P. (1992) Frugivory, seed predation, and insect-vertebrate interactions.

Annual Review of Entomology, 37, 377-400.

Sánchez-Azofeifa, G.A., Quesada, M., Rodríguez, J.P., Nassar, J.M., Stoner, K.E., Castillo, A., Garvin,

T., Zent, E.L., Calvo-Alvarado, J.C., & Kalacska, M.E.R. (2005) Research Priorities for

Neotropical Dry Forests. Biotropica, 37, 477-485.

Seigler, D.S. & Ebinger, J.E. (2006) New combinations in the genus Vachellia (Fabaceae: Mimosoideae)

from the New World. Phytologia, 87, 139-178.

Silver, W.L., Ostertag, R., & Lugo, A.E. (2000) The potential for carbon sequestration through

reforestation of abandoned tropical agricultural and pasture lands. Restoration ecology, 8, 394-

407.

Page 26: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Stevens, W.D., Pool, A., Montiel, O.M., Ulloa, C.U., & Garden, M.B. (2001) Flora de Nicaragua

Missouri Botanical Garden Press St. Louis, USA.

Tarrasón, D., Urrutia, J.T., Ravera, F., Herrera, E., Andrés, P., & Espelta, J.M. (2010) Conservation status

of tropical dry forest remnants in Nicaragua: Do ecological indicators and social perception

tally? Biodiversity and Conservation, 19, 813-827.

Trejo, I. & Dirzo, R. (2002) Floristic diversity of Mexican seasonally dry tropical forests. Biodiversity

and Conservation, 11, 2063-2084.

Page 27: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Capítulo1 

Rebrota o muere –  

La inevitable presencia de perturbaciones 

repetidas  

Page 28: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Resumen

Diversas especies de plantas propias del bosque tropical seco, persisten tras las

perturbaciones (por ejemplo tras la chapia o el fuego) en parte gracias al rebrote. No

obstante se sabe muy poco sobre si esta capacidad se ve afectada por la severidad de las

perturbaciones y especialmente por el momento de la estación durante la cual se

producen, y aun más, sobre la importancia que juegan los recursos almacenados

(almidón, N y P). Investigamos la capacidad de rebrote tras la chapia y la quema

aplicados ambos tratamientos de forma experimental antes y después de la estación seca

en individuos de Acacia pennatula en sistemas silvopastoriles del Noroeste de

Nicaragua. Cada tratamiento se aplicó en 12 individuos y fue replicado en 6 parcelas.

Un año después del inicio del experimento, tanto la supervivencia como la recuperación

de biomasa fueron significativamente menores en los individuos quemados que en los

podados (78% % y 75.3 8.0 g versus 94% % y 79.1 6.8 g; Media Error

Estándar). Cualquiera que fuera el tipo de perturbación aplicada, los individuos

perturbados después de la estación seca mostraron la menor supervivencia, crecimiento

y concentración de N y P. Estos resultados sugieren que el rebrote en la especies del

trópico seco pueden estar limitado tras perturbaciones intensas (por ejemplo el fuego)

pero especialmente si éstas ocurren hacia el final de la estación seca. Esta restricción

fenológica podría ser debida a una reducción de la disponibilidad de N y P a medida que

la estación seca progresa.

Page 29: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Chapter1 

Resprout or die ‐ The inevitable presence of repeated 

disturbances 

Abstract

Many plant species in tropical dry forests partly base their ability to persist after

disturbance on resprouting. Yet little is known if this ability can be affected by the

intensity and seasonality of disturbance and whether the amount of resources (starch, N,

P) stored in the taproot may constrain this response. We investigated resprouting after

experimental clipping or burning, applied before or after the dry season and repeatedly

in Acacia pennatula individuals in wooded rangelands of North-West Nicaragua. Each

treatment was applied to 12 trees and replicated in six plots. One year after the onset of

the experiment, survival and biomass recovery were significantly lower in burned than

in clipped individuals (78% % and 75.3 8.0 g vs. 94% % and 79.1 6.8 g;

mean SE). Whatever the disturbance applied, trees disturbed after the dry season

significantly showed the lowest survival, growth and concentration of N and P. These

results suggest that resprouting in dry tropical species may be constrained by intense

disturbances (e.g. burning) but especially if they occur towards the end of the dry

season. This phenological constraint could be due to the reduced availability of N and P

as this dry season progresses.

Page 30: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Introduction

Many plant species in tropical dry forests base their ability to persist partly on

resprouting after disturbance (Vieira & Scariot 2006). This ability is due both to the

presence of a protected bud bank (Klimešová & Klimeš 2007) and on the maintenance

of stored reserves to sustain regrowth (Chapin et al. 1990). Yet the relative importance

of stored resources in driving resprouting remains elusive. Thus, while certain studies

have proven carbohydrates to be mobilised during resprouting and to constrain regrowth

(Bowen & Pate 1993), others have suggested nitrogen and phosphorus to be the most

limiting resources (Canadell & López-Soria 1998, Miyanishi & Kellman 1986). What’s

more, a third group has observed no correlation between stored resources and

resprouting vigour (Cruz et al. 2003a). Resprouting may also be conditioned by the

interaction between the phenological dynamics of resource mobilisation within the plant

and the time when disturbance occurs (Castell et al. 1994, Cruz et al. 2002, Hodgkinson

1992). Thus, species-specific differences in resprouting may arise from differences in

bud bank size, ability to store and mobilise reserves, and phenological differences when

disturbances take place (Bonfil et al. 2004, Canadell & López-Soria 1998, Espelta et al.

1999).

Acacia sensu lato is a large circumtropical genus. Some of these species act as

pioneers, successfully persisting in highly disturbed areas thanks to their drought

resistance and resprouting ability. Numerous studies have reported the high resprouting

ability of Acacia spp. in fire-prone ecosystems such as African savannas, as well as in

Australian and North American grasslands (Meyer et al. 2005, Schutz et al. 2009,

Wright & Clarke 2007). Yet little is known about this response in the Neotropical

species from dry forests, although they may behave differently due to the lower

importance of fire as a natural ecological driver in this area compared to other

Page 31: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

disturbance types (i.e. grazing exerted by megaherbivores in Janzen & Martin 1982, see

also Vieira & Scariot 2006). Moreover, despite the harsh dry season undergone by

plants in tropical dry areas, and the potential increase in drought intensity as a result of

the climate change (IPCC 2007), not a single study addresses the effects of the time of

disturbance on the resprouting ability in plants of tropical dry forest and the role played

by stored resources (e.g. starch, nutrients) in this response.

The main aim of this study was to experimentally investigate the resprouting

response of Acacia pennatula to different disturbance regimes. We assessed survival,

resprouting vigour and resource concentration (starch, N and P) in individuals, after two

types of disturbance of differing intensity (clipping, burning) applied before or after the

dry season and repeatedly. We hypothesise that: (1) if resprouting ability in A.

pennatula has been selected by fire, we should find few differences in resprouting

between clipped and burned individuals (for Mediterranean-type species, see Bonfil et

al. 2004); (2) if the dry season involves a reduction in the levels of stored reserves so as

to support the plant metabolism (Sardans & Peñuelas 2007), individuals disturbed at the

end of this season should show lower resprouting ability (Bonfil et al. 2004); and (3) if

resprouting ability critically depends on the amount of stored resources, resprouting

should be reduced in repeatedly disturbed individuals.

Materials and Methods

Study area and species

The study was conducted in the Miraflor-Moropotente Terrestrial Protected Landscape

in the Estelí Department, north-west Nicaragua (13º19’30”-13º60’30”N, 86º11’00”-

86º22’00”W). This protected area covers 290 km2 of wooded rangelands with isolated

tropical dry-forest remnants. The mean annual temperature ranges from 16ºC to 30ºC

Page 32: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

with a mean rainfall of 804 mm y-1 (data from Condega weather station, 1983-2009).

Most rainfall episodes (90%) take place between May and November (wet season) and

the rest in a dry season from December to April. Soils are ultisols and vertisols

developed from an ancient (i.e. Pliocene) volcanic parent material (D. Tarrasón, unpubl.

data). According to Tarrasón et al. (2010), most of the protected area is occupied by

wooded rangelands with scattered A. pennatula trees. Acacia pennatula Benth. is a

spiny leguminous tree (up to 8 m), native to Central America, and common in secondary

tropical dry forests and disturbed areas from South-East Mexico to Ecuador (Ebinger et

al. 2000). The indehiscent protein-rich pods of this species are used by local people for

cattle-raising (Casassola 2000). Thanks to this type of management, livestock enhance

both the spread of A. pennatula seeds and their germination ability (G. Peguero, unpubl.

data).

Experimental design and sampling

In order to analyse the resprouting ability of A. pennatula under different disturbance

regimes, we designed a factorial experiment, combining two types of disturbance

applied at different times of the year. Disturbance treatments consisted of: (1) clipping

all above-ground biomass and (2) burning. Comparison of these two treatments was

done in light of the different disturbance intensities they represent: i.e. clipping does not

affect the bud bank located in the root collar whereas burning may (Espelta et al. 1999).

The burning treatment was performed by applying the flame of an acetylene hand torch

directly to the base of the stump until reaching a mean temperature of 300ºC for an

average of 2 min (Lloret & López-Soria 1993). Temperature was continuously

monitored with a thermometric probe (Anritherm Thermometer HL600 Type K).

According to the description of wildfire intensity in similar ecosystems (Gibson et al.

Page 33: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

1990), this experimental treatment simulates the low-intensity wildfires that affect

savanna-like landscapes. To test disturbance-date effects on resprouting, both treatments

were applied: at the start of the dry season (December 2007), at the end of the dry

season (June 2008) or at both times (before and after the dry season). Each experimental

treatment was applied on 12 individuals randomly selected and replicated on six

different sites subjected to similar management practices (hereinafter plots). To check

the size of individuals at the start of the experiment, the initial number of stems was

counted and the fresh weight of all stems in those individuals clipped or burned was

estimated, once cut down, with a field scale. To estimate the initial biomass of

individuals assigned to the ‘after dry season’ treatment (i.e. not initially disturbed), we

measured the diameter and height of all stems and used allometric equations relating

basal diameter with dry biomass (80ºC, 48 h) obtained from a subsample of 30 resprouts

(dry biomass = 125.3 basal diameter – 82.1; n = 30; P < 0.0001, R2 = 0.72). At the onset

of the experiment, A. pennatula individuals had a height ranging from 0.4 to 1.2 m, an

average of eight stems per individual and an above-ground dry biomass of 858 49 g

(mean SE).

The experiment finished in October 2008 (12 months after disturbance was

applied in the ‘before the dry season’ treatments and 6 months following the ‘after the

dry season’ treatments), when we revisited all individuals and identified them as living

or dead (i.e. resprouted or non-resprouted). Even though a different period of time had

passed for individuals disturbed before or after the dry season, it is highly improbable

that non-resprouted individuals from the later treatment could further resprout after 6

months, according to the fast resprouting behaviour of this species (personal

observation) and other Acacia spp. (e.g. Acacia karoo, Schutz et al. 2009). In those

individuals that survived, we counted and cut down all resprouts to estimate the final

Page 34: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

biomass produced. To control for the different time individuals disturbed before and

after the dry season had for growing before the experiment ended, we calculated a

mean growth rate per individual at a monthly basis, as: final biomass divided by 12

months in individuals disturbed before the dry season and by 6 months in those

disturbed after the dry season.

To assess the effects of the different types and dates of disturbance in the below-

ground reserves of starch, N and P, we excavated and collected the first 30 cm of the

taproot of 12 individuals per experimental treatment (two per plot) at the end of the

experiment. We also took an equivalent sample of taproots from a group of untouched

plants designated as controls (12 individuals, two per plot). The protected status of the

area precluded the possibility of excavating (destroying) a larger number of plants.

Taproots were transported to the lab where they were dried (60ºC, until a constant

weight was reached) and ground into fine powder. Starch was extracted with a 90%

DMSO solution at 120ºC for 1 h and concentration was determined colourimetrically at

620 nm after reaction with acidic iodine solution (0.06% KI and 0.003% I2 in 0.05N

HCl). Nitrogen was analysed by complete combustion according to the Dumas

principle, whereas phosphorus was analysed through conventional wet acid digestion

and inductively coupled plasma optical emission spectrometry (ICP-OES).

Data analysis

Differences in survival and in the number of resprouts produced according to the

experimental treatments were analysed by means of generalized linear mixed models

(GLIMMIX procedure; SAS 9.1, SAS Institute), using a binomial error and a logit link

function for survival and a Poisson error and a log link function for the number of

resprouts. Differences in final biomass and growth rate per individual were analysed by

Page 35: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

means of general linear mixed models (Statistica 6.0 software, StatSoft Inc.), after

dependent variables were log-transformed to meet the assumption of normality. In all of

these analyses, disturbance (clipping, burning) and disturbance date (before or after the

dry season and repeatedly) were included as fixed factors whereas plot was included as

a random factor. To account for the potential effect of the size of individuals in their

response to the experimental treatments, initial biomass was also included in all

analyses as a covariate.

The effects of type and disturbance date on the concentration of starch, nitrogen

and phosphorus (log-transformed) in the taproot were analysed using two separate

general linear models, including initial biomass as a covariate. Two separate models for

type and disturbance date had to be conducted due to restrictions imposed by the

sampling design. Because taproot samples were obtained at the end of the experiment

we lacked control individuals for each disturbance date and thus the potential interaction

between type and disturbance date could not be tested. Because of the low number of

taproots excavated per plot, we did not include plot as a random factor in these analyses.

Results

Survival of A. pennatula individuals was significantly affected by the type of

disturbance and the date it was applied, but not by the interaction between these two

factors (Table 1). Survival was lower in burned than in clipped individuals

(respectively, 78% 4% and 94% 2%; mean SE), and whatever the type of

disturbance undergone, survival was higher in individuals disturbed before the dry

season, slightly lower in those repeatedly disturbed, and much lower in those disturbed

only at the end of the dry season (respectively 96% 2%, 89% 4% and 72% 7%).

Page 36: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

In surviving individuals, resprouting vigour (number of resprouts, growth rate

and final biomass) was also affected by the experimental treatments applied (Table 1).

Interaction between the type and disturbance date revealed that individuals clipped and

burned before the dry season produced a similar number of resprouts, while resprout

production was much lower in those burned after the dry season (Figure 1). Moreover,

burned individuals exhibited a lower growth rate and attained a lower final biomass than

those clipped (Table 1; respectively, 13.3 1.2 g mo-1 vs 14.8 1.2 g mo-1 and 75.3

8.0 g vs 79.1 6.8 g). Not only the type of disturbance, but also the date it was applied,

affected the growth rate (Table 1). Curiously, the growth rate of twice-disturbed

individuals was similar to that of those disturbed once before the dry season and both

were significantly higher than individuals disturbed after the dry season (Figure 2). The

positive effect of the initial biomass on resprouting vigour (i.e. number of resprouts,

growth rate and final biomass) was greater on burned than on clipped individuals

(interaction disturbance type × initial biomass in Table 1), while in terms of disturbance

date, the positive effect of size was only observed in individuals disturbed before the

dry season (interaction disturbance date × initial biomass in Table 1).

At the end of the experiment, individuals that had been most severely disturbed

(burned) had lower starch and N concentrations in their taproots than clipped or control

ones (Figure 3, F2,32 = 7.0, P = 0.003 for starch and F2,32 = 12.7, P = 0.0001 for N). As

for the date when disturbance was applied, no differences were seen in the concentration

of starch; while concentration of N, and especially P, were significantly lower in

individuals disturbed after the dry season (Figure 4, F3,71 = 5.0, P = 0.004 for N and F3,71

= 5.3, P = 0.002 for P). Whatever the type and disturbance date, the significance of the

covariate effect in these analyses indicated that both starch and P concentration in the

Page 37: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

taproot were negatively related to the initial biomass of individuals (F1,71 = 14.2, P =

0.0003 for starch and F1,71 = 8.2, P = 0.005 for P).

Discussion

The high survival rate of A. pennatula after experimental disturbances is similar to other

Acacia sp. (Meyer et al. 2005, Schutz et al. 2009, Wright & Clarke 2007) and may help

explain the persistence of this species in highly disturbed areas. However, burned

individuals showed higher mortality and lower resprouting vigour compared to the

clipped ones. Sensitivity to fire was also evident in the greater positive effect of the

initial size on the number of resprouts produced after disturbance for burned than for

clipped individuals (interaction disturbance type × initial biomass in Table 1). In light of

these results, and taking into account that certain authors have suggested that wildfires

have not been a natural ecological driver in tropical dry forests (Janzen 2002, Vieira &

Scariot 2006), the resprouting behaviour of A. pennatula cannot be assumed to be a fire

adaptation (sensu Bond & Keeley 2005). Alternatively, resprouting ability in these

Neotropical species may be a pre-adaptive trait of damage tolerance to the grazing

pressure exerted by extinct megaherbivores (Janzen & Martin 1982).

The lower survival and resprouting vigour in individuals disturbed at the end of

the dry season has been noticed in other species living in seasonal climates and

attributed to the worsening of the plant water status and the consumption of stored

reserves so as to sustain metabolic activity during a harsh dry season (Bonfil et al. 2004,

Bowen & Pate 1993, Cruz et al. 2002, Hodgkinson 1992). However, twice-disturbed

plants (before and after the dry season) showed a higher survival likelihood and

resprouting vigour than those disturbed only at the end of the season. The improvement

in resprouting ability with an increasing frequency of disturbance has been observed for

Page 38: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

some Mediterranean species (e.g. Erica arborea, Riba 1998) but, as far as we know, this

is the first report of such a compensatory response (sensu McNaughton 1983) for an

Acacia sp. This higher performance of twice-disturbed individuals may be due to the

combination of two factors. First, after being disturbed at the start of the dry season, A.

pennatula individuals were able to resprout and quickly develop well-expanded leaves

within a few weeks (G Peguero, pers. obs; for A. karoo, Schutz et al. 2009). This

contrasts with species that exhibit a far more delayed resprouting onset (e.g.

Mediterranean evergreen oaks, Bonfil et al. 2004) and it could be due to the lower leaf

construction costs of the thin leaves of Acacia pennatula in comparison to those of

sclerophyllous-evergreen species (Wright et al. 2004). Second, in these fast-resprouting

individuals of A. pennatula, an oversized root-shoot ratio in comparison to undisturbed

plants may help to enhance resource availability and thus improve water status and

photosynthetic activity during the dry season (Castell et al. 1994, Schutz et al. 2009).

Actually, the similar levels of starch concentration of individuals disturbed just before

the dry season and those twice disturbed, suggest that the latter were quickly able to

replenish part of the starch consumed after their initial resprouting process.

Our results indicate that burn recovery required the mobilisation of a greater

amount of starch and N than recovery from clipping. As Vesk & Westoby (2004) have

suggested, this could be due to the reconstruction costs of the bud bank (i.e. meristems)

and their protective structures (e.g. bark) after more intense disturbances (e.g. burning).

Yet the lack of significant differences in starch concentration in plants disturbed before

and after the dry season and, especially between once- and twice-disturbed individuals,

backs the idea of a minor role of carbon reserves in resprouting under moderate

disturbance regimes (Cruz et al. 2003a, b). Conversely, the lower N and P levels in

individuals disturbed at the end of the dry season, and also lower P levels in those twice

Page 39: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

disturbed, suggests that, rather than starch, N and especially P availability may constrain

the resprouting ability of plants (Canadell & López-Soria 1998, Chapin et al. 1990,

Miyanishi & Kellman 1988, Saura-Mas & Lloret 2009). The key role of P as a limiting

nutrient in tropical areas has been widely suggested (Lugo & Murphy 1986) usually

associated with a depletion-driven P limitation in old volcanic soils (Vitousek et al.

2010, see also Herbert & Fownes 1995, Vitousek & Farrington 1997). Indeed, soils in

our study area have developed from ancient volcanic parent material and show very low

P levels (9.5 1.7 ppm, D. Tarrasón, unpubl. data). In addition to soil characteristics, P

limitation for resprouting could also arise from a phenological constraint: i.e. the need

to carry out a massive mobilisation of this nutrient from woody reservoirs towards

leaves to improve water-use efficiency during drought conditions (Sardans & Peñuelas

2007). Moreover, it must be highlighted that A. pennatula as a N2-fixing species

(Cervantes et al. 1998) may have high P demands (Nguyen et al. 2006, Ribet & Drevon

1996, Vitousek 1999). Thus, low P levels may limit regrowth not only directly but also

indirectly through constraining N-fixation. To the best of our knowledge, this is the first

contribution to the hypothesis of a limitation of resprouting response in tropical dry

forests mediated by a phenological constraint in nutrient availability (N, P).

Nevertheless, given the relatively moderate disturbance intensity we applied, further

research should be carried out under more intense disturbance regimes, different

watering levels or fertilising with P. In addition, the significance of the factor ‘plot’ in

all traits describing the resprouting success and the effects of initial biomass in the final

concentration of starch and N in disturbed plants, indicates resprouting may also be

influenced by heterogeneous resources across the site not quantified and other inter-

individual differences.

Page 40: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

As with other Acacia spp. worldwide, scattered individuals of A. pennatula may

be a keystone structure (sensu Manning et al. 2006) in highly disturbed areas in Central

America, playing a dual, contrasting role. On the one hand, they may help the early

successional recovery of other late-successional tree species through a process of

facilitation during seedling establishment (Tarrasón et al. 2010). On the other, A.

pennatula is often an early coloniser during woody succession in grassland (Purata et al.

1999) which can create problems for maintaining and managing pasture. Hence the

results obtained in this study can be used to design ecologically sound management

alternatives (i.e. protection or control) of A. pennatula, depending on the management

goals (Bond & Archibald 2003). Furthermore, our results suggest that A. pennatula

plants would perform poorly under some climate-change scenarios which predict a

lengthening of the dry seasons in some tropical-dry areas, which may also result in more

frequent fires.

References

Bond, W.J. & Archibald, S. (2003) Confronting complexity: fire policy choices in South African savanna

parks. International Journal of Wildland Fire 12, 381-389.

Bond, W.J. & Keeley, J.E. (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable

ecosystems. Trends in Ecology and Evolution 20, 387-394.

Bonfil, C., Cortés, P., Espelta, J.M. & Retana, J. (2004) The role of disturbance in the co-existence of the

evergreen Quercus ilex and the deciduous Quercus cerrioides. Journal of Vegetation Science 15,

423-430.

Bowen, B.J. & Pate, J.S. (1993) The significance of root starch in post-fire shoot recovery of the

resprouter Stirlingia latifolia R. Br. (Proteaceae). Annals of Botany 72, 7-16.

Canadell, J. & López-Soria, L. (1998) Lignotuber reserves support regrowth following clipping of two

Mediterranean shrubs. Functional Ecology 12, 31-38.

Casasola, F. (2000) Productividad de los sistemas silvopastoriles tradicionales en Moropotente, Estelí,

Nicaragua. M.Sc. thesis, CATIE, Turrialba, Costa Rica.

Castell, C., Terradas, J. & Tenhunen, J.D. (1994) Water relations, gas exchange, and growth of resprouts

in mature plant shoots of Arbutus unedo L. and Quercus ilex L. Oecologia 98, 201-211.

Page 41: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Cervantes, V., Arriaga, V., Meave, J. & Carabias, J. (1998) Growth analysis of nine multipurpose woody

legumes native from southern Mexico. Forest Ecology & Management 110, 329-341.

Chapin, F.S., Schultze, E.D., & Mooney, H.A. (1990) The ecology and economics of storage in plants.

Annual Review of Ecology, Evolution and Systematics 21, 423-447.

Cruz, A., Pérez, B., Quintana, J.R. & Moreno, J.M. (2002) Resprouting in the Mediterranean type shrub

Erica australis affected by soil resource availability. Journal of Vegetation Science 13, 641-650.

Cruz, A., Pérez, B. & Moreno, J.M. (2003a) Plant stored reserves do not drive resprouting of the

lignotuberous shrub Erica australis. New Phytologist 157, 251-261.

Cruz, A., Pérez, B. & Moreno, J.M. (2003b). Resprouting of the Mediterranean-type shrub Erica australis

with modified lignotuber carbohydrate content. Journal of Ecology 91, 348-356.

Ebinger, J.E., Seigler, D.S. & Clarke, H.D. (2000) Taxonomic revision of South American species of the

genus Acacia subgenus Acacia (Fabaceae: Mimosoideae). Systematic Botany 25, 588-617.

Espelta, J.M., Sabaté, S. & Retana, J. (1999) Resprouting dynamics. Pp. 61-73 in Rodà, F., Retana, J.,

Gracia, C. A. & Bellot, J. (eds.). Ecology of Mediterranean evergreen oak forests. Springer,

Berlin.

Gibson, D.J., Hartnett, D.C. & Merill, G.L.S. (1990) Fire temperature heterogeneity in contrasting fire

prone habitats – Kansas tallgrass prairie and Florida sandhill. Bulletin of the Torrey Botanical

Club 117, 349-356.

Hodgkinson, K.C. (1992) Water relations and growth of shrubs before and after fire in a semi-arid

woodland. Oecologia 90, 467-473.

IPCC (2007) Climate Change 2007: The physical science basis. Contribution of working group I to the

fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge

University Press, Cambridge. 996 pp.

Janzen, D.H. (2002) Tropical dry forest: Area de Conservación de Guanacaste, Northwestern Costa Rica.

Pp. 559-583 in Perrow, M. & Davy, A. J. (eds.). Handbook of ecological restoration, volume II.

Cambridge University Press, Cambridge.

Janzen, D.H. & Martin, P.S. (1982) Neotropical anachronisms: the fruits the Gomphotheres ate. Science

215, 19-27.

Klimešova, J. & Klimeš, L. (2007). Bud banks and their role in vegetative regeneration – a literature

review and proposal for simple classification and assessment. Perspectives in Plant Ecology,

Evolution and Systematics 8, 115-129.

Lloret, F. & López-Soria, L. (1993) Resprouting of Erica multiflora after experimental fire treatments.

Journal of Vegetation Science 4, 367-374.

Lugo, A.E. & Murphy, P.G. (1986) Nutrient dynamics of a Puerto Rican subtropical dry forest. Journal of

Tropical Ecology 2, 55-72.

Manning, A.D., Fischer, J. & Lindenmayer, D.B. (2006) Scattered trees are keystone structures –

implications for conservation. Biological Conservation 132, 311-321.

McNaughton, S.J.C. (1983) Compensatory plant growth as a response to herbivory. Oikos 40, 329-336.

Meyer, K.M., Ward, D., Moustakas, A. & Wiegand, K. (2005) Big is not better: small Acacia mellifera

shrubs are more vital after fire. African Journal of Ecology 43, 31-136.

Page 42: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Miyanishi, K. & Kellman, M. (1986) The role of root nutrient reserves in regrowth of two savanna

shrubs. Canadian Journal of Botany 64, 1244-1248.

Nguyen, N.T., Mohapatra, P.K. & Fujita, K. (2006) Elevated CO2 alleviates the effects of low P on the

growth of N2-fixing Acacia auriculiformis and Acacia mangium, Plant and Soil 285, 369-379.

Purata, S.E., Greenberg, R., Barrientos, V. & Lópe-Portillo, J. (1999) Economic potential of the

Huizache, Acacia pennatula (Mimosoideae) in Central Veracruz, Mexico. Economic Botany 53,

15-29.

Riba, M. (1998) Effects of intensity and frequency of crown damage on resprouting Erica arborea L.

(Ericaceae). Acta Oecologica 19, 9-16.

Ribet, J. & Drevon, J.J. (1996) The phosphorus requirement of N2-fixing and urea-fed Acacia mangium.

New Phytologist 132, 383-390.

Sardans, J. & Peñuelas, J. (2007) Drought changes phosphorus and potassium accumulation patterns in an

Evergreen Mediterranean forest. Functional Ecology 21, 191-201.

Saura-Mas, S. & Lloret, F. (2009) Linking post-fire regenerative strategy and leaf nutrient content in

Mediterranean woody plants. Perspectives in Plant Ecology, Evolution and Systematics 11, 219-

229.

Schutz, A.E.N, Bond, W.J. & Cramer, M.D. (2009) Juggling carbon: allocation patterns of a dominant

tree in a fire-prone savanna. Oecologia 160, 235-246.

Tarrasón, D., Urrutia, J.T., Ravera, F., Herrera, E., Andrés, P. & Espelta, J.M. (2010) Conservation status

of tropical dry forests remnants in Nicaragua: Do ecological indicators and social perception

tally? Biodiversity and Conservation 19, 813-827.

Vesk, P.A. & Westoby, M. (2004) Funding the bud bank: a review of the costs of buds. Oikos 106, 200-

208.

Vieira, D.L. & Scariot, A. (2006) Principles of natural regeneration of tropical dry forests for restoration.

Restoration Ecology 14, 11-20.

Vitousek, P.M. (1999) Nutrient limitation to nitrogen fixation in young volcanic sites. Ecosystems 2, 505-

510.

Vitousek, P.M. & Farrington H. (1997) Nutrient limitation and soil development: experimental test of a

biogeochemical theory. Biogeochemistry 37, 63-75.

Vitousek, P.M., Porder, S., Houlton, B.Z. & Chadwick, O.A. (2010) Terrestrial phosphorus limitation:

mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications (20),

5-15.

Wright, B.R. & Clatke, P.J. (2007) Resprouting responses of Acacia shrubs in the Western desert of

Australia – fire severity, interval and season influence survival. International Journal of

Wildland Fire 16, 317-323.

Wright, I.J., Reich, P.B, Westoby, M., Ackerly, D.A., et al. (2004) The worldwide leaf economics

spectrum. Nature 428, 821-827.

Page 43: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Table 1. Results of the effects of disturbance type (clipping, burning), disturbance date (before and after the dry season and repeatedly), initial

biomass (Bi) and their interaction on survival, number of resprouts, final biomass and individual growth rate of Acacia pennatula individuals in

tropical dry forests in north-west Nicaragua. Effects on survival and number of resprouts were tested by means of generalized linear mixed

models (GLMM), while effects on the other variables were analysed by means of a general linear mixed model. For GLMM models the

covariance parameter estimate ± SE is shown.

Survival Number of resprouts Biomass Individual growth rate

df F P df F P df F P df F P

Disturbance type (D) 1, 417 8.62 0.0035 1, 344 22.8 <0.0001 1, 344 8.11 0.0047 1, 344 8.17 0.0045

Disturbance date (Dt) 2, 417 10.8 <0.0001 2, 344 16.5 <0.0001 2, 344 2.37 0.0951 2, 344 3.61 0.0281

Initial biomass (Bi) 1, 417 3.73 0.0540 1, 344 192 <0.0001 1, 344 33.6 <0.0001 1, 344 33.9 <0.0001

D × Dt 2, 417 3.73 0.246 2, 344 4.49 0.0119 2, 344 2.90 0.0562 2, 344 2.94 0.0541

D × Bi 1, 417 0.97 0.326 1, 344 24.4 <0.0001 1, 344 4.96 0.0266 1, 344 4.99 0.0261

Dt × Bi 2, 417 0.73 0.482 2 ,344 2.56 0.0786 2, 344 7.05 0.0010 2, 344 5.76 0.0035

Plot --- --- --- --- --- --- 5, 344 32.4 <0.0001 5, 344 33.7 <0.0001

Covariance parameter 0.492 ± 0.467 0.028 ± 0.019 --- ---

Page 44: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

0

2

4

6

8

10

12

Clipping Burning

Re

spro

uts

(n

um

be

r p

er in

divi

dua

l)

Disturbance type

AaAa

Aa

Aa

Aa

Bb

after dry season

before dry season before and after

Figure 1. Mean ± SE number of resprouts in Acacia pennatula individuals subjected to

burning or clipping before dry season, after dry season and on the two dates (before and

after dry season). Different letters indicate significant differences between disturbance

treatments for a given season (upper case letters) and between the different seasons

within the same disturbance treatment (lower case letters), according to LS means tests.

Page 45: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

0

5

10

15

20G

R in

bio

mas

s (g

mo-1

)

a a

b

before and after

after dry season

before dry season

Figure 2. Mean ± SE growth rate in biomass in Acacia pennatula individuals disturbed

before dry season, after dry season and on the two dates (before and after dry season).

Different letters indicate significant differences among the experimental treatments

according to Fisher-LSD test.

Page 46: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

0

5

10

15

20

25

30

35

40a

b

aS

tarc

h (

mg

g -1

)

a)

0

2

4

6

8

10

a

a

b

Nitr

oge

n (

mg

g-1

)

b)

Pho

sph

oru

s (m

g g

-1)

0.5

0.4

0.3

0.2

0.1

0

0.6

a

a

a

c)

Control Clipping Burning

Figure 3. . Mean ± SE concentration of starch (a), nitrogen (b) and phosphorus (c) in

the taproot of Acacia pennatula individuals undisturbed (control), clipped and burned.

Different letters indicate significant differences according to Fisher-LSD test.

Page 47: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

0

5

10

15

20

25

30

35

40

a)

Sta

rch

(mg

g-1)

a

a

a

a

0

1

2

3

4

5

6

7

8

Nitr

ogen

(m

g g

-1)

a a a

b

b)

Pho

spho

rus

(mg

g-1)

a a

b b

c)0.5

0.4

0.3

0.2

0.1

0control

before dry season

before and after

afterdry season

Figure 4. Mean ± SE concentration of starch (a), nitrogen (b) and phosphorus (c) in the

taproot of Acacia pennatula individuals undisturbed (control), disturbed before dry

season, disturbed after dry season and disturbed on the two dates (before and after dry

season). Different letters indicate significant differences according to Fisher-LSD test.

Page 48: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Capítulo2 

La aptitud frugívora del ganado y la 

quema de pastos –  

Los primeros ingredientes para una receta 

de éxito 

Page 49: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Resumen

Tras la transformación masiva del bosque tropical seco en pastos arbolados de uso

ganadero, la falta de dispersión de semillas ha sido sugerida como una de las mayores

barreras para la regeneración forestal. Sin embargo, la dispersión de semillas mediante

endozoocória por parte del ganado junto con la capacidad del fuego para liberar a las

semillas de su latencia puede jugar un papel crucial aumentando la germinación y

finalmente el reclutamiento de plántulas. En tres especies comunes del bosque seco

Mesoamericano, evaluamos la efectividad del ganado como agente dispersor mediante

un experimento de cafetería. Además testamos la posible interacción entre endozoocória

y fuego como factores desencadenantes de la germinación, mediante un experimento en

el cual el tránsito intestinal de las semillas fue reproducido experimentalmente y

seguido de diversos tratamientos consistentes en golpes de calor a distintas temperaturas

y tiempos de exposición. Los frutos de las tres especies fueron consumidos ávidamente

por el ganado pero la gran diferencia entre especies en el número de semillas por fruto

produjo aún más acusadas diferencias en la efectividad del ganado como agente

dispersor en términos de carga de semillas por cada evento de forrajeo. No hubo

interacción entre el tránsito intestinal y el fuego sugiriendo así que la germinación de las

semillas con latencia física no es solo una cuestión del nivel de escarificación de la

cubierta. No obstante, mientras que el tránsito intestinal no produjo ningún efecto, el

fuego estimuló consistentemente la germinación a medida que la temperatura y el

tiempo de exposición de los golpes de calor aumentaron. En conjunto nuestros

resultados sugieren que la dispersión de semillas por parte del ganado junto con la

capacidad de las semillas de resistir su paso por el tracto intestinal y el fuego en

liberarlas de su latencia, pueden ser procesos clave a fin de promover la regeneración de

los bosques tropicales secos Mesoamericanos.

Page 50: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Chapter2 

Cattle  frugivory and pasture  fires  ‐ The  first  ingredients 

for a successful recipe 

Abstract

After the massive transformation of tropical dry forests into cattle-ranching savannas,

the lack of seed dispersal has been suggested as a major barrier to forest regeneration.

However, seed dispersal through endozoochory by cattle along with fire-induced release

of seed dormancy may play a crucial role enhancing germination and ultimately plant

recruitment in pastures. In three common Mesoamerican dry-tropical tree species, we

assessed the effectiveness of cattle as dispersal agent by means of cafeteria tests. We

also tested the potential interaction between endozoochory and fire as triggers of

germination through an experiment in which gut passage was experimentally

reproduced and followed by heat-shock treatments differing in temperature and time.

The fruits of the three species were avidly eaten by cattle but the great difference on the

number of seeds per fruit led to striking differences between species on the

effectiveness of cattle as dispersal agent in terms of seed load per foraging event. There

was no interaction between gut passage and fire: whereas gut passage did not have any

effect, fire consistently stimulated germination with increasing heat-shock temperature

and time of exposition. Overall our results suggest that seed dispersal by cattle along

with the ability of seeds to resist gut passage and the capacity of fire to release seeds

from their physical dormancy may be key processes in order to foster Mesoamerican

dry forest regeneration.

Page 51: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Introduction

After the pervasive transformation of Mesoamerican Dry Forests (MDF) into cattle-

ranching savannas (Griscom & Ashton 2011), the lack of seed dispersal into pastures

has been widely suggested as a major barrier to forest regeneration (Holl et al. 2000,

Griscom & Ashton 2011). Notwithstanding, several MDF species retain a suite of fruit

and seed traits that enable endozoochory (e.g., edible indehiscent fruits with hard-coated

seeds that resist scarification during gut passage), these being most likely the result of

the adaptation to the seed dispersal provided by the now extinct megaherbivores (Janzen

& Martin 1982). Therefore cattle may in turn be a key factor to overcome this dispersal

limitation by means of acting as a surrogate dispersal agent for many MDF tree species

(Janzen 1981, 1982, Gardener et al. 1993).

However fruit traits such as size, shape, number of seeds per fruit, chemical

composition or nutritional value, may result on specific preferences of frugivores

(Traveset 1998, Kitamura et al. 2002) that may affect the quantity component of their

effectiveness as seed dispersal agents, i.e., the number of visits and the number of seeds

dispersed per visit (Schupp 1993). This potential foraging choice can favour some

species and have consequences on seed dispersal into pastures and so on forest

regeneration patterns at a landscape level (Eycott et al. 2007). Although there is a

remarkable knowledge of cattle preferences between the foliages of some MDF tree

species currently used as alternative forage options (Sandoval-Castro et al. 2005), little

is yet known about cattle preferences between the fruits of the tree species they usually

feed on. Additionally, a particular animal species can have significantly different effects

on germination (i.e. positive, neutral or negative) after the seeds’ passage through its

digestive tract, and this may depend on a variety of seed traits such as seed coat

thickness, sculpture or seed size, which are intrinsic to the plant species (Traveset

Page 52: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

1998). Consequently, different plant species may perform differently to the same

dispersal agent, for instance as a result of differences on their gut passage resistance

(Benítez-Malvido et al. 2003), but concerning MDF there are still few studies assessing

these potential differences (but see Gardener et al. 1993, Benítez-Malvido et al. 2003).

Another feature of the current conversion of MDF into cattle-ranching savannas

is the recurrent usage of fire as a pasture management strategy (Miles et al. 2006,

Peguero & Espelta 2011, Griscom & Ashton 2011). Indeed, human-induced fire has

been pervasive during the last century in MDF (Griscom & Ashton 2011) but further

there is now clear evidence that its use for forest clearance has been widespread during

the several millennia of pre-Columbian human settlement (Denevan 1992, Dull 2004,

Cooke 2005, Avnery et al. 2011). However, in spite that fire is widely known to release

physical seed dormancy and trigger germination in a variety of species and ecosystems

(Keeley & Fotheringam 2000) to the best of our knowledge there are no studies

addressing this topic on MDF tree species so that there is a surprising lack of knowledge

on their germination responses after fire (Otterstrom et al. 2006, but see Zuloaga-

Aguilar et al. 2010 for cloud forest tree species). In addition, both endozoochory and

fire have been reported to induce germination in seeds with physical dormancy (i.e.,

water impermeable coat, Baskin & Baskin 2000) by means of coat scarification

(Traveset 1998, Keeley & Fotheringam 2000) but so far it has not been explored the

relationship between both factors. Namely, if germination patterns are a function of the

level of seed coat scarification (Traveset et al. 2008), then a given seed that survives gut

passage with an abraded seed coat but remains dormant, could be released of its

physical dormancy by shorter heat-shocks at lower temperatures, thus having fire an

additive effect over the chemical and bacterial scarification produced during gut

passage.

Page 53: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

So, the main goals of the present study were: (i) to confirm cattle as surrogate

seed dispersal agent on MDF while to assess its potential preference among fruits and

differences on its effectiveness as dispersal agent, and (ii) to investigate the germination

response after gut passage and subsequent fire in MDF tree species which are usually

dispersed by cattle into pastures. To this intent, we carried out cafeteria trials and a

germination experiment with three common MDF tree species which share

endozoochory and physical dormancy as dispersal and germination syndromes

respectively. Besides for the first time, we empirically tested whether pasture fire,

which was estimated through heat-shocks differing in temperature and exposition time

(Gashaw & Michelsen 2002), may have an additive effect over the scarification of seeds

produced during gut passage, which was simulated following a standardized in vivo-in

vitro procedure (Gardener et al. 1993). The results obtained may provide further insights

on the role that cattle and fire may have, if properly managed, in fostering MDF

regeneration in human-induced savannas.

Materials and Methods

Study area and species

This study was conducted in the Miraflor-Moropotente plateau (800-1200 m a.s.l) in

Northwest Nicaragua, which is a protected landscape characterised by a dry tropical

climate, i.e., monthly temperatures range from 16 to 33ºC and 90% of the 830 mm mean

annual precipitation falls during a 6-month wet season (May-October). The 290 km2 of

the area are a mosaic of savannah-like pastures surrounded by secondary and remnant

MDF patches with different conservation status (Tarrasón et al. 2010). Prescribed fires

during the dry season are a common practice in order to control woody species

regeneration in pastures yet there are several forest species colonizing pastures (Peguero

Page 54: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

& Espelta 2011). This community of pasture pioneers is widely dominated by Acacia

pennatula Benth. (Fabaceae), a spiny tree that is common in secondary MDF and

disturbed areas from Central to South America. This species produces protein-rich

indehiscent flat dry pods of an average weight of 4.5 gr (±0.24 SE) with a mean of 11

(±0.21 SE) hard-coated seeds of 0.06-0.1 gr that present physical dormancy (Baskin &

Baskin 2000). Once ripen at the beginning of the dry season, these fruits are actively fed

by cattle so that their seeds are spread into pastures by dunging. After gut passage, seeds

appear to survive and apparently germinate immediately after the first rains of the next

wet season (Peguero personal observation). This fruiting phenology and dispersal

syndrome are shared by many other tree species common in the study area such as

Guazuma ulmifolia Lam. (Malvaceae) and Enterolobium cyclocarpum Jacq. Griseb.

(Fabaceae). G. ulmifolia, a 2-15 m Neotropical tree, is also common regenerating in

pastures as well as in secondary or remnant forests (Esquivel et al. 2008). Its fruits are

spheroidal nuts with a hard woody core and a sweet outer coat, and they also are

valuable dry-season forage for cattle (Janzen 1982). They have an average weight of 2.6

gr (±0.17 SE) and a mean of 51 (±0.67 SE) tiny seeds within of 0.004-0.01 gr. E.

cyclocarpum is also a dry forest tree species of Central and South America, whose

canopy of up to 50 m height represents a conspicuous landscape element. Its indehiscent

rounded dry pods are also eaten by cattle (Janzen 1981) and have an average weight of

22 gr (±0.92 SE) and a mean of 11 very hard-coated seeds (±0.58 SE) of 0.8-1.1 gr.

Both latter species also have physical seed dormancy according to Baskin & Baskin

(2000). All previous fruit trait data come from a sample of at least 30 fruits collected

from 5 individuals of each tree species.

Page 55: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Fruit preference experiment

In order to assess fruit preference by cattle we conducted a cafeteria experiment during

August 2009 in the farm of an extensive cattle-rancher of the study area. We habituated

seven 6-month cow calves (Brown Swiss x Brahman) to feed in individual troughs

under the researchers presence. This habituation consisted in 5 days of offering a grain-

bran based concentrate ad libitum during 5 minutes each morning. After this habituation

period we started 5 consecutive days of preference trials that consisted in offering fruits

of A. pennatula, G. ulmifolia and E. cyclocarpum in separate amounts of 0.3 kg per

species within individual troughs. During 5 minutes, which was enough time to observe

the onset of a potential fruit selection but not enough to any of the offerings became

exhausted, we recorded the number of bites to each kind of fruit and finally we

weighted the final fruit intake. During the preference trials, the calves were fasted

overnight and all trials were done from 6 to 7 am to ensure a high and equivalent

feeding motivation during the whole experimentation period. Remarkably, all

individuals were naive with the fruits offered before the experiment and to avoid

conditioned learning (association) the position of fruits within the troughs was changed

each day.

Germination experiment

In order to assess the potential additive effects of endozoochory and fire over the

germination response of the three studied species, we conducted a germination

experiment in which we combined the experimental simulation of gut passage (i.e.

endozoochory) with different thermal shock treatments (i.e. fire) in a balanced factorial

design. To simulate the effects of gut passage on the seeds we developed a three-step (1.

rumen; 2. abomasum-duodenum; 3. intestine) in vivo-in vitro standardized procedure in

Page 56: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

the facilities of the Ruminants Research Group (Autonomous University of Barcelona)

during July 2010 (see Gardener et al. 1993 for a similar procedure). During March 2010

fruits from 5 individuals of each species were hand-harvested and manually dehisced to

obtain their seeds. Once in the lab, the seeds of each species coming from different

individuals were pooled and introduced in separate groups into sealed nylon bags

(Ankom Technology, Fairport, NY) and then into the rumen of a cannulated cow. After

48 hours of rumen suspension, the bags were placed into glass incubation bottles

containing 2 L of 0.1 N HCl adjusted to pH 1.9 with 1 g/L of pepsin (P-7000, Sigma, St.

Louis, MO) for 2h with constant rotation at 39ºC in DaisyII incubators (Ankom

Technology). After incubation the bags were rinsed with tap water and introduced in

incubation bottles containing 2 L of a pancreatin solution (0.5 M KH2PO4 buffer

adjusted to pH 7.75, containing 50 ppm of thymol and 3 g/L of pancreatin, P-7545,

Sigma) and incubated during 24 h with constant rotation at 39ºC (adapted from Gargallo

et al. 2006). Finally, to reproduce the anaerobic intestinal environment we collected

samples of rectum faeces from three different cows into plastic bags saturated with CO2

and they were immediately placed in a water-bath with a buffer solution of salt minerals

(NaCl, KCl, NaPO4, KPO4) at 39ºC. The faeces were manually crumbled in order to re-

suspend fibre associated bacteria and the solution was filtered through a 250 μm mesh

screen and completed with a buffer solution of salt minerals until reaching a dilution of

0.2 g faecal sample per ml-1 of buffer (adapted from Bindelle et al. 2006). The bags

within the intestinal bacterial inoculum were incubated 24 h more with constant rotation

at 39ºC in anaerobic conditions. Although it must be noted that retention times within a

ruminant may vary depending on the size and specific gravities of the particles (i.e.,

seeds; Murphy et al. 1989), the incubation times applied followed those suggested by

Warner (1981) and applied by Gardener et al. (1993) with which this latter authors did

Page 57: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

not find differences compared with natural passage rates of seeds in cattle. Once the

simulation of gut passage was done, we reproduced the effects of a pasture fire by

means of exposing sets of seeds after ‘gut passage’ and without ‘gut passage’ (i.e., just

dispersed seeds versus seeds stored in a putative soil bank) to different thermal shocks

differing in temperature (60, 90 and 120ºC, and ‘no heat-shock group’ hereafter referred

as control) and with two exposition times (2 and 6 minutes) with an electric heater.

According to Gashaw & Michelsen (2002), this range of temperature and exposition

time reliably reproduces the conditions of the upper soil layers or the soil surface during

fires in tropical grasslands. After all ‘pre-germination’ treatments were applied (2 levels

of ‘gut passage’ × 4 temperatures × 2 exposition times = 16 treatments), we set 10

seeds of each species in 8.5-cm Petri dishes with moistened filter paper obtaining 10

replicates (i.e. 1 Petri dish) per treatment. All dishes were set in a germination chamber

with a constant environment of 21ºC, 70% RH and 300 μmol photons m-2 s-1 in 16/8

hours of light/dark photoperiod. During the next 14 days (Gardener et al. 1993) all

dishes were kept moistened with distilled water and germination (i.e. radicle protrusion)

was recorded daily.

Data analysis

Fruit preference by cattle was assessed as differences on the number of bites done to

each kind of fruit and on the total fruit intake (grams ingested) of each plant species

during preference trials. Additionally, we also estimated the number of ingested seeds

from the total fruit intake of each species through the species-specific ratio of seed

number per gram of fruit. Although fruit intake and number of ingested seeds were not

formally count variables, they largely depended on the number of bites given so they

equally fitted a negative binomial distribution. Therefore in order to deal with non

Page 58: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

normality and over-dispersion of data in these three variables, negative binomial

regressions were done using GLIMMIX procedure with SAS software (SAS Institute

Inc., Cary, NC) including fruit (i.e., 3 plant species) as fixed factor and day (i.e., 5

consecutive days of feeding trials) as a continuous variable. To control for the

autocorrelation between the repeated measures carried out on the same individuals,

these (i.e., the 7 calves) were included as a residual random factor with an

autoregressive covariance structure since the measures were evenly spaced on time

(SAS 2009). The final differences on the proportions of germinated seeds per treatment

were assessed by means of a generalized linear model with a binomial error distribution

with untransformed data (Warton & Hui 2011) using GLIMMIX procedure with SAS

(SAS Institute). In this latter analysis, plant species, gut passage, temperature and

exposition time along with their interactions were included as fixed factors and the

minimum adequate model was selected according to the lower AIC.

Results

The fruits of the three species tested were avidly eaten by all naïve calves in all feeding

trials thus confirming their innate tendency to act as seed dispersal agents of these

species into pastures. However, the significant among species differences observed on

the number of bites done as well as on the fruit intake per trial (respectively, F2, 12 =

6.67; P = 0.0113 and F2, 12 = 7.26; P = 0.0086) suggested a pattern of fruit preference in

which G. ulmifolia and E. cyclocarpum were selected over A. pennatula fruits (Figure

1a-b). Interestingly, the great among species differences on the ratio of seeds per gram

of fruit led to strong differences on the mean number of seeds ingested by a calf on a

single foraging trial (F2, 12 = 35.6; P < 0.0001). This fact was specially striking in G.

ulmifolia which has great amounts of tiny seeds packed on small fruits, but further due

Page 59: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

to this reason, the initial differences on fruit intake between E. cyclocarpum and A.

pennatula were finally equalized in terms of numbers of seed ingested (Figure 1c).

Although there were significant individual-level variation on the number of bites, on the

total fruit intake and consequently, on the number of ingested seeds (respective

covariance parameters: 0.7809 ± 0.1183; 1.0117 ± 0.1467; 3.2553 ± 1.3269), these

response variables did not change along the consecutive feeding trials (day, F1, 95 =

0.16; P = 0.6892 and F1, 95 = 0.00; P = 0.9950 F1, 95 = 0.00; P = 0.9982).

Concerning the germination experiment, there were no differences among

species on the final germination percentages (species, F2, 406 = 0.92; P = 0.3991).

However, fire consistently triggered germination of the three species tested which

reached higher germination percentages as heat-shock temperature increased

(temperature, F3, 406 = 5.41; P = 0.0012; Figure 2). Besides, the duration of fire also had

a significant effect to the extent that six minutes of heat exposition produced an overall

germination increase of 7.5 % relative to only two minutes (exposition time, F3, 406 =

5.41; P = 0.0012; respectively 10.2±3 versus 2.7±1, Mean ± SE significant differences

according to LS Means tests). By contrast, gut passage did not have significant effects

on germination (gut passage, F1, 406 = 2.57; P = 0.1097), and although gut passage

reduced between a 5-15% the germination percentage achieved by both legume species,

these species-specific differences had only marginal significance (species × gut passage,

F2, 406 = 2.64; P = 0.0727). Additionally, gut passage did not modified seeds’ response

neither to heat-shock temperature (gut passage × temperature, F3, 406 = 0.66; P = 0.5766)

nor to exposition time (gut passage × exposition time, F1, 406 = 0.1; P = 0.7538) thus

rejecting the hypothesized additive effects between gut passage and fire.

Page 60: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Discussion

Fruit preference and seed disperser effectiveness

The results obtained in the cafeteria trials allow us to confirm the role that cattle has as a

surrogate seed dispersal agent in MDF, at least for the species tested. This key function

however, can be extensive to a greater number of MDF tree species that retain

endozoochory traits (Janzen & Martin 1982) and it could be essential for the eventual

forest regeneration based on passive strategies (Mouissie et al. 2005, Holl & Aide 2011,

Griscom & Ashton 2011). Nonetheless, differences on fruit traits such as the content of

anti-nutritional components, e.g., tannins and phenols which are in very low

concentrations in the fruits of G. ulmifolia and E. cyclocarpum (Pinto-Ruiz et al. 2009),

may underlie the observed cattle preferences on these fruits thus suggesting that some

tree species may become (or even may have been) especially favoured. Due to the great

levels of defaunation in the heavily fragmented MDF (Melo et al. 2010) cattle is

nowadays the main seed dispersal agent for several animal-dispersed tree species into

pastures, so that the quantity component of its effectiveness as seed disperser, i.e., the

number of foraging visits and the number of seeds dispersed per visit (Schupp 1993) can

be of special relevance for forest regeneration at a landscape level (Eycott et al. 2007).

Thus, our results suggest that many tiny seeds packed within highly desired small fruits

led to greater dispersal efficiency in terms of higher potential seed loads per foraging

event (fig. 1c). The greater the number of seeds ingested by the disperser, the greater

would be the seeding into pastures therefore the chance for seedling establishment. On

the other hand, it is widely known that species with larger seeds tend to retain larger

reserves in storage cotyledons (Green & Juniper 2004) and are thus more likely to resist

drought conditions (Leishman & Westoby 1994) and also to resprout after severe

seedling damage (Harms & Dalling 1997, Green & Juniper 2004). Hence, their

Page 61: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

hypothetical numerical disadvantage in pastures may be in part counterbalanced by their

higher seedling survival in high-stress nutrient-poor conditions (Muller-Landau 2010).

However, this potential colonization-related trade-off that involves fecundity and seed

size as well as seed dispersal and seedling tolerance deserve further field research

(Muller-Landau 2010).

Endozoochory and fire: two consecutive events fostering pasture colonization

Concerning the germination experiment, our results pointed out that the seeds of the

species tested can resist gut passage remaining viable thereby suggesting that those

traits for endozoochory may be of key importance in order to overcome forest fragments

and colonize pastures. In addition, our results also support that the adaptive significance

of large mammals to trees with endozoochory traits appear to be exclusively linked with

dispersing their seeds rather than scarifying them to trigger germination after dunging

(Janzen 1981, Janzen et al. 1985). Certainly, a given seed dispersed through

endozoochory by a large mammal not only must avoid germinating inside its dispersal

agent, which invariably leads to seed’s digestion (Janzen et al. 1985, Gardener et al.

1993), but also it should resist the scarification during gut passage sufficiently to do not

germinate immediately in the moist dung but just in the middle of the dry season.

Rather, the surviving seeds are those that become incorporated into a putative soil seed

bank as the dung is decomposed and at some later time have their dormancy broken up

in the soil by other(s) environmental cue(s) (Janzen et al. 1985, Baskin & Baskin 2000).

Interestingly, to break seed dormancy is precisely what a pasture fire has been

proved to do in the species tested in this study. Indeed fire, which was estimated by

means of heat shocks within the range described for low intensity pasture fires (Gashaw

& Michelsen 2002), showed a consistent pattern promoting germination in the three

Page 62: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

species (fig.2). This fire-induced dormancy release may have special relevance taking

into account the high seasonality of the MDF which has been suggested to have

promoted early germination at the onset of the rainy season especially on those species

dispersed during the dry season (Garwood 1983). Despite that heat-shock triggered

germination is known to be produced on a variety of species with physical dormancy

(Keeley & Fotheringham 2000), including several African and Australian Acacia sp.

(Hanna 1984, Sabiiti & Wein 1987, Bradstock & Auld 1995, Mbalo & Witkowski

1997), this result is novel since so far it has not been assessed previously in MDF and

further it may help to explain the pasture colonizing success of the species tested

(Esquivel et al. 2008, Peguero & Espelta 2011).

Finally, concerning the lack of additive effects of fire over gut passage

scarification, it seems that physical dormancy breakage may be rather an all-or-nothing

response instead of a function of the level of seed scarification (Traveset et al. 2008). In

fact, this heat-induced dormancy breakdown is usually based initially on the rupture of

the strophiole testa cells which may occur from a certain temperature threshold (Hanna

1984, Serrato-Valenti et al. 1995). Nevertheless, the remarkable variation in

germination observed here agrees with other structural and histochemical studies

stressing that physical dormancy release is a more complex process than previously

thought (Serrato-Valenti et al. 1995, Morrison et al. 1998).

Physical Dormancy: adaptation to endozoochory and exaptation to fire?

Bradshaw et al. (2011) have pointed out that physical dormancy may display selective

advantages in highly seasonal environments where episodic seedling recruitment is

favoured. However, since physical dormancy has multiple phylogenetic origins (it is

present in 16 families) and further it is not restricted to fire-prone ecosystems, these

Page 63: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

authors conclude that this trait should be viewed as an exaptation to fire. Being so,

physical dormancy in the species present in this study could have been selected to allow

endozoochory by those large mammals with which these species interacted during

several millions of years before their Pleistocene extinction (Janzen & Martin 1982).

Moreover, physical dormancy is likely to have evolved during this Miocene-Eocene

period (Bradshaw et al. 2011). Notwithstanding this, anthropogenic fires may also drive

the rapid evolution of seed traits such as seed coat thickness (Gómez-González et al.

2011) and in spite of there is some uncertainty around natural fire regimes in MDF

before human settlement, it is now clear that for several millennia anthropogenic fires

have been present recurrently allowing forest clearance into more open landscapes

(Denevan 1992, Dull 2004, Cooke 2005, Avnery et al. 2011). Hence, although the

origin of physical dormancy could be related to allow endozoochory, it is also likely

that anthropogenic fire has been playing an important role favouring the retention of this

trait despite the absence of seed dispersal vectors.

Conclusions

Altogether, our results suggest that the colonizing success of some MDF tree species

may in part be explained by their ability to be dispersed by cattle, by their seeds to resist

gut passage, and by pasture fires ultimately breaking their seeds’ physical dormancy

thus allowing them to match germination with the onset of the rainy season. However

nowadays in Mesoamerica, the full profile of a pasture colonist or even that of a pasture

encroacher, should include a strong resprouting ability in order to withstand the high

frequency regime of perturbations of varying severity, namely great herbivory pressure

as well as repeated clipping and burning (Peguero & Espelta 2011). Taking this into

account, if MDF regeneration in human-induced pastures is to be fostered, it seems

Page 64: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

reasonable to maintain the seed dispersal function of cattle while relaxing both

herbivory pressure and fire regime whose frequency should be remarkably reduced and

even applied only selectively in order to ensure progressive seedling establishment.

References

Avnery, S., Dull, R.A., & Keitt, T.H. (2011) Human versus climatic influences on late-Holocene fire

regimes in southwestern Nicaragua. The Holocene, 21, 699-706.

Baskin, C.C. & Baskin, J.M. (2000) Seeds: ecology, biogeography, and evolution of dormancy and

germination Academic Press, San Diego.

Benítez-Malvido, J., Tapia, E., Suazo, I., Villaseñor, E., & Alvarado, J. (2003) Germination and seed

damage in tropical dry forest plants ingested by iguanas. Journal of Herpetology, 37, 301-308.

Bindelle, J., Buldgen, A., Boudry, C., & Leterme, P. (2007) Effect of inoculum and pepsin-pancreatin

hydrolysis on fibre fermentation measured by the gas production technique in pigs. Animal Feed

Science and Technology, 132, 111-122.

Bradshaw, S.D., Dixon, K.W., Hopper, S.D., Lambers, H., & Turner, S.R. (2011) Little evidence for fire-

adapted plant traits in Mediterranean climate regions. Trends in Plant Science, 16, 69-76.

Bradstock, R.A. & Auld, T.D. (1995) Soil temperatures during experimental bushfires in relation to fire

intensity: consequences for legume germination and fire management in south-eastern Australia.

Journal of Applied Ecology, 76-84.

Cooke, R. (2005) Prehistory of Native Americans on the Central American land bridge: colonization,

dispersal, and divergence. Journal of Archaeological Research, 13, 129-187.

Denevan, W.M. (1992) The pristine myth: the landscape of the Americas in 1492. Annals of the

Association of American Geographers, 82, 369-385.

Dull, R.A. (2004) A Holocene record of Neotropical savanna dynamics from El Salvador. Journal of

Paleolimnology, 32, 219-231.

Esquivel, M.J., Harvey, C.A., Finegan, B., Casanoves, F., & Skarpe, C. (2008) Effects of pasture

management on the natural regeneration of neotropical trees. Journal of Applied Ecology, 45,

371-380.

Eycott, A.E., Watkinson, A.R., Hemami, M.R., & Dolman, P.M. (2007) The dispersal of vascular plants

in a forest mosaic by a guild of mammalian herbivores. Oecologia, 154, 107-118.

Gardener, C.J., McIvor, J.G., & Jansen, A. (1993) Survival of seeds of tropical grassland species

subjected to bovine digestion. Journal of Applied Ecology, 30, 75-85.

Gargallo, S., Calsamiglia, S., & Ferret, A. (2006) Technical note: A modified three-step in vitro

procedure to determine intestinal digestion of proteins. Journal of Animal Science, 84, 2163-

2167.

Page 65: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Garwood, N.C. (1983) Seed germination in a seasonal tropical forest in Panama: a community study.

Ecological Monographs, 53, 159-181.

Gashaw, M. & Michelsen, A. (2002) Influence of heat shock on seed germination of plants from regularly

burnt savanna woodlands and grasslands in Ethiopia. Plant Ecology, 159, 83-93.

Gómez-González, S., Torres-Díaz, C., Bustos-Schindler, C., & Gianoli, E. (2011) Anthropogenic fire

drives the evolution of seed traits. Proceedings of the National Academy of Sciences, 108,

18743-18747.

Green, P.T. & Juniper, P.A. (2004) Seed mass, seedling herbivory and the reserve effect in tropical

rainforest seedlings. Functional Ecology, 18, 539-547.

Griscom, H.P. & Ashton, M.S. (2011) Restoration of dry tropical forests in Central America: a review of

pattern and process. Forest Ecology and Management, 261, 1564-1579.

Hanna, P.J. (1984) Anatomical features of the seed coat of Acacia kempeana (Mueller) which relate to

increased germination rate induced by heat treatment. New Phytologist, 96, 23-29.

Harms, K.E. & Dalling, J.W. (1997) Damage and herbivory tolerance through resprouting as an

advantage of large seed size in tropical trees and lianas. Journal of Tropical Ecology, 13, 617-

621.

Holl, K.D. & Aide, T.M. (2011) When and where to actively restore ecosystems? Forest Ecology and

Management, 261, 1558-1563.

Holl, K.D., Loik, M.E., Lin, E.H.V., & Samuels, I.A. (2000) Tropical montane forest restoration in Costa

Rica: overcoming barriers to dispersal and establishment. Restoration ecology, 8, 339-349.

Janzen, D.H. (1981) Enterolobium cyclocarpum seed passage rate and survival in horses, Costa Rican

Pleistocene seed dispersal agents. Ecology, 62, 593-601.

Janzen, D.H. (1982) Natural history of guacimo fruits (Sterculiaceae: Guazuma ulmifolia) with respect to

consumption by large mammals. American Journal of Botany, 69, 1240-1250.

Janzen, D.H., Demment, M.W., & Robertson, J.B. (1985) How fast and why do germinating guanacaste

seeds (Enterolobium cyclocarpum) die inside cows and horses? Biotropica, 17, 322-325.

Janzen, D.H. & Martin, P.S. (1982) Neotropical anachronisms: the fruits the gomphotheres ate. Science,

215, 19-27.

Keeley, J.E. & Fotheringham, C.J. (2000). Role of fire in regeneration from seed. In Seeds: The ecology

of regeneration in plant communities (ed M. Fenner), pp. 311-330. CABI, Wallingford.

Kitamura, S., Yumoto, T., Poonswad, P., Chuailua, P., Plongmai, K., Maruhashi, T., & Noma, N. (2002)

Interactions between fleshy fruits and frugivores in a tropical seasonal forest in Thailand.

Oecologia, 133, 559-572.

Leishman, M.R. & Westoby, M. (1994) The role of seed size in seedling establishment in dry soil

conditions--experimental evidence from semi-arid species. Journal of Ecology, 82, 249-258.

Mbalo, B.A. & Witkowski, E.T.F. (1997) Tolerance to soil temperatures experienced during and after the

passage of fire in seeds of Acacia karroo, A. tortilis and Chromolaena odorata: a laboratory

study. South African Journal of Botany, 63, 421-425.

Page 66: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Melo, F.P.L., Martínez-Salas, E., Benítez-Malvido, J., & Ceballos, G. (2010) Forest fragmentation

reduces recruitment of large-seeded tree species in a semi-deciduous tropical forest of southern

Mexico. Journal of Tropical Ecology, 26, 35-43.

Miles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., Kapos, V., & Gordon, J.E.

(2006) A global overview of the conservation status of tropical dry forests. Journal of

Biogeography, 33, 491-505.

Morrison, D.A., McClay, K., Porter, C., & Rish, S. (1998) The role of the lens in controlling heat-induced

breakdown of testa-imposed dormancy in native Australian legumes. Annals of Botany, 82, 35-

40.

Mouissie, A.M., Vos, P., Verhagen, H.M.C., & Bakker, J.P. (2005) Endozoochory by free-ranging, large

herbivores: ecological correlates and perspectives for restoration. Basic and Applied Ecology, 6,

547-558.

Muller-Landau, H.C. (2010) The tolerance-fecundity trade-off and the maintenance of diversity in seed

size. Proceedings of the National Academy of Sciences, 107, 4242-4247.

Murphy, M.R., Kennedy, P.M., & Welch, J.G. (1989) Passage and rumination of inert particles varying in

size and specific gravity as determined from analysis of faecal appearance using

multicompartment models. Britih Journal of Nutrition, 62, 481-492.

Otterstrom, S.M., Schwartz, M.W., & Velázquez-Rocha, I. (2006) Responses to Fire in Selected Tropical

Dry Forest Trees. Biotropica, 38, 592-598.

Peguero, G. & Espelta, J.M. (2011) Disturbance intensity and seasonality affect the resprouting ability of

the neotropical dry-forest tree Acacia pennatula: do resources stored below-ground matter?

Journal of Tropical Ecology, 27, 539-546.

Pinto-Ruiz, R., Hernández-Sánchez, D., Ramírez-Avilés, L., Sandoval-Castro, C.A., Cobos-Peralta, M.,

& Gómez-Castro, H. (2009) Tannins and phenols on in vitro fermentation of tropical fodder

trees. Agronomía Mesoamericana, 20, 81-89.

Sabiiti, E.N. & Wein, R.W. (1987) Fire and Acacia seeds: a hypothesis of colonization success. Journal

of Ecology, 937-946.

Sandoval-Castro, C.A., Lizarraga-Sanchez, H.L., & Solorio-Sanchez, F.J. (2005) Assessment of tree

fodder preference by cattle using chemical composition, in vitro gas production and in situ

degradability. Animal Feed Science and Technology, 123, 277-289.

SAS (2009) SAS/STAT 9.2 User's Guide, 2nd edn. SAS Institute Inc., Cary.

Schupp, E.W. (1993) Quantity, quality and the effectiveness of seed dispersal by animals. Plant Ecology,

107, 15-29.

Serrato-Valenti, G., De Vries, M., & Cornara, L. (1995) The hilar region in Leucaena leucocephala

Lam.(De Wit) seed: structure, histochemistry and the role of the lens in germination. Annals of

Botany, 75, 569-574.

Tarrasón, D., Urrutia, J.T., Ravera, F., Herrera, E., Andrés, P., & Espelta, J.M. (2010) Conservation status

of tropical dry forest remnants in Nicaragua: Do ecological indicators and social perception

tally? Biodiversity and Conservation, 19, 813-827.

Page 67: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Traveset, A. (1998) Effect of seed passage through vertebrate frugivores' guts on germination: a review.

Perspectives in Plant ecology, Evolution and Systematics, 1, 151-190.

Traveset, A., Rodríguez-Pérez, J., & Pías, B. (2008) Seed trait changes in dispersers' gut and

consequences for germination and seedling growth. Ecology, 89, 95-106.

Warner, A.C.I. (1981) Rate of passage of digesta through the gut of mammals and birds. Nutrition

Abstracts and Reviews, 51, 789-820.

Warton, D.I. & Hui, F.K.C. (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology,

92, 3-10.

Zuloaga-Aguilar, S., Briones, O., & Orozco-Segovia, A. (2010) Effect of heat shock on germination of 23

plant species in pine-oak and montane cloud forests in western Mexico. International Journal of

Wildland Fire, 19, 759-773.

Page 68: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

0

2

4

6

8

10

12

No.

of

bite

s

a

b

b

(a)

0

2

4

6

8

10

12

No.

of

bite

s

a

b

b

0

2

4

6

8

10

12

No.

of

bite

s

a

b

b

(a)

0

20

40

60

80

100

Fru

itin

take

(gr)

b

a

a(b)

0

20

40

60

80

100

Fru

itin

take

(gr)

b

a

a

0

20

40

60

80

100

Fru

itin

take

(gr)

b

a

a(b)

0

50

100

150800

1200

1600

2000

G. ulmifolia E. cyclocarpum A. pennatula

No

. o

fin

gest

ed

seed

s

a

b

b

(c)

0

50

100

150800

1200

1600

2000

G. ulmifolia E. cyclocarpum A. pennatula

No

. o

fin

gest

ed

seed

s

a

b

b

(c)

0

2

4

6

8

10

12

No.

of

bite

s

a

b

b

(a)

0

2

4

6

8

10

12

No.

of

bite

s

a

b

b

0

2

4

6

8

10

12

No.

of

bite

s

a

b

b

(a)

0

20

40

60

80

100

Fru

itin

take

(gr)

b

a

a(b)

0

20

40

60

80

100

Fru

itin

take

(gr)

b

a

a

0

20

40

60

80

100

Fru

itin

take

(gr)

b

a

a(b)

0

50

100

150800

1200

1600

2000

G. ulmifolia E. cyclocarpum A. pennatula

No

. o

fin

gest

ed

seed

s

a

b

b

(c)

0

50

100

150800

1200

1600

2000

G. ulmifolia E. cyclocarpum A. pennatula

No

. o

fin

gest

ed

seed

s

a

b

b

(c)0

20

40

60

80

100

Fru

itin

take

(gr)

b

a

a(b)

0

20

40

60

80

100

Fru

itin

take

(gr)

b

a

a

0

20

40

60

80

100

Fru

itin

take

(gr)

b

a

a(b)

0

50

100

150800

1200

1600

2000

G. ulmifolia E. cyclocarpum A. pennatula

No

. o

fin

gest

ed

seed

s

a

b

b

(c)

0

50

100

150800

1200

1600

2000

G. ulmifolia E. cyclocarpum A. pennatula

No

. o

fin

gest

ed

seed

s

a

b

b

(c)

Figure 1. Among species differences on fruit preferences and seed ingestion by cattle

assessed by means of cafeteria feeding trials (see methods): (a) No. of bites, (b) Fruit

intake (gr), and (c) No. of ingested seeds. Values are Means ± 1SE. Different letters

show significant differences according to Least Square means tests.

Page 69: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

0

5

10

15

20

25

Control 60 90 120

Ger

min

atio

n(%

)

Temperature (ºC)

a a

b

c

0

5

10

15

20

25

Control 60 90 120

Ger

min

atio

n(%

)

Temperature (ºC)

a a

b

c

Figure 2. Effect of heat-shock temperatures on the final germination percentages

achieved. Values are Means ± 1SE. Different letters show significant differences among

treatments differing in heat-shock temperature according to Least Square means tests.

Page 70: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Capítulo3

Al cerro vengo subiendo… ‐  

Depredación de  semillas a  lo  largo de un 

gradiente altitudinal 

Page 71: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Resumen

El saciado del predador y el aborto de semillas han sido reportados como mecanismos

efectivos para reducir la depredación pre-dispersiva de semillas, no obstante, si pueden

actuar simultáneamente y si su contribución en la defensa de semillas puede variar

espacialmente ha sido escasamente investigado. A lo largo del rango altitudinal del

árbol del trópico seco Acacia pennatula investigamos la relación entre la producción de

frutos y el aborto de semillas con la depredación pre-dispersiva y el éxito de infestación

por brúquidos (Mimosestes sp.). Además, evaluamos la hipotética relación entre el

número de semillas maduras que escaparon a la depredación y el reclutamiento de

plántulas a nivel de sitio durante la siguiente estación húmeda. El saciado del predador

fue efectivo dado que cuanto mayor fue la producción de frutos menor fue la proporción

de semillas depredadas, y las altas tasas de aborto estuvieron relacionadas con aumentos

en la mortalidad larval. No obstante, aunque ambos mecanismos actuaron

simultáneamente, su contribución relativa varió considerablemente a lo largo del

gradiente altitudinal, i.e., el saciado del predador fue más importante en las partes

medias del rango mientras que el aborto de semillas fue relevante en la parte periférica y

especialmente importante en el margen superior. De manera destacable, el número de

semillas maduras que escapó a la depredación estuvo relacionado con la densidad de

plántulas a nivel de sitio durante la siguiente estación húmeda subrayando la

importancia demográfica que pueden tener los mecanismos de defensa de las semillas.

En conjunto, estos resultados destacan la importancia de considerar la variabilidad

espacial cuando se analizan los mecanismos de defensa y previenen sobre considerar el

saciado o el aborto de semillas como alternativas separadas para reducir la pérdida de

semillas. Además, estos resultados pueden ser de especial relevancia ante la potencial

expansion en altura de esta especie promovida por el cambio climático.

Page 72: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Chapter3

Moving upwards? – Seed predation variability along an 

altitudinal gradient 

Abstract

Predator satiation and seed abortion have been reported as effective mechanisms

reducing pre-dispersal seed predation, however, whether they may act simultaneously

and whether their contribution to seed defence may spatially vary has been barely

addressed. Along the altitudinal range of the dry-tropical tree Acacia pennatula we

investigated the importance of fruit production and seed abortion for pre-dispersal seed

predation and infestation success by the bruchid beetles (Mimosestes sp.). Additionally,

we measured the potential relationship between the sound seed output with plant

recruitment at site level. Predator satiation was effective since the greater the fruit

production the lower the proportion of preyed seeds while high seed abortion rates were

related with increases in larval mortality. However, although both mechanisms act

simultaneously, their relative contribution vary considerably along the altitudinal range,

i.e., predator satiation was mainly present in the middle parts of the range where seed

production is much higher and seed abortion was relevant at the peripheral sites and

especially high at the upper margin. The number of sound seeds that escaped predation

was related with seedling density at site level pointing out the demographic significance

of seed defence mechanisms against pre-dispersal seed predation. Overall, these results

highlight the importance of considering spatial variability when analyzing seed defence

mechanisms and they warn about considering predator satiation or seed abortion as two

separate alternatives for plants to reduce seed loss. Moreover, these results may be of

special relevance in light of the potential climate-driven upward shift on the distribution

range of this plant species

Page 73: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Introduction

Seed predation by specialized insects can have major impacts on the distribution and

dynamics of plants by reducing the effective number of sound seeds and hence seedling

recruitment (Louda 1982, Crawley 2000, Kolb et al. 2007, Espelta et al. 2009, Vaz

Ferreira et al. 2011). Consequently, plants have evolved a wide array of resistance

mechanisms to preclude seed consumption based on physical and chemical barriers

(Hulme & Benkman 2002). In addition, similar to what has been defined as “tolerance”

against herbivory (see Mauricio et al. 1997, Stowe et al. 2000), other seed defence

strategies may not prevent seed predation but help “tolerate” the negative consequences

of seed loss by controlling the population of predators. Interestingly, the two

mechanisms so far described are based on the number of seed available to predators, yet

in two opposite ways: either producing extraordinary large or reducing the size of seed

crops. On the one hand, the production of large seed crops may assure some seeds to

escape predation owing to the impossibility of predators to consume all seeds (“predator

satiation” in Janzen 1971, Kelly & Sork 2002). On the other hand, a reduction on the

number of seed available, mediated by seed abortion, may constrain insect success by

killing larvae located in aborted seeds and increasing larval competition over sound

ones (Stephenson 1981, Traveset 1993, Holland et al. 2004, Östergård et al. 2007). In

both cases, the advantage of reducing seed predators’ performance must offset the cost

of the resources invested on the seeds lost (see examples for seed satiation in Espelta et

al. 2008, 2009 and for seed abortion in Holland & DeAngelis 2002).

Although numerous studies have reported evidences of the benefits of “predator

satiation” or “seed abortion” to reduce seed predation, whether these two mechanisms

may act simultaneously in a given species and whether their contribution to seed

Page 74: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

defence may vary spatially has been barely addressed. Indeed, some studies have

suggested that local environmental conditions (e.g. local water availability in Espelta et

al. 2008, see also Kelly and Sork 2002) may influence the amount of seeds produced

and, ultimately, result in spatial differences in the success of seed predator satiation in

Mediterranean oaks. Concerning seed abortion, it has been observed that it may also

spatially vary and, specially, increase at the boundaries of a plant distribution gradient

owing to adverse climate conditions or inbreeding (Garcia et al. 2000). To some extent,

it could be hypothesised that in a resource availability gradient seed predator satiation

would easily occur in those situations where it is possible to produce large seed crops

while seed abortion would be more efficient in reducing seed predation in poorer sites.

The potential interactions and conflicts between these different seed defence

mechanisms may be of special ecological interest regarding the spatial variation of seed

predation (Louda 1982, Giménez-Benavides et al. 2007) and the environmental

conditions plants must face (Giménez-Benavides et al. 2007, Kolb et al. 2007).

The main aim of the present study has been to investigate the spatial variability of

predator satiation and seed abortion as seed defence mechanisms in the dry-forest tree

Acacia pennatula along an altitudinal gradient in NW Nicaragua. This species offers an

interesting study model for the purposes of our research as: i) it is one of the most

predominant tree species in Mesoamerica (Ebinger et al. 2000, Stevens et al. 2001), ii) it

produces large crops of fruits (pods) with multiple seeds that are conspicuously preyed

upon by several Mimosestes (bruchid) species (Janzen 1980, Traveset 1991, Peguero &

Espelta unpublished results). Moreover, there are increasing evidences of a recent

altitudinal expansion of A. pennatula in some dry-tropical regions of Nicaragua (see

Ravera 2011). In light of the potential shifts on plant distribution boundaries owing to

Page 75: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

climate warming, studies comparing plant-animal interactions in the centre vs.

peripheral ranges have become of major interest to identify possible mechanisms

underlying these migrations (Hillyer & Silman 2010). These studies are particularly

interesting in the tropics, where upslope altitudinal shifts are far more likely than

poleward (Colwell et al. 2008, Feeley et al. 2011).

We hypothesize that the contribution of predator satiation and seed abortion to seed

escape in A. pennatula will vary along the altitudinal gradient. Specifically, massive

seed productions (i.e. predator satiation) will be the most important mechanism in the

mid-parts of the range where climate is milder and reproduction costs may be lower.

Conversely, seed abortion will be the main mechanism involved in reducing seed

predator performance at the edges of A. pennatula distribution range. In order to test this

hypothesis we assessed along an altitudinal gradient of A. pennatula presence: (i) the

variability in fruit (pods) crop size, seed production and seed abortion rates, (ii) the

infestation success of Mimosestes spp. and seed predation rates, and (iii) the final

outcome of seed predation in terms of sound seed output and seedling recruitment along

the altitudinal gradient.

Materials and methods

Study area and species

This study was conducted along an altitudinal gradient (600-1450m a.s.l) in the Estelí

valley in Northwest Nicaragua. This region is characterised by a dry tropical climate at

the low and mid-part of the gradient (up to 1000m) where the minimum and maximum

average monthly temperatures are 16 and 33ºC and the mean annual rainfall is 830mm

year-1. This gradient is characterised by increasing moisture (i.e. greater annual

Page 76: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

precipitation and shorter dry seasons) and lower minimum temperatures with altitude as

in other similar tropical areas (Vázquez & Givnish 1998).

Along the whole gradient the landscape is a mosaic of savannah-like pastures and

sparse forest remnants where one of the dominant tree species is the pioneer Acacia

pennatula. This species is common in secondary forests and disturbed areas from

México down to Ecuador (Ebinger et al. 2000) and in our study area usually occurs

from 600 up to 1400 m a.s.l being extremely rare above and below this range (according

to exsiccatae from Stevens et al. 2001 and Peguero personal observation). Like many

other dry tropical trees (Janzen 1971), A. pennatula blooms at the beginning of the dry

season. The initiated fruits remain immature until the last rains when they suddenly

increase to full size and shape and start darkening. Once in the ground they are actively

searched by cattle that nowadays are the main dispersal agents (Peguero & Espelta

unpublished results).

The most important pre-dispersal seed predators in our study area are two beetles

(Bruchidae): Mimosestes anomalus the most common, and the rarer Mimosestes

humeralis (JM Maes personal communication). The females of both species lay their

eggs (c. 1 mm) on the surface of ripe fruits during the dry season. After hatching, the

first instar larva bore the pod wall in search of a seed from which to feed. Each larva

needs one seed to successfully complete its development hence seed multi-infestation is

not allowed (Janzen 1980, Traveset 1991). The adult beetles emerge 3-4 weeks later and

as multivoltine species, the just emerged adults can mate and several adult generations

occur in a single fruiting season (cf. Traveset 1991). In our study area parasitism

appears to be low to the extent that less than 2% of a sample of 1800 ripe fruits

contained parasitoid wasps (G. Peguero, unpublished data).

Page 77: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Sampling design

In order to investigate the role of predator satiation and seed abortion as seed defence

mechanisms in A. pennatula along an altitudinal gradient, five sampling areas were

selected in the Estelí valley (Table 1). All sites were flat wooded rangelands almost

dominated by A. pennatula and representative in terms of density, structure and tree

species composition of the vegetation in the study area according to Tarrasón et al.

(2010). In each site, we randomly selected 3 plots in which we measured dbh and

projected crown area of 6 trees (5 sites x 3 plots x 6 trees=90 trees). During March 2009

(the peak of the fruiting season), we made an estimation of the total fruit crop size by

means of counting the number of hanging fruits during 30 seconds by two independent

observers (see Koenig et al. 1994). Then, we collected 20 ripe fruits from the crown of

each selected tree per site (n=1800 fruits). After counting the number of eggs laid by

bruchid females, each fruit was suitably tagged and tightly packed into a thin-walled

plastic bag which was tied shut and then hung inside a large inflated and closed plastic-

bag (after Janzen 1980). During the next 4 weeks all emerged adult beetles were

removed and we recorded the number of adult emergences. In order to determine seed

abortion, seed predation and sound seed output we dissected each fruit and counted the

number of aborted seeds, preyed seeds (i.e. having a characteristic round hole) and

sound seeds.

The information gathered enabled us to calculate: i) the proportion of preyed seeds

upon mature seeds (number of preyed seeds/total seeds excluding aborted seeds), ii) the

proportion of aborted seeds (number of aborted seeds/total seeds), iii) the total seed

production per tree (number of seeds per fruit × fruit crop size) and iv) the sound seed

output per tree (number of sound seeds per fruit × fruit crop size). Infestation success

(i.e. larval survival from egg to adult stage) was inferred by means of (cf. Traveset

Page 78: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

1991). To the calculation of this mean ratio at tree level, all fruits with emergence holes

before packing and those fruits without eggs and adult emergences were excluded. Even

though some eggs can die before larvae bore into the fruit, the ratio of adult emergences

per eggs laid has been observed to be a consistent of larval survival within fruits (Janzen

1971, see also Traveset 1990).

Finally, to explore whether there may be a relationship between the number of seeds

that escape predation and the recruitment success of seedlings along the altitudinal

gradient we measured the number of A. pennatula seedlings at each site level during the

following wet season (July 2009). We carried out 5 samplings per site in which we

counted the seedlings of less than 1-year-old in 100m2 transects (500m2 per site).

Data analysis

We used general linear mixed models to test for the effect of altitude in fruit crop size

per tree, seed number per fruit, proportion of aborted seeds per fruit, proportion of

preyed seeds per tree, and seed predator performance (i.e. the number of eggs laid per

fruit and the ratio of adult emergences per egg laid). In these models altitude (i.e. site)

was included as a fixed factor and plot as a random factor nested within altitude to

control for spatial heterogeneity within sites (Giménez-Benavides et al. 2007). In

several of these models we included covariates: i) projected crown area in the analysis

of fruit crop size to account for differences linked with individual tree sizes, ii) fruit

crop size in the analysis of the proportion of aborted to control for a potential effect of

competition among fruits matured in a tree(Stephenson 1981) and iii) total number of

seeds produced per tree in the analysis of the proportion of preyed seeds at tree level to

investigate a potential effect of predator satiation (Bonal et al. 2007, Espelta et al.

Page 79: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

2009). In all models response variables were logarithmically transformed, if required, to

meet the assumption of normality, so that all response variables were able to be

modelled by means of general linear mixed models with restricted maximum likelihood

parameterization (Bolker et al. 2009) using SAS software (PROC MIXED, Littell et al.

2006). The effect of the random factor was analysed using Wald Z-statistic test whereas

fixed factors (i.e. altitude and covariate effects) were analysed with F-tests. Degrees of

freedom were estimated by the Satterthwaite’s method (Littell et al. 2006).

Seed predator (Mimosestes spp.) performance along the altitudinal gradient was

explored through two different analyses: (1) differences in the mean number of eggs

laid per fruit among sites were analysed including fruit crop size as a covariate that

could influence the female oviposition patterns (Östergård et al. 2007); and (2)

differences among sites on infestation success (i.e. ratio of the number of adult beetles

emerged per number of egg laid) were analysed including the proportion of aborted

seeds per fruit as a covariate to assess whether seed abortion can directly increase larval

mortality (Holland et al. 2004, Östergård et al. 2007). Best model was selected

according to Akaike Information Criterion (Bolker et al. 2009).

The relevance of seed predation for seedling recruitment was assessed by means of

running two regression analyses: i) number of mature seeds produced with seedling

density and ii) number of seeds that escaped and seedling density. If escaping predation

is a relevant process for seedling recruitment we should find a better relationship

between the density of seedlings established when compared to the number of seeds that

escaped predation, than when compared to the total number of sound seeds produced.

Finally, to test for the relevance of sound seed output in the recruitment of A. pennatula

Page 80: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

along the altitudinal gradient, differences on seedling density were analysed by means

of a general linear model including altitude as a fixed factor.

Results

Fruit crop size in A. pennatula changed with altitude (site effect: F 4, 84= 27, P <

0.0001): it was highest at mid-high altitudes and tended to decrease in the lowest and

highest sites (Fig. 1a). This spatial variability in the number of pods produced was not

related with individual tree size (crown area effect: F 1, 84= 1.9, P = 0.17). Conversely to

fruit crop size, the number of seeds per pod was very similar among all sites except at

the highest locality where it was significantly lower (site effect: F 4, 11.7= 5.2, P =

0.0116; Fig.1b, open blocks). Although the mean number of seeds per fruit did not

change remarkably with altitude, the proportion of aborted seeds per pod clearly

differed among sites (site effect: F 4, 11.9= 15.9, P < 0.0001) being significantly greater

in the higher sites of the altitudinal gradient (Fig. 1b, filled blocks). Interestingly, fruit

crop size did not affect neither the number of seeds per fruit (covariate effect: F 1, 78.6=

2.2, P = 0.14) nor the proportion of aborted seeds per fruit (covariate effect: F 1, 80.9=

0.1, P = 0.71) suggesting there was no trade-off involved between the number of fruits,

seed number and seed abortion.

Large seed crops were effective to satiate seed predators as the larger the seed

production in a tree the lower the proportion of preyed seeds along the entire altitudinal

gradient (GLM, crop size effect: d.f. = 1, 81.1, F = 7.2, P = 0.009). Nevertheless there

were significant variations among sites in the proportion of preyed seeds (GLM, factor

site: d.f. = 4, 12.3, F = 9.8, P < 0.001, Fig. 1c).

Page 81: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

The mean number of eggs laid by bruchid females in each fruit was not influenced

by the number of ripe fruits present in the crown (GLM, covariate effect: d.f. = 1, 84, F

= 3.1, P = 0.082) but there were significant differences along the altitudinal gradient

(GLM, site effect: d.f. = 4, 84, F = 5.1, P = 0.001). Specifically these differences arose

between the mid parts of the gradient with higher mean number of eggs laid per pod

(900 and 1100m with 7.11.4a and 6.21.2ab respectively) with the extreme parts of the

gradient (600 and 1300m with 2.91.2c and 3.91.2c respectively), although the very

highest site reached an intermediate value (4.61.1bc; values refer mean eggs per fruit

1 SE; different letters indicate significant differences according to least square means

tests). Interestingly, larval mortality estimated through the ratio of adult beetles emerged

per egg laid was markedly different among sites (GLM, factor site: d.f. = 4, 11.3, F = 5,

P = 0.015) depicting an almost inverse pattern to seed abortion (Fig. 2a vs Fig. 1b).

Actually, larval mortality increased with abortion rate per fruit (GLM, covariate effect:

d.f. = 1, 81.8, F = 6.2, P = 0.015), so that if all trees are plotted together (Fig. 2b) the

rate of seed abortion alone is able to explain the 25% of the observed variability in the

number of adult emergences per egg laid (linear regression: d.f. = 1, 85, r2 = 0.25, P <

0.0001).

Concerning the effects of within site variability (plot), it must be noticed that with two

of the previous response variables (namely, fruit crop size and number of eggs laid per

pod) the random factor could not be estimated correctly in the corresponding analyses.

Nevertheless, the lack of significance of the factor “plot” in the analyles of the number

of seeds per fruit (0.180.2, Z = 0.91, prob. Z = 0.2), the proportion of aborted seeds per

fruit (0.00010.001, Z = 0.08, prob. Z = 0.47), the proportion of preyed seeds

(0.0030.004, Z = 0.74, prob. Z = 0.23) and the number of adult beetles emerged per

Page 82: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

egg laid (0.0010.002, Z = 0.27, prob. Z = 0.4), allows us to assume that the effects of

within site variability were also not significant in these two previous cases.

Seedling recruitment differed significantly between sites (GLM, site effect: d.f. = 4, 20,

F = 12.3, P < 0.0001, see Fig. 3a). Interestingly, the number of seedlings was not related

with the number of mature seeds produced (p = 0.1006) but with the number of mature

seeds that escaped predation (r2 = 0.93, p < 0.05, Fig. 3b).

Discussion

The present study shows that predator satiation and seed abortion can co-occur in a

given species as seed defence against predators. However they may show large spatial

variations on their relative contribution to the seed defence strategy. Indeed, predator

satiation and seed abortion varied considerably along the altitudinal gradient: i.e. in the

centre of the range massive fruit and seed production in A. pennatula trees allowed a

predominant role of predator satiation (see also Janzen 1971), whereas on the peripheral

locations, specially at the upper margin of the altitudinal range, it was mainly seed

abortion what impaired seed predator performance and reduced the infestation success

(Holland et al. 2004, Östergård et al. 2007). Overall, these results highlight the

importance of considering spatial variability when analyzing seed defence mechanisms

and they warn about considering predator satiation or seed abortion as two separate

alternatives for plants to reduce seed loss. Indeed, seed defence, in terms of large seed

productions with certain levels of seed abortion, was positively related with the success

of seedling recruitment as pointed out by the close relationship among the number of

seeds that escaped predation and the density of seedlings. However, we must handle

with some care these results, because: i) the positive relationship among seed number

Page 83: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

and seedling density is based on a reduced number of sites and ii) other factors such as

microsite limitation and particularly competition with grasses might be other major

barriers for seedling establishment (Holl et al. 2000).

Influence of altitude in fruit/seed production and predation rates

Declining environmental suitability is expected to result in a decrease in plant

reproduction toward species’ range boundaries (Parsons 1991, García et al. 2000, Jump

& Woodward 2003). Indeed, total fruit/seed production of A. pennatula was

significantly higher at mid-parts of the altitudinal gradient (Figure 1a). This may be

mainly related with proximal ecological causes such as water availability or temperature

stress (Stephenson 1981) since those trees that experience lower water shortages (e.g.

owing to shorter dry seasons) or milder temperatures can produce greater fruit crops

(Lee & Bazzaz 1982, Jump & Woodward 2003). Conversely to fruit/seed production,

seed abortion rates increased at the peripheral sites and especially at the upper range

margin of A. pennatula which can also be related with adverse weather conditions: e.g.

greater water stress on the lowlands (Lee & Bazzaz 1986) or lower temperatures with

altitude (García et al. 2000, Jump & Woodward 2003). In addition, the highest seed

abortion in the upper point of the transect could also be due to inbreeding owing to the

lower number of trees (see Table 1, see also García et al. 2000). Interestingly, the lack

of a trade-off between fruit production and seed set reinforces the idea that seed

abortion was not mainly driven by resource competition.

Is predator satiation and seed abortion alternative or complementary seed

defence mechanisms?

Predator satiation and bruchid larval mortality owing to seed abortion acted

simultaneously along the altitudinal gradient studied. On the one hand, predator

Page 84: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

satiation by means of large fruit crops probed to be effective along the whole altitudinal

gradient since in all trees the proportion of preyed seeds was inversely related with the

number of seeds produced (see also Janzen 1971). Although this tolerance mechanism

to predation has been suggested to be especially efficient in species with a large inter-

annual variability in seed crop size (masting species in Kelly & Sork 2002) it has also

been described in species that regularly produce large seed crops (e.g. Cassia grandis in

Janzen 1971). On the other hand, seed abortion reduced seed predator performance to

the extent that infestation success was lower in those sites in which abortion rates were

higher. Indeed, as previously suggested by other studies, seed abortion may impose

density-dependent mechanisms that control seed predators’ populations (Stephenson

1981, Holland & DeAngelis 2002) by means of an increase in larval competition and

larval mortality (Holland et al. 2004, Östergård et al. 2007), which are two of the main

factors that have been suggested to set bruchid density (Janzen 1971, Traveset 1991).

Additionally, a low seed to ovule ratio has been suggested as a bet-hedging strategy

against environmental stochasticity, giving opportunities to rapidly adjust seed set when

conditions are favourable and enhancing the quality of offsprings through a better

resource matching (de Jong & Klinkhamer 2005). Indeed, all these adaptive

explanations for the advantage of a certain level of seed abortion rather than mutually

exclusive might mutually reinforce.

The relative contribution of predator satiation and seed abortion to seed defence varied

along the altitudinal gradient. Since predator satiation depends on large fruiting efforts

(Janzen 1971, Bonal et al. 2007, Espelta et al. 2009), it seems reasonable it will occur

most likely where the environmental conditions are suitable to the reproductive

function, i.e. at the centre part of the altitudinal or latitudinal distribution range of a

Page 85: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

given plant species (García et al. 2000, Jump & Woodward 2003). But in fact, along the

whole altitudinal gradient studied those A. pennatula trees with larger seed productions

lost lower proportions of their seeds despite the substantial differences among sites on

total fruit crops, so that the costs of satiation may be different among sites. We suggest

that this may be related with the reduction of infestation success that seed abortion

imposes to seed predators which may result in a greater effectiveness of satiation. This

hypothetical complementarity could imply a modification of the fitness gain curve of

predator satiation, i.e. with less investment there is a greater reproductive success in

terms of greater sound seed outputs (de Jong & Klinkhamer 2005). In fact as discussed

above there is no evidence for a trade-off between fruit production, seed set and seed

abortion rates which could have led to disruptive selections between these two

mechanisms of seed defence (see Mauricio et al. 1997 for defences against herbivory).

Moreover, different defence traits may be redundant but not mutually exclusive

(Mauricio et al. 1997) and so mixed patterns of defence allocation may lead to

evolutionary stable strategies (Núñez-Farfán et al. 2007) for instance when their costs

are significantly variable between populations (Fornoni et al. 2004). From our point of

view, this rationale could also be applicable to different strategies of seed defence

mechanisms as they jointly benefit plants against seed predation (Siemens et al. 1992,

Xiao et al. 2007) and the reproductive components implied (i.e. seed production and

abortion) spatially vary (García et al. 2000, Jump & Woodward 2003, Giménez-

Benavides et al. 2007).

Perspectives: Seed predator tolerance and the potential upward migration of A.

pennatula under new climatic scenarios

There is an increasing evidence of rapid range boundaries shifts in many plant species in

response to climate warming (Chen et al. 2011). Particularly in tropical systems, it is

Page 86: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

expected that upslope shifts will be far more likely than poleward migrations (Colwell

et al. 2008, Feeley et al. 2011). Interestingly, it has been suggested that these shifts may

be brought about not only by a direct tracking of the changes in climate but also by

indirect changes in species’ interactions (Davis et al. 1998, Thomas 2010). All these

things being considered, we can question how climate change will modify the current

seed defence mechanisms observed in A. pennatula and how it will influence the

suggested upward range expansion of this species (Ravera 2011). In our study area, the

presence of bruchid eggs along the whole altitudinal range discards the possibility of an

“enemy release” effect leading to a relaxation of the seed predation pressure on the

upper range margin in this case (see Menéndez et al. 2008). Conversely, it seems that

seed abortion is currently contributing to reduce seed predation and thus favouring

seedling recruitment in the upper sites. To what extent climate warming might result in

a shift from seed abortion to seed predator satiation as the main seed defence

mechanisms against pre-dispersal seed predators requires further attention to discern

whether lower seed predation at higher elevations may be one of the causes of upslope

migration facing climate change in tropical forests (Hillyer & Silman 2010).

References

Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. & White, J.S.S.

(2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in

Ecology & Evolution 24, 127-135.

Bonal, R., Munoz, A. & Diaz, M. (2007) Satiation of predispersal seed predators: the importance of

considering both plant and seed levels. Evolutionary Ecology 21, 367-380.

Chen, I., Hill, J.K., Ohlemüller, R., Roy, D.B. & Thomas, C.D. (2011) Rapid Range Shifts of Species

Associated with High Levels of Climate Warming. Science 333, 1024-1026.

Colwell, R.K., Brehm, G., Cardelús, C.L., Gilman, A.C. & Longino, J.T. (2008) Global warming,

elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258.

Crawley, M.J. (2000) Seed predators and plant population dynamics. - In: Fenner, M. (ed.) Seeds: The

Ecology of Regeneration in Plant Communities. CAB International, pp. 157-191.

Page 87: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B. & Wood, S. (1998) Making mistakes when

predicting shifts in species range in response to global warming. Nature 391, 783-786.

de Jong, T.J. & Klinkhamer, P.G.L. (2005) Evolutionary ecology of plant reproductive strategies.

Cambridge University Press.

Ebinger, J.E., Seigler, D.S. & Clarke, H.D. (2000) Taxonomic revision of South American species of the

genus Acacia subgenus Acacia (Fabaceae: Mimosoideae). Systematic Botany 25, 588-617.

Espelta, J.M., Cortés, P., Molowny-Horas, R. & Retana, J. (2009) Acorn crop size and pre-dispersal

predation determine inter-specific differences in the recruitment of co-occurring oaks. Oecologia

161, 559-568.

Espelta, J.M., Cortés, P., Molowny-Horas, R., Sánchez-Humanes, B. & Retana, J. (2008) Masting

mediated by summer drought reduces acorn predation in Mediterranean oak forests. Ecology 89,

805-817.

Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi, Y., Meir, P., Revilla, N. S.,

Quisiyupanqui, M. N. R. & Saatchi, S. 2011. Upslope migration of Andean trees. Journal of

Biogeography 38, 783-791.

Fornoni, J., Núñez-Farfán, J., Valverde, P.L. & Rausher, M.D. (2004) Evolution of mixed strategies of

plant defense allocation against natural enemies. Evolution 58, 1685-1695.

García, D., Zamora, R., Gómez, J.M., Jordano, P. & Hódar, J.A. (2000) Geographical variation in seed

production, predation and abortion in Juniperus communis throughout its range in Europe.

Journal of Ecology 88, 435-446.

Giménez Benavides, L., Escudero, A. & Iriondo, J.M. (2007) Reproductive limits of a late flowering high

mountain Mediterranean plant along an elevational climate gradient. New Phytologist 173, 367-

382.

Hillyer, R. & Silman, M.R. (2010) Changes in species interactions across a 2.5 km elevation gradient:

effects on plant migration in response to climate change. Global Change Biology 16, 3205-3214.

Holl, K.D., Loik, M.E., Lin, E.H.V. & Samuels, I.A. (2000) Tropical montane forest restoration in Costa

Rica: overcoming barriers to dispersal and establishment. Restoration Ecology 8, 339-349.

Holland, J.N., Bronstein, J.L. & DeAngelis, D.L. (2004) Testing hypotheses for excess flower production

and low fruit to flower ratios in a pollinating seed consuming mutualism. Oikos 105, 633-640.

Holland, N.J. & DeAngelis, D.L. (2002) Ecological and evolutionary conditions for fruit abortion to

regulate pollinating seed-eaters and increase plant reproduction. Theoretical Population Biology

61, 251-263.

Hulme, P.E. & Benkman, C.W. (2002) Granivory. - In: Herrera, C. M. and Pellmyr, O. (eds.), Plant–

animal interactions: An evolutionary approach. Blackwell Publishing, pp. 132-54.

Janzen, D.H. (1971) Escape of Cassia grandis L. beans from predators in time and space. Ecology 52,

964-979.

Janzen, D.H. (1980) Specificity of seed-attacking beetles in a Costa Rican deciduous forest. Journal of

Ecology 68, 929-952.

Jump, A.S. & Woodward, F.I. (2003) Seed production and population density decline approaching the

range edge of Cirsium species. New Phytologist 160, 349-358.

Page 88: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Kelly, D. & Sork, V.L. (2002) Mast seeding in perennial plants: why, how, where? Annual Review of

Ecology and Systematics 33, 427-447.

Koenig, W.D., Mumme, R.L., Carmen, W.J. & Stanback, M.T. (1994) Acorn production by oaks in

central coastal California: variation within and among years. Ecology 75, 99-109.

Kolb, A., Ehrlén, J. & Eriksson, O. (2007) Ecological and evolutionary consequences of spatial and

temporal variation in pre-dispersal seed predation. Perspectives in Plant Ecology, Evolution and

Systematics 9, 79-100.

Lee, T.D. & Bazzaz, F.A. (1982) Regulation of fruit and seed production in an annual legume, Cassia

fasciculata. Ecology 63, 1363-1373.

Lee, T.D. & Bazzaz, F.A. (1986) Maternal regulation of fecundity: non-random ovule abortion in Cassia

fasciculata Michx. Oecologia 68, 459-465.

Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D. & Schabenberger, O. 2006. SAS for mixed

models. SAS Institute Publishing.

Louda, S.M. (1982) Distribution Ecology - Variation in Plant Recruitment over a Gradient in Relation to

Insect Seed Predation. Ecological Monographs 52, 25-41.

Mauricio, R., Rausher, M.D. & Burdick, D.S. (1997) Variation in the defense strategies of plants: are

resistance and tolerance mutually exclusive? Ecology 78, 1301-1311.

Menéndez, R., González-Megías, A., Lewis, O.T., Shaw, M.R. & Thomas, C.D. (2008) Escape from

natural enemies during climate-driven range expansion: a case study. Ecological Entomology 33,

413-421.

Núñez-Farfán, J., Fornoni, J. & Valverde, P.L. (2007) The evolution of resistance and tolerance to

herbivores. - Annual Review of Ecology, Evolution and Systematics 38, 541-566.

Östergård, H., Hambäck, P.A. & Ehrlén, J. (2007) Pre-dispersal seed predation: The role of fruit abortion

and selective oviposition. Ecology 88, 2959-2965.

Parsons, P.A. (1991) Evolutionary rates: stress and species boundaries. Annual Review of Ecology and

Systematics 22, 1-18.

Ravera, F. (2011) Which future for semi-arid socio-ecological systems? Anticipatory co-learning for

climate change adaptation in Northern Nicaragua. Institut de Ciència i Tecnologia Ambiental. -

Universitat Autònoma de Barcelona, p. 310.

Siemens, D. H., Johnson, C.D. & Ribardo, K.J. (1992) Alternative seed defense mechanisms in

congeneric plants. Ecology 73, 2152-2166.

Stephenson, A.G. (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annual

Review of Ecology and Systematics 12, 253-279.

Stevens, W.D., Ulloa, C.U., Pool, A. & Montiel, O.M. (2001) Flora de Nicaragua. Missouri Botanical

Garden.

Stowe, K.A., Marquis, R.J., Hochwender, C.G. & Simms, E.L. (2000) The evolutionary ecology of

tolerance to consumer damage. Annual Review of Ecology and Systematics 31, 565-595.

Tarrasón, D., Urrutia, J.T., Ravera, F., Herrera, E., Andrés, P. & Espelta, J.M. (2010) Conservation status

of tropical dry forest remnants in Nicaragua: Do ecological indicators and social perception tally?

Biodiversity and Conservation 19, 813-827.

Page 89: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Thomas, C.D. (2010) Climate, climate change and range boundaries. Diversity and Distributions 16, 488-

495.

Traveset, A. (1990) Bruchid egg mortality on Acacia farnesiana caused by ants and abiotic factors.

Ecological Entomology 15, 463-467.

Traveset, A. (1991) Pre-dispersal seed predation in Central American Acacia farnesiana: factors affecting

the abundance of co-occurring bruchid beetles. Oecologia 87, 570-576.

Traveset, A. (1993) Deceptive fruits reduce seed predation by insects in Pistacia terebinthus L.

(Anacardiaceae). Evolutionary Ecology 7, 357-361.

Vaz Ferreira, A., Bruna, E.M. & Vasconcelos, H.L. (2011) Seed predators limit plant recruitment in

Neotropical savannas. Oikos 120, 1013-1022.

Vázquez, G.J.A. & Givnish, T.J. (1998) Altitudinal gradients in tropical forest composition, structure, and

diversity in the Sierra de Manantlán. Journal of Ecology 86, 999-1020.

Xiao, Z., Harris, M.K. & Zhang, Z. (2007) Acorn defenses to herbivory from insects: implications for the

joint evolution of resistance, tolerance and escape. Forest Ecology and Management 238, 302-

308.

Page 90: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Local

Name

Site

Coordinates

Altitude

(m a.s.l)

Equivalent

Diameter

(cm)

Individual

Crown Area

(m2)

Tree

Density

(Ind/Ha)

Basal

Area

(m2/Ha)

Trinidad 12º56.22'N

86º13.10'W

600 101 38.23.8 700110 15.11.2

Limón 13º3.83'N

86º21.79'W

900 121 68.48 40678 10.92.2

Campana 13º09.10'N

86º19.12'W

1100 121 74.49 549126 17.74.7

Brasil 13º10.14'N

86º15.03'W

1300 181 122.110.5 680180 33.97.9

Miraflor 13º13.80'N

86º13.58'W

1450 191 119.210 26342 22.23

Table 1. Summary of A. pennatula forest characteristics in the different sites.

Equivalent diameter and individual crown area are the mean of 30 randomly selected A.

pennatula trees in each site (10 per plot) whereas tree density and basal area have been

calculated by sampling all trees in 3 circles (radius=20m) in each site. All values are

Mean SE.

Page 91: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

0

20

40

60

80

100

600 900 1100 1300 1450

(c)

Pro

por

tion

of p

reye

d s

eed

s (%

)

Altitude (m)

a

b b

a

a

0

20

40

60

80

100

120

600 900 1100 1300 1450

(a)N

o.

frui

ts p

er t

ree

a

b

cc

b

0

2

4

6

8

10

12

14

0

20

40

60

80

100

600 900 1100 1300 1450

No.

see

ds p

er f

ruit

Pro

portio

n of ab

orted see

ds (%)

A A AA

B

c

bc

aa

ab

(b)

0

20

40

60

80

100

600 900 1100 1300 1450

(c)

Pro

por

tion

of p

reye

d s

eed

s (%

)

Altitude (m)

a

b b

a

a

0

20

40

60

80

100

120

600 900 1100 1300 1450

(a)N

o.

frui

ts p

er t

ree

a

b

cc

b

0

2

4

6

8

10

12

14

0

20

40

60

80

100

600 900 1100 1300 1450

No.

see

ds p

er f

ruit

Pro

portio

n of ab

orted see

ds (%)

A A AA

B

c

bc

aa

ab

(b)

Figure 1. Altitudinal differences in: (a) Number of fruits per tree, (b) Number of seeds

per fruit (open blocks) and proportion of aborted seeds per fruit (filled blocks) and (c)

Proportion of preyed seeds per tree of A. pennatula. Mean SE values are represented.

Different letters indicate significant differences between sites according to LS means

tests.

Page 92: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Figure 2. (a) Differences in number of adult beetles of Mimosestes sp. emerged per egg

laid on A. pennatula fruits along an altitudinal gradient. Mean SE values per tree are

represented. Different letters indicate significant differences between sites according to

LS means test. (b) Relationship between rate of seed abortion per fruit and the number

of adult beetles emerged per egg laid at tree level (d.f. = 1, 85, r2 = 0.25, P < 0.0001).

600 900 1100 1300 1450

(a)

Ad

ult

em

erg

ed p

er e

gg

laid

Altitude (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a

bcc

ab

a

(b)(b)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Rate of seed abortion

Ad

ulte

me

rge

d p

ereg

gla

id

0 0.1 0.2 0.3 0.4 0.5 0.6

Ad

ulte

me

rge

d p

ereg

gla

id

Rate of seed abortion

Page 93: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Figure 3. (a) Differences in seedling density of A. pennatula along the altitudinal

gradient. Mean SE values are represented. Different letters indicate significant

differences between sites according to Tukey HSD test. (b) Significant relationship

between the sound seed output (number of escaped seeds) per tree and seedling density

at site level (d.f.= 1,5, r2=0.93, p < 0.05).

0 100 200 300 400 500 600 700No. escaped seeds

0

0.1

0.2

0.3

0.4

0.5

0.6

No

. se

edl

ing

sp

er

m2

600900

1450

1100

1300

(b)

0 100 200 300 400 500 600 700No. escaped seeds

0

0.1

0.2

0.3

0.4

0.5

0.6

No

. se

edl

ing

sp

er

m2

600900

1450

1100

1300

(b)

0 100 200 300 400 500 600 700No. escaped seeds

0

0.1

0.2

0.3

0.4

0.5

0.6

No

. se

edl

ing

sp

er

m2

600900

1450

1100

1300

(b)

No

. of s

ee

dlin

gs

pe

r m

2

aa

a

b

b

Altitude (m)600 900 1100 1300 1450

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7(a)

Page 94: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Capítol4

Demasiados depredadores para una 

misma semilla –  

¿Una coexistencia mediada por los 

frugívoros? 

Page 95: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Resumen

Se ha sugerido que los vertebrados frugivores reducen la depredación de semillas a

través del control de las poblaciones de insectos depredadores de semillas (IDS) a los

cuales matan accidentalmente cuando comen frutos. No obstante, no se ha explorado si

esta depredación ‘intra-gremio’ puede afectar de manera diferencial a distintas especies

de IDS de acuerdo a diferencias en la permanencia en los frutos debidas a notables

diferencias en el tiempo de desarrollo larvario. En los árboles del trópico seco Acacia

pennatula y Guazuma ulmifolia exploramos el rol que los frugívoros (a saber, el ganado

doméstico) pueden jugar reduciendo la depredación de semillas y promoviendo la

coexistencia de distintas especies de IDS (Bruchidae spp.) con distintos tiempos de

desarrollo larvario. Comparamos la depredación de semillas y las abundancias relativas

de las especies de brúquidos en dos localizaciones contrastadas por la presencia y la

ausencia de frugívoros (ganado). En presencia de ganado encontramos una significativa

reducción de la proporción de semillas depredadas y cambios en la comunidad de IDS:

hubo una menor abundancia de especies de brúquidos con un desarrollo larval más

prolongado. Nuestros resultados sugieren que la interacción entre procesos evolutivos

(que resultan en variaciones en los atributos del ciclo vital de los IDS) con procesos

ecológicos (por ejemplo, depredación ‘intra-gremio’) pueden contribuir a la

coexistencia de distintas especies de insectos alimentándose de las semillas de la misma

planta huésped.

 

 

 

Page 96: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Chapter4

Too much predators for the same seed ‐ A frugivore‐

mediated coexistence? 

Abstract

Vertebrate frugivores have been suggested to reduce seed predation by controlling the

populations of insect seed predators (ISP) by means of killing them when feed on fruits.

However it has not been explored whether this intra-guild predation may differently

affect ISP according to differences in the time larvae spend in the fruit. In the dry-

tropical trees Acacia pennatula and Guazuma ulmifolia we explored the role that

frugivores may play in reducing seed predation and in the coexistence of the ISP

involved (Bruchidae spp.) with different larval development times. We compared seed

predation and the relative abundance of bruchid species in two sites contrasted by the

presence and absence of frugivores (cattle). In the presence of cattle we found a

significant reduction of the proportion of seeds preyed upon and changes in the ISP

community: i.e. a lower presence of the bruchid species with a longer larval

development time. Our results suggest that the interplay between evolutionary processes

(resulting in variation in ISP life-histories) with ecological interactions (e.g. frugivore

intra-guild predation) may contribute to the coexistence of different insect species

feeding upon the same host plant.

Page 97: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Introduction

How species exploiting the same resources can coexist is a basic theoretical question in

ecology. Concerning insect seed predators (ISP), coexistence of species sharing the

same host plant has been mainly explained through trait-mediated effects resulting from

ecological constraints based on differences in insects sizes (Espelta et al. 2009, Bonal et

al. 2011). However, ISP along with vertebrate frugivores and their common target plant

form evolutionary triads characterised by complex and dynamic interactions. Indeed, in

addition to direct two-way relationships with the plant –antagonistic with predators and

mutualistic with frugivores–, there may be indirect interactions between frugivores and

ISP benefiting the plant (Sallabanks & Courtney 1992). For example, once dispersed,

seeds are no longer available for pre-dispersal ISP so they may ‘escape’ in space

(Janzen 1971). Furthermore, frugivores can indirectly control the size of ISP

populations by killing insects (i.e. enclosed larvae or pupae) when feed on fruits

(Herrera 1989, Hauser 1994, Gómez & González-Mejías 2002, Bonal & Muñoz 2007).

Nonetheless, whether insects with different life-history traits may have different

vulnerabilities to frugivores has not yet been explored.

If insect infestation does not remarkably alter fruit characteristics deterring

frugivores (Herrera 1984), vertebrate-dispersed fruits may be seen as ‘risky places’ for

insects feeding inside them since the longer the time spent in the fruit the greater the

probability of being ingested. Therefore, the guild of insects that compete for seeds of

the same plant may experience different vulnerabilities to frugivory depending on their

fruit residence time which is often mediated by species-specific differences in larval

development time (LDT). Thus the presence of frugivores would not only reduce seed

predation but also may modify the community of insects involved: i.e. by reducing the

population of species with longer LDT.

Page 98: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

In this study, conducted in the dry-tropical trees Guazuma ulmifolia and Acacia

pennatula, we observed that frugivores reduce the levels of pre-dispersal seed predation

and we provide, apparently for the first time, evidences suggesting that they may alter

the community of ISP (Bruchidae spp. in our study). Finally, we discuss these results in

light of how the interplay between ecological and evolutionary processes may allow the

coexistence of ISP that compete for the same resource.

Material and methods

Study area and species

This study was conducted at “El Limón Biological Field Station” (13º 03’ 44”N – 86º

21’ 57”W; National Autonomous University of Nicaragua-Managua) in the Estelí valley

(Northwest Nicaragua), a region characterised by a dry tropical climate, i.e., monthly

temperatures ranging from 16 to 33ºC and 90% of the 830 mm of mean annual

precipitation falling during a 6-month wet season (November-May). The landscape is a

mosaic of savannah-like pastures, secondary and remnant tropical dry forest patches

where the native Acacia pennatula (Fabaceae) and Guazuma ulmifolia (Malvaceae)

usually dominate (Tarrasón et al. 2010). Both species bloom during the dry season and

the initiated fruits remain immature until the last rains when they suddenly increase to

full size and gradually fall from February to May. In A. pennatula, fruits are indehiscent

dry flat pods of an average length of 8.5 (±0.06 SE), a width of 2 cm (±0.01 SE) and a

mean of 10 seeds (±0.14 SE) in each pod, while G. ulmifolia has hard spheroidal nuts of

an average maximum diameter of 2.3 cm (±0.01 SE) containing a mean of 44 tiny seeds

within (±0.67 SE; n=600 fruits of each species). Once on the ground, both types of

fruits are actively consumed by domestic cattle which nowadays, after the extinction of

Page 99: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Pleistocene mega-herbivores, are the main seed dispersal agents through endozoochory

(Janzen & Martin 1982).

Seeds of both species are conspicuously preyed upon by the larvae of several

bruchid species (figure 1): Mimosestes anomalus (Kingsolver & Johnson 1978) and

Mimosestes humeralis (Gyllenhal 1873) in A. pennatula; and Amblycerus cistelinus

(Gyllenhal 1833) and Acanthoscelides guazumae (Johnson & Kingsolver 1971) in G.

ulmifolia. It should be noticed that, while larvae of M. anomalus, M. humeralis and A.

guazumae require a single seed to complete their development, the larvae of A.

cistelinus must eat almost all seeds of a single fruit to become an adult (Janzen 1982,

Traveset 1992). Therefore in A. cistelinus only one adult can emerge from each infested

fruit after a time length of about 6 weeks after oviposition, whereas in the other species

in 3-4 weeks as many adults may emerge as sound seeds in the fruit (Janzen 1982,

Traveset 1992). Accordingly, A. cistelinus is considered to be a univoltine species

whereas Mimosestes spp. and A. guazumae are multivoltine and may produce several

generations during each fruiting season (Janzen 1982, Traveset 1992).

Sampling design

To test for the potential effect of frugivores on seed predation and on the relative

abundances of the abovementioned bruchid species on their specific hosts, we selected

two adjacent flat forests with identical management history (i.e. absence of

anthropogenic fires), fairly dominated by A. pennatula and G. ulmifolia, but contrasted

by the presence and the long absence of frugivores: i.e. a 15-ha wooded rangeland

where cattle eat all fallen fruits vs “El Limón Biological Field Station” that is an old

ranch with 17-ha of secondary forest where cattle have been excluded for 13 years and

there is no frugivory at all (G. Peguero personal observation). Although more replicates

Page 100: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

would have been ideally desirable, in this as well as in other similar ecosystems it is

highly difficult to find such large herbivore exclosures extended on time (see for similar

experimental designs Cabin et al. 2000, González-Mejías et al. 2004, Bonal & Muñoz

2007). So, during March 2009 at the peak of the fruiting season, we randomly selected

10 trees of each species scattered within each site. We estimated their fruit crop size by

having two independent observers count the number of fruits for 30 seconds. Then, after

gently shaking the branches, we collected 30 fallen ripe fruits per tree in both sites (2

sites × 2 species × 10 trees × 30 fruits tree-1, n=1200 fruits). In the lab, each fruit was

tagged and packed into an inflated plastic-bag and for the next 6 weeks all emerged

adult beetles were collected for species determination. Finally, we dissected each fruit

and counted the number of preyed and sound seeds to calculate the proportion of preyed

seeds (preyed seed/total seeds).

Data analysis

Differences in fruit crop sizes and seed predation among sites were analysed by means

of general linear models after checking the normality of the response variables. For the

analysis of crop size we included the projected crown area as a covariate in order to

account for differences in tree size among populations while for the assessment of seed

predation we included fruit crop size to account for the potential effect of predator

satiation. Changes in the relative composition of the guild of ISP among sites were

tested at tree level (i.e. considering all sampled fruits per tree) by comparing the number

of emerged individuals of each species and the species proportion. These analyses were

performed by means of Kruskal-Wallis tests using site as the grouping variable.

Analyses were done for the two tree species separately owing to the differences in their

guild of ISP.

Page 101: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Results

There were no differences in fruit crop size per tree among sites for both A. pennatula

(F1,17 = 1.0, P = 0.3) as for G. ulmifolia (F1,17 = 1.2, P = 0.3) and in neither of the two

species was fruit production influenced by crown area (F1,17 = 1.9, P = 0.2 for A.

pennatula, and F1,17 = 0.07, P = 0.8 for G. ulmifolia). The trees of both species suffered

significantly higher seed predation in the site without frugivores (0.843±0.04 vs

0.695±0.04, F1,17 = 7.8, P = 0.01 for A. pennatula and 0.378±0.04 vs 0.115±0.04, F1,17 =

19.1, P = 0.0004 for G. ulmifolia) and these predation rates were not influenced by fruit

crop per tree (respectively, F1,17 = 0.26, P = 0.2 and F1,17 = 0.07, P = 0.8). Within the

guild of ISP preying on A. pennatula seeds there were no differences among sites either

in the numbers of adult beetles collected (χ21,20= 0.97, P = 0.32 for M. humeralis, and

χ21,20= 0.06, P = 0.94 for M. anomalus) or in the relative proportion of each species

(χ21,20= 0.57, P = 0.45; figure 2a). Conversely there were strong differences in the

relative abundance of G. ulmifolia’s ISP (figure 2b). In the site without frugivores

almost all collected beetles (98%) belonged to the larger Amblycerus cistelinus, whereas

this species hardly reached 28% in the presence of frugivores (χ21,20= 7.6, P = 0.006 for

the number of individuals and χ21,20= 12.9, P = 0.0003 for species proportion).

Discussion

The present study provides new evidences suggesting that beyond their role as seed

dispersal agents, frugivores may control the populations of insects feeding upon seeds

through incidental digestion (Herrera, 1989, Hauser 1994, Gómez & González Mejía

2002) leading to a significant reduction of the proportion of preyed seeds (Bonal &

Muñoz 2007). Moreover, to the best of our knowledge, we document for the first time

Page 102: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

that this control effect may differ among the various species of ISP that exploit the same

host plant.

Certainly, we must acknowledge that to obtain our results only a large herbivory

exclosure (17-ha) could be used. As in other previous works (Cabin et al. 2000,

González-Mejías et al. 2004, Bonal & Muñoz 2007), the difficulty of finding such large

facilities preclude a complete spatially replicated design. Nevertheless, the consistency

of the reduction of seed predation in both A. pennatula and G. ulmifolia (i.e. a sort of

biological replicates) and the lower vulnerability of the multivoltine bruchid species (i.e.

with lower larval development time) suggest cattle frugivory as the most parsimonious

explanation to the differences observed in seed predation and the composition of insect

community.

As previously reported, the lack of grass during the dry season makes the fallen ripe

fruits of both tree species to be highly desired resources for cattle and thus they are

ingested irrespective of whether they are sound or insect infested (Janzen 1982,

Traveset 1992, Peguero personal observation). Thus, fruit ingestion directly mediates

‘seed escape’ but also results in the incidental digestion of any enclosed larvae or pupae

(Herrera 1989, Hauser 1994) and although fruits may be seen as risky places for ISP, in

light of our results the risks taken appear to be different for each species within the same

ecological guild. In the case of G. ulmifolia, there were striking differences among sites

concerning the relative abundances of each ISP species. After a long absence of

frugivores (e.g. cattle during 13 years) the larger A. cistelinus seems to exclude the tiny

A. guazumae, most likely because the larger larva of the former species devour the

single-seed infesting larvae of the latter when multi-infestation of a fruit occurs (Janzen

1982), and this competitive exclusion seems to be a common situation (Johnson &

Kingsolver 1971, Janzen 1982). However, in areas where fruits are regularly consumed

Page 103: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

by cattle the population of A. cistelinus decreases while that of A. guazumae increases.

The lower vulnerability of A. guazumae to vertebrate frugivory could arise from its

multivoltine life-history strategy: a small body size involves a shorter LDT which

directly results in less time spent in a vulnerable state within the fruit. Conversely, in A.

pennatula neither the number of emerged adults nor the relative proportions of

Mimosestes species varied. In this case, the similar body size and multivoltinism of both

species may involve a similar LDT and thus, the same vulnerability to frugivores.

Larger body size generally confers several competitive advantages such as higher

adult fecundity (Honěk 1993) but also produces evolutionary conflicts like those

derived from the consequent greater resource requirements (Espelta et al. 2009, Bonal &

Muñoz 2009). In the general case in fact, when the favourable season is long enough, an

extra generation can appear only after an LDT reduction has been selected, and there is

some experimental evidence of a correlated reduction in body size in such shifts in

voltinism (Nylin & Gothard 1998). So far, the coexistence of ISP species that share the

same host plant has been mainly explained through niche partitioning based on

ecological constraints imposed by seed and insect sizes (e.g. resource availability vs.

resource requirements) (Espelta et al. 2009, Bonal et al. 2011). However our results

might expand this perspective and suggest that the interplay between ecological

interactions (e.g. frugivore intra-guild predation) and evolutionary processes resulting in

variations on ISP life-history traits and strategies may drive niche partitioning (Bonsall

et al. 2004) thus allowing multi-species coexistence within the same ecological guild.

References

Bonal, R., Espelta, J.M., & Vogler, A.P. (2011) Complex selection on life-history traits and the

maintenance of variation in exaggerated rostrum length in acorn weevils. Oecologia, 167, 1-9.

Bonal, R. & Muñoz, A. (2007) Multi-trophic effects of ungulate intraguild predation on acorn weevils.

Oecologia, 152, 533-540.

Page 104: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Bonal, R. & Muñoz, A. (2009) Seed weevils living on the edge: pressures and conflicts over body size in

the endoparasitic Curculio larvae. Ecological Entomology, 34, 304-309.

Bonsall, M.B., Jansen, V.A.A., & Hassell, M.P. (2004) Life history trade-offs assemble ecological guilds.

Science, 306, 111-114.

Cabin, R.J., Weller, S.G., Lorence, D.H., Flynn, T.W., Sakai, A.K., Sandquist, D., & Hadway, L.J. (2000)

Effects of long-term ungulate exclusion and recent alien species control on the preservation and

restoration of a Hawaiian tropical dry forest. Conservation Biology, 14, 439-453.

Espelta, J.M., Bonal, R., & Sánchez-Humanes, B. (2009) Pre-dispersal acorn predation in mixed oak

forests: interspecific differences are driven by the interplay among seed phenology, seed size and

predator size. Journal of Ecology, 97, 1416-1423.

Gómez, J.M. & González-Megías, A. (2002) Asymmetrical interactions between ungulates and

phytophagous insects: being different matters. Ecology, 83, 203-211.

González-Megías, A., Gómez, J.M., & Sánchez-Piñero, F. (2004) Effects of ungulates on epigeal

arthropods in Sierra Nevada National Park (southeast Spain). Biodiversity and Conservation, 13,

733-752.

Hauser, T.P. (1994) Germination, predation and dispersal of Acacia albida seeds. Oikos, 70, 421-426.

Herrera, C.M. (1984) Avian interference of insect frugivory: an exploration into the plant-bird-fruit pest

evolutionary triad. Oikos, 42, 203-210.

Herrera, C.M. (1989) Vertebrate frugivores and their interaction with invertebrate fruit predators:

supporting evidence from a Costa Rican dry forest. Oikos, 54, 185-188.

Honěk, A. (1993) Intraspecific variation in body size and fecundity in insects: a general relationship.

Oikos, 66, 483-492.

Janzen, D.H. (1971) Escape of Cassia grandis L. beans from predators in time and space. Ecology, 52,

964-979.

Janzen, D.H. (1980) Specificity of seed-attacking beetles in a Costa Rican deciduous forest. Journal of

Ecology, 68, 929-952.

Janzen, D.H. (1982) Natural history of guacimo fruits (Sterculiaceae: Guazuma ulmifolia) with respect to

consumption by large mammals. American Journal of Botany, 69, 1240-1250.

Janzen, D.H. & Martin, P.S. (1982) Neotropical anachronisms: the fruits the gomphotheres ate. Science,

215, 19-27.

Johnson, C.D. & Kingsolver, J.M. (1971) Descriptions, life histories, and ecology of two new species of

Bruchidae infesting guacima in Mexico. Journal of the Kansas Entomological Society, 44, 141-

152.

Nylin, S. & Gotthard, K. (1998) Plasticity in life-history traits. Annual Review of Entomology, 43, 63-83.

Sallabanks, R. & Courtney, S.P. (1992) Frugivory, seed predation, and insect-vertebrate interactions.

Annual Review of Entomology, 37, 377-400.

Tarrasón, D., Urrutia, J.T., Ravera, F., Herrera, E., Andrés, P., & Espelta, J.M. (2010) Conservation status

of tropical dry forest remnants in Nicaragua: Do ecological indicators and social perception tally?

Biodiversity and Conservation, 19, 813-827.

Page 105: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Traveset, A. (1992) Effect of vertebrate frugivores on bruchid beetles that prey on Acacia farnesiana

seeds. Oikos, 63, 200-206.

(a)

(b)

∼1 cm

∼1 cm

Figure 1. Insect seed predators of: (a) Acacia pennatula: Mimosestes humeralis (length,

i.e. pronotum-elytra, 3.6–6.0 mm) and M. anomalus (length, 3.0–3.6 mm); (b) Guazuma

ulmifolia: the larger Amblycerus cistelinus (length, 7.0–8.5 mm) and the smaller

Acanthoscelides guazumae (length, 1.7–2.2 mm). Notice the similar range of body size

of the species preying upon Acacia pennatula and the differences between those preying

upon Guazuma ulmifolia.

Page 106: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

M. humeralis(a) M. anomalus

A. cistelinus(b) A. guazumae

M. humeralis(a) M. anomalus

A. cistelinus(b) A. guazumaeA. cistelinus(b) A. guazumae

Figure 2. Differences between sites (with and without cattle) on the relative abundances

of the corresponding guilds of insect seed predators at tree level (n=40). Numbers inside

columns indicate the absolute number of adults collected from each species. Significant

differences between sites were only found within the guild of Guazuma ulmifolia both

in relative proportions and number of adults collected.

Page 107: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Capítulo5

Una oportunidad o una barrera –  

Inhibición o facilitación del establecimiento de 

plántulas 

Page 108: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Resumen

Se ha sugerido que la sucesión secundaria del bosque tropical seco tras el abandono de

tierras se ve favorecida por la facilitación al establecimiento de plántulas ejercida por

las especies pioneras. No obstante, algunas de estas especies pioneras pueden a veces

actuar como invasores de pastos bloqueando la sucesión por varias décadas.

Investigamos mediante ensayos de laboratorio y experimentos de campo si la alelopatía

puede jugar un papel en la detención de la sucesión al limitar el establecimiento de

plántulas de especies de árboles bajo la copa de Acacia pennatula. Los extractos de las

hojas de A. pennatula no afectaron la germinación pero redujeron el crecimiento de las

plántulas y especialmente el desarrollo de sus raíces, modificando su modelo de

asignación de biomasa hacia una reducción de la relación raíz/tallo. La supervivencia de

las plántulas fue un 20-30% menor bajo la copa de A. pennatula. Esta reducción de la

supervivencia fue particularmente pronunciada a medida que la estación seca avanzó a

pesar de las condiciones más favorables (por ejemplo, mayor humedad del suelo)

encontradas en las posiciones interiores bajo la copa. En conjunto nuestros resultados

sugieren que en lugar de facilitar, A. pennatula puede inhibir el establecimiento de

plántulas bajo su copa probablemente por medio de una interferencia alelopática en el

desarrollo del sistema radical con consecuencias negativas críticas para la supervivencia

de las plántulas durante la estación seca. Esta contribución previene acerca de

sobreestimar el efecto nucleador que los árboles aislados pueden tener a fin de facilitar

la sucesión secundaria en los altamente perturbados sistemas silvopastoriles procedentes

del bosque tropical seco.

Page 109: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Chapter5

An opportunity or a barrier ‐ Inhibition or facilitation of 

seedling establishment 

Abstract

Secondary succession after land abandonment in tropical dry forests has been suggested

to be favoured by the facilitation effects for seedling establishment exerted by pioneer

trees isolated in these savannah-like landscapes. However, it has also been noticed that

these pioneer species may sometimes have an encroaching effect and arrest succession

for several decades. We investigated whether allelopathy can play a role in limiting

seedling establishment of co-occurring tree species under the canopy of Acacia

pennatula by means of lab bioassays and field experiments in north-west Nicaragua.

Leaf extracts of A. pennatula did not affect seed germination but reduced the general

growth and especially the development of the root compartment in seedlings, shifting

their biomass allocation model to a reduced root/shoot ratio. Survival of planted

seedlings under the canopy of A. pennatula was about 20-30% lower than outside, and

this reduction was particularly pronounced as the dry season progressed, despite the

milder conditions (e.g. higher soil moisture) experienced in the inner positions under the

canopy. Altogether, our results suggest that, rather than facilitating, A. pennatula may

inhibit the establishment of seedlings under its canopy probably by means of an

allelopathic interference in the development of the root system with critical negative

consequences for young seedlings in terms of overcoming the dry season. This

contribution warns about overemphasizing the nucleation effect that remnant and

isolated trees may have in order to facilitate secondary succession in these highly

disturbed savannah-like tropical dry forests.

Page 110: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Introduction

Tropical dry forests (TDF) have been extensively disturbed and are considered to be one

of the most threatened ecosystems worldwide (Janzen 1988). Specifically in

Mesoamerica, undisturbed dry forests now account for less than 2% of their original

surface (Olson & Dinerstein 2002) and most areas have changed into savannah-like

landscapes where a reduced group of early-successional tree species dominates (usually

Acacia and Mimosa spp.: see Burgos & Mass 2004, Álvarez-Yépiz et al. 2008). In this

ecological scenario pioneer species may act as successional nuclei, i.e. recruitment foci

for other plant species (Yarranton & Morrison 1974, Slocum 2001). Positive effects of

pioneer trees could start with an increased likelihood of seed dispersal of other species

under their canopies owing to their role as perching sites for birds and bats (Guevara et

al. 1986, Holl et al. 2000). In addition, other facilitating effects that would enhance

establishment success under tree canopies compared to open conditions may include: i)

improved water relations from a lower transpiration demand along with higher soil

moisture (Holmgren et al. 1997, Holmgren 2000), ii) shelter against extreme

temperatures (Nobel 1989), iii) better nutrient conditions from higher litter deposition

and mineralization rates (Callaway et al. 1991, Belsky 1994) and iv) protection against

herbivory (McAuliffe 1986, García & Obeso 2003).

Accordingly, secondary succession in TDF may depend largely on the

facilitation effects exerted by pioneer trees isolated in pastures (Slocum 2001). However

after land abandonment, the forest community composition is often dominated by a few

long-lived pioneer species resulting in very slow or non-existent structural and

compositional change for several decades (Chazdon 2008). Indeed, facilitation and

interference may act simultaneously in the field (Callaway & Walker 1997, Maestre et

al. 2003) and recruitment limitation can appear if direct competition for resources

Page 111: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

between trees and young seedlings surpasses the abovementioned benefits (Putz &

Canham 1992, Holl 1998) or if the release of allelopathic substances occurs (Nilsson

1994, Ridenour & Callaway 2001). Whereas the role of direct competition (e.g. light,

water, nutrients) has been thoroughly explored and considered as a potential constraint

to succession in tropical forests (Peterson & Carson 2008), so far, the importance of

allelopathy has barely been suggested (Holl 1998). Thus, investigating whether pioneer

trees may inhibit rather than facilitate seedling establishment by means of an

allelopathic interference is a key point to understand the successional dynamics of

tropical forests.

Allelochemicals are released by plants through leaching, volatilization, root

exudation or litter incorporation into soil (Reigosa et al. 1999, Inderjit & Duke 2003)

and can interfere with several plant target processes (e.g. cell division, nutrient uptake,

stomatal conductance). Although these effects may vary depending on the identity of

the species occurring on the understory (Lorenzo et al. 2011), the overall effect usually

results in the delay and reduction of germination (Chou et al. 1998, Escudero et al.

2000) and also in constraints to seedling establishment (Orr et al. 2005) mainly through

reductions in root system development (Bais et al. 2003). Therefore, allelopathy has

been suggested to play a key role in community assemblage as well as species

replacement during succession (Hilhorst & Karssen 2000).

Hence, the main aim of the present study was to explore whether allelopathic

interference may exceed facilitation for the establishment of seedlings under the canopy

of pioneer species in secondary TDF. To achieve this objective we selected the dry-

tropical pioneer tree Acacia pennatula Benth. as a case study because it is a common

and dominant tree in disturbed areas and secondary TDF remnants from Mesoamerica

down to Ecuador (Ebinger et al. 2000, Tarrasón et al. 2010). Acacia sensu lato is a large

Page 112: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

circumtropical genus with several species playing a dominant role in natural or

anthropogenic savannahs and providing important ecological and socio-economical key

functions (Purata et al. 1999, Munzbergova & Ward 2002). In Mesoamerica, the

abandonment of pastures and wooded rangelands usually leads to secondary forests

widely dominated by pioneer Acacia species that persist as almost mono-specific stands

for several decades (Álvarez-Yépiz 2008, Burgos & Mass 2004). Interestingly, several

species in this genus have provided examples of phytotoxic activity in leaves, flowers

and root extracts (González et al. 1995, Chou et al. 1998, Lorenzo et al. 2011), which

could partially explain this ability to arrest succession. Yet whether this effect exceeds

the benefits that seedlings may encounter under the canopy of isolated trees

(facilitation) has seldom been explored. To test the phytotoxic activity of A. pennatula,

we first performed a bioassay with aqueous extracts of leaves on seed germination and

early seedling growth. Second, we carried out a field experiment where we planted and

compared the success of germination and seedling survival in various positions under

the canopy of A. pennatula and outside. We hypothesize that, if A. pennatula has

allelopathic potential, it must decrease germination and seedling growth (lab

experiments) and the likelihood of germination and survival of seedlings planted under

the tree canopy. The results obtained can improve our understanding of the the potential

role that allelopathy may play in the successional dynamics in dry tropical forests.

Materials and methods

Study site and species

This study was conducted in the CIEA-El Limón a research field-station of the National

Autonomous University of Nicaragua-Managua (FAREM-UNAN/Managua) located at

a height of 890 m in Estelí (North-West Nicaragua 13.3676ºN 86.21967ºW). Mean

monthly temperature ranges from 16 to 33ºC and mean annual rainfall is 804 mm year-1,

Page 113: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

with approximately 90% falling from May to November (INETER, data for the 1983-

2009 period). Forested areas in the field-station are predominated by sparse Acacia

pennatula Benth. (Fabaceae) trees in a savannah-like landscape typical of once

disturbed TDF in Mesoamerica. This species has traditionally been favoured by local

land-owners due to its protein-rich pods that are foraged by domestic livestock during

the dry season (Purata et al. 1999, Casasola 2000). When grazing and other management

pressures cease, A. pennatula seedlings and saplings rapidly grow and encroach on

pastures, leading to low diversity stands in which apparently no succession takes place

(G. Peguero personal observation in the study area; for a similar result with A.

cochliacantha see Álvarez-Yépiz et al. 2008).

To test whether A. pennatula trees may facilitate or inhibit the establishment of

other tree species under its canopy, we selected three native and common species that

are also present in these secondary TDF areas: Guazuma ulmifolia Lam. (Sterculiaceae),

Enterolobium cyclocarpum Griseb. (Fabaceae) and Cedrela odorata L. (Meliaceae).

These species were selected not only for their commonness both in secondary and

mature forests but also because they reflect contrasting characteristics in seed size,

dormancy and degree of protection found in tree species in dry tropical areas. G.

ulmifolia and E. cyclocarpum have hard-coated seeds and dormancy, yet they present

very different seed sizes (0.004 - 0.01 g seed-1 and 0.83 - 1.11 g seed-1 respectively). In

contrast, C. odorata has no dormancy and an intermediate seed size (0.017 - 0.025 g

seed-1).

Laboratory bioassay

In order to test whether chemical compounds in leaves of A. pennatula may have

phytotoxic activity on the germination response and early seedling growth of co-

occurring tree species, we designed a laboratory bioassay. These trials were conducted

Page 114: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

only with C. odorata seeds because they do not have dormancy and germination takes

only 6 or 7 days in non-limiting water conditions (Baskin and Baskin 2001).

During the dry season of 2009, A. pennatula leaves were randomly collected

from trees growing in the field-station and taken to the lab where we obtained an

aqueous extract after incubating 1000 g of slightly trimmed fresh leaves in 3 L. of

distilled water (48 hours at 235ºC, see Escudero et al. 2000 for a similar extraction

method). The solution obtained was filtered with cheesecloth and diluted by adding

distilled water as required to produce treatment solutions of: 50, 25, 16, 8 and 4 percent

of the stock solution (see Escudero et al. 2000 for similar concentrations). The electrical

conductivity of the aqueous extracts was measured in order to assess for potential

osmotic effects which may be confused with phytotoxic activity. Electrical conductivity

of the treatment solutions 50, 25, 16, 8 and 4 percent were 1.9 dS m-1, 1.33 dS m-1, 1.12

dS m-1, 1.01 dS m-1 and 0.56 dS m-1 respectively. Since Escudero et al. (2000) did not

find osmotic effects within the same range of electrical conductivities, all lab trials were

conducted using only distilled water as control treatment.

For the assay on germination response, each treatment solution was applied to

ten replicates of 15 seeds of C. odorata. Each replicate consisted of a 7-cm Petri dish

where seeds were laid on a paper watered with 2 ml of the treatment dilution and set to

germinate in lab conditions (8 days, 235ºC, 12-hr photoperiod of natural light). In

order to ensure non-limiting water conditions we added 2 ml of the corresponding

dilution to each Petri dish on the third and sixth days. Germination success (i.e. radicle

emerging from testa) was recorded daily and was used to calculate the days required to

attain the 50% of the seeds germinated (henceforth “G50”) and the final germination

percentage. At the end of this germination experiment we randomly selected 50

germinated seeds from each treatment, which were sown in culture pots with a general

Page 115: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

purpose growing medium (Pro-Mix PGX®/Premier Tech Ltd.). The pots were watered

regularly with 3 ml of the corresponding treatment solution every 48-hr for 15 days. At

the end of this period, the fresh mass of leaves, stems, and roots of all plants were

weighted separately and then all samples were oven-dried (60ºC/48h) in order to obtain

the corresponding dry mass which allowed us to calculate the relative weight ratio of

leaves (LWR), stems (SWR) and roots (RWR) of each seedling.

Field experiments

In order to test whether A. pennatula trees interfere with or facilitate the germination

and establishment of co-occurring tree species in natural conditions, we designed an

experiment in El Limon field-station. We randomly selected 31 isolated A. pennatula

trees and defined 4 positions from the trunk to outside of the canopy, trying to mimic

the natural gradient of light availability, soil moisture and accumulation of

allelochemicals by litter decomposition and/or leachates. So we established three

microsites under the canopy, namely, near the trunk (about to 0.3m), in the middle and

at the edge of the crown (henceforth referred to as Trunk, Crown and Edge), and finally

a control position was set outside of the crown (Outside). The rationale of this

experiment is that if the crown of A. pennatula provides shelter for the germination and

establishment of young seedlings especially helping them to cope with the harsh

environmental conditions occurring during the dry season (facilitation effect), we would

expect higher survival in the inner positions with respect to the edge or outside of the

canopy. On the other hand, if the leaves of A. pennatula have a relevant phytotoxic

activity (interference effect) we would expect survival to be higher in these positions

where accumulation of allelochemicals is lower (on the edge or outside of the canopy).

To test for these potential effects on seed germination, we buried a wire mesh

bag with 10 seeds of C. odorata in each of the abovementioned positions under 10 of

Page 116: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

the randomly selected trees. Seeding was repeated twice, at the beginning and end of the

wet season in 2009, to test for the potential interaction of the effects of position under

the canopy of A. pennatula trees and the accumulation of allelochemicals (e.g. due to

higher litter deposition during the dry season). The number of germinated seeds was

checked after eight days. A second field experiment was also conducted with seedlings

of C. odorata, G. ulmifolia and E. cyclocarpum previously grown in culture trays in a

general purpose growing medium (Pro-Mix PGX®/Premier Tech Ltd.). At the end of

the wet season (October 2009), when seedlings had their first pair of true leaves they

were transplanted following the abovementioned positional scheme under the 31

randomly selected trees. In order to preclude above-ground competition, the understory

vegetation was completely removed as well as the grass cover in the ‘Outside’ position.

Seedling survival was monitored twice: after 2 and 4 months following transplant

(December 2009 and February 2010), to check for the influence of environmental

conditions (i.e. increasing drought as the dry season progressed).

To characterize light availability and soil moisture in the different microsites

where seedlings were planted, we measured the photosynthetically active radiation

(PAR) available at seedling level with a ceptometer (Decagon Devices, AccuPAR LP-

80®) and we gravimetrically measured the water content in a sample of topsoil (i.e. 20

cm deep) in each planting position of the 31 selected trees at the end of the experiment

(February 2010). Despite the fact that A. pennatula is partially deciduous and so light

limitation can be underestimated, it is at this time of the season when seedlings face

higher water shortage.

Data analysis

To test the effects of the different aqueous extracts of A. pennatula leaves in the

germination of C. odorata seeds, we used generalized linear models (GENMOD

Page 117: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

procedure; SAS Institute) with a Poisson error distribution and a log link function and

including treatment dilution as a fixed factor and G50 and the total number of seeds

germinated as the dependent variables. Seedling growth and biomass allocation data

were analysed by means of univariate ANOVA tests (Statistica 6.0 software; StatSoft

Inc.). In these latter analyses, dependent variables were log-transformed, when

necessary, to meet the assumption of normality.

Differences in the germination success and seedling survival in the different

positions under the canopy of A. pennatula trees were analysed by means of generalized

linear mixed models (GLIMMIX procedure; SAS Institute) with a Poisson error

distribution and a log link function including: i) position (Trunk, Middle, Edge,

Outside) as a fixed factor, ii) season as fixed factor, iii) tree as a random factor and for

the analysis of seedling survival species (G. ulmifolia, E. cyclocarpum, C. odorata) as a

fixed factor. Finally, the data of PAR at the seedling level and topsoil water content

were log-transformed and analysed by means of a general linear mixed model including

position as fixed effect and tree as random (Statistica 6.0 software; StatSoft Inc.).

Results

Germination

In the lab experiment, the concentration of the A. pennatula leaf aqueous extract did not

affect the total germination of C. odorata seeds (df = 7, 72; Chi-square = 5.6; P = 0.58);

neither did the number of days needed to achieve 50% of total germination (df = 7, 72;

Chi-square = 5.2; P = 0.64). Across treatments, the final percentage of germination was

on average 95.3% ( 0.1 SE) and G50 was 5.4 ( 0.08 SE) days. Similarly, in the field

experiment, the number of germinated seeds was not affected by the relative position

where they were sown under the crown of A. pennatula trees (df = 3, 62; F = 1.9; P =

Page 118: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

0.14). In this experiment, germination differences were only observed between the two

sowing dates (df = 1, 62; F = 16.5; P < 0.0001), i.e. more seeds germinated at the

beginning of the wet season than at the end (90 4% vs. 64 4%; Mean SE).

Seedling growth and survival

Despite the general lack of effects on germination, there were significant effects of A.

pennatula on growth and survival (Figure 1). Specifically, the extracts of A. pennatula

leaves had significant effects on the growth (total dry biomass) achieved by C. odorata

seedlings grown in the lab (df = 5, 293; F = 34.4; P < 0.0001). Total biomass of

seedlings was negatively related to the concentration of the aqueous extract, this

inhibitory effect being significant from the 8% treatment solution onwards. Considering

the root, stem and leaf compartments of seedlings, reduction of biomass accumulation

was especially relevant at the root level (df = 5, 293; F = 52.1; P < 0.0001) and also

significant at the stem level (df = 5, 293; F = 2.6; P < 0.05) whereas the leaf biomass

was similar between treatments (df = 5, 293; F = 0.8; P = 0.82). Consequently these

effects resulted in a strikingly different biomass allocation pattern of seedlings watered

with the different concentration of A. pennatula leaf extracts (RWR: df = 5, 293; F = 50;

P < 0.0001, SWR: df = 5, 293; F = 21.9; P < 0.0001 and LWR: df = 5, 293; F = 25; P <

0.0001). As Figure 2 shows, as the concentration of A. pennatula leaves extracts

increased, the seedlings exhibited lower RWR and higher SWR and LWR.

Concerning the field experiment, the statistical analysis revealed that for the

three species tested (G. ulmifolia, E. cyclocarpum, C. odorata) seedling mortality was

significantly higher under the canopy than outside (Time × Position: df = 3, 591; F =

2.8; P = 0.0421). Particularly during the middle of the dry season, when appeared a

clear gradient of increasing mortality from outside the canopy towards inner positions

Page 119: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

(Figure 3). Also at this time and irrespective of the position in which the seedlings were

planted, appeared differences of mortality among the three species (Time × Species: df

= 2, 591; F = 3.8; P = 0.0233). Thereby, the seedlings of the large-seeded E.

cyclocarpum exhibited higher survival probability (0.5 0.05b vs. C. odorata 0.2

0.04a and G. ulmifolia 0.3 0.05a; Mean SE, different letters indicate significant

differences according to LS Means tests). As expected, soil water content and PAR

were significantly different depending on the position under the crown (respectively, df

= 3, 60; F = 6.6; P < 0.001 and df = 3, 120; F = 18.2; P < 0.0001). Soil water content

was remarkably lower outside of the canopy whereas the canopy PAR interception was

greater when closer to the trunk (Table 1).

Discussion

The results of our study suggest that isolated A. pennatula trees in savannah-like

tropical dry forests may inhibit rather than facilitate the establishment of other tree

species under their canopy through the release of allelopathic substances. Indeed, in

some semi-arid neotropical areas specific examples have been described of how after

the abandonment of croplands and rangelands there is usually a several decades phase

(sometimes more than 50 years) of secondary forests almost dominated by a single

leguminous species, usually belonging to Acacia or Mimosa genus (Burgos & Maass

2004, Romero-Duque et al. 2007, Álvarez-Yépiz et al. 2008, Lebrija-Trejos et al. 2008).

In addition, the combination of the results obtained in the lab and in the field suggest

that the phytotoxic effect of A. pennatula occurs mostly during the phase of seedling

establishment - rather than during germination - and it may be related to inducing a

biomass partitioning in the seedlings (i.e. lower RWR) unfavourable to face the severe

water shortage during the dry season.

Page 120: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

In contrast to several studies that reported phytotoxic effects of Acacia species

on germination (González et al. 1995, Chou et al. 1998), the aqueous extracts of A.

pennatula leaves did not reduce or delay germination in C. odorata and the values

observed in the lab experiment were high and similar to those previously reported in

non-limiting water conditions (Baskin & Baskin 2001). This lack of differences between

treatments in both total germination percentage and in G50 excludes an osmotic effect

of the treatment dilutions. In fact, the electrical conductivities of the dilutions used in

our experiment were within the range tested by Escudero et al. (2000) in which these

authors did not find osmotic effects. Conversely to the lack of effects on germination,

the strong inhibitory effect observed on the early growth of C. odorata seedlings (Figure

1) suggests the presence of some water-soluble phytotoxic compounds in the treatment

solutions, active even at low concentrations. Interestingly, this inhibition produced an

imbalance in the biomass allocation among organs within seedlings (Figure 2) and

resulted in an undersized root compartment (see similar results in Bais et al. 2003, Orr

et al. 2005). This particular biomass allocation pattern may present an important

constraint when seedlings have to face severe water stress during the drought season

(for the negative effects of reduced RWR on overcoming water stress conditions, see

Espelta et al. 2005). Indeed, in our field experiment we found that seedling mortality

increased as the dry season progressed and there were species specific differences: i.e.

the larger-seeded species E. cyclocarpum showed a higher survival than C. odorata and

G. ulmifolia (see Moles & Westoby 2004, for a review on the relationship between seed

size and seedling performance). Concerning the potential substances reducing RWR,

recently Rios (2005) carried out an exhaustive analysis of the secondary metabolites

present in the leaves of A. pennatula and found considerable amounts of several

substances with reported allelopathic properties: lupenone and lupeol (see Macías-

Page 121: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Rubalcava 2007), daphnetin (see Schulz & Friebe 1999 in Inderjit & Duke 2003) and

especially catechin whose action as a suppressor of root growth has been thoroughly

described (Bais et al. 2003). This allelopathic potential of A. pennatula could be

analogous to other congeners with similar chemical profiles and described allelopathic

mechanisms (e.g. A. dealbata; Lorenzo et al. 2011).

The reported inhibitory effect of A. pennatula leaves in root growth and the

resulting imbalance in the root/shoot ratio of seedlings (Figure 2) may contribute to an

understanding of the pattern of seedling mortality observed in our field experiment.

Interestingly, in the three species mortality was more pronounced under the canopy of

A. pennatula closer to the trunk than outside the canopy, and this effect increased as the

dry season progressed (Figure 3). This suggests that seedlings grown under the canopy

may have experienced an unfavourable biomass partitioning among organs in order to

overcome water stress (e.g. reduced root/shoot ratio). Certainly this imbalance could

also be caused by a lower PAR availability under the canopy of A. pennatula (see

Holmgren et al. 1997 for a discussion on the trade-off between acclimation to shade and

to drought). However, it must be noticed that values of PAR recorded under the canopy

of A. pennatula trees in our study were much higher than light compensation points

reported for many tropical tree species (Larcher 2003), which suggests that seedlings

did not experience severe light limitation even when the canopy is full-leaved.

Moreover, in dry ecosystems the establishment of seedlings has often been reported to

be mostly restricted to shady sites (Guevara et al. 1992, Gerhardt 1996, Jurado et al.

2006). This ‘nurse effect’ occurs because the improvement of plant water status (i.e.

lower transpiration demands and enhanced soil moisture) under the canopy exceeds the

costs caused by lower light levels (Holmgren et al. 1997). All things considered, we

suggest that the presence of allelopathic substances in the litter under the canopy of A.

Page 122: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

pennatula and their effect on preventing the proper development of roots and the

balance in resource allocation could worsen the seedlings’ vulnerability to water stress,

ultimately shifting the net effect of the canopy shelter from facilitative to competitive.

Furthermore, the observed pattern in which establishment conditions seem to worsen

almost linearly with the proximity to the trunk also suggests that leaching could be a

mode of release for allelochemicals, compatible with litter decomposition. Both

liberation methods have been previously suggested for Acacia species (Chou et al. 1998,

González et al. 1995, Lorenzo et al. 2011), and leaching especially is supposed to

produce such a gradient of decreasing concentrations from the base of the trunk to the

edge of the crown. Nonetheless, we must acknowledge that further research is needed in

order to detect effective concentrations of such allelopathic substances (e.g. lupenone,

lupeol, daphnetin or catechin) in the soil so as to investigate where the allelochemicals

are coming from (litter decomposition, leaching or root exudation).

Finally, if the ecological challenge is to manage pastures and secondary TDF in

order to achieve a composition of species and a structure similar to original forests,

research efforts must be made in order to find how to overcome successional barriers

(Aide et al. 2000). The lack of seed dispersal, germination, seedling resource

competition and herbivory have been described as major barriers to succession in TDF

(Holl et al. 2000). However our results warn that, in addition to the former constraints,

allelopathic interference may sometimes also play a role in shifting establishment

facilitation into interference and ultimately arresting succession. To the extent that tree

species differ in their ‘nursing’ ability, the early succession patterns may largely rely on

the kind of remnant tree species present in these pastures (Slocum 2001). Therefore, the

selection of a more passive or active restoration strategy may depend on the

Page 123: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

composition of this initial community of isolated pioneer trees and its capacity to

nucleate succession or to arrest it through allelopathy (Holl & Aide 2011).

References

Aide T.M., Zimmerman J.K., Pascarella J.B., Rivera L. & Marcano-Vega H. (2000) Forest regeneration

in a chronosequence of tropical abandoned pastures: implications for restoration ecology.

Restoration Ecology 8, 328-338

Álvarez-Yépiz J.C., Martínez-Yrízar A., Búrquez A. & Lindquist C. (2008) Variation in vegetation

structure and soil properties related to land use history of old-growth and secondary tropical dry

forests in northwestern Mexico. Forest Ecology and Management 256, 355-366

Bais H.P., Vepachedu R., Gilroy S., Callaway R.M. & Vivanco J.M. (2003) Allelopathy and exotic plant

invasion: from molecules and genes to species interactions. Science 301:1377.

Baskin C.C. & Baskin J.M. (2001) Seeds: ecology, biogeography, and evolution of dormancy and

germination. Academic Press, USA

Belsky A.J. (1994) Influences of trees on savanna productivity: tests of shade, nutrients, and tree-grass

competition. Ecology 75, 922-932.

Burgos A., Maass J.M. (2004) Vegetation change associated with land-use in tropical dry forest areas of

Western Mexico. Agriculture, Ecosystems and Environment 104, 475-481

Callaway R.M., Nadkarni N.M., Mahall B.E. (1991) Facilitation and interference of Quercus douglasii on

understory productivity in central California. Ecology 72, 1484-1499.

Callaway R.M. & Walker L.R. (1997) Competition and facilitation: a synthetic approach to interactions in

plant communities. Ecology 78, 1958-1965.

Casasola F. (2000) Productividad de los sistemas silvopastoriles tradicionales en Moropotente, Estelí,

Nicaragua. CATIE, Turrialba, CR.

Chazdon R.L. (2008) Chance and determinism in tropical forest succession. In: Carson WP, Schnitzer SA

(eds) Tropical forest community ecology. Wiley-Blackwell, UK, pp. 384–408

Chou C.H., Fu C.Y., Li S.Y. & Wang Y.F. (1998) Allelopathic potential of Acacia confusa and related

species in Taiwan. Journal of Chemical Ecology 24, 2131-2150.

Ebinger J.E., Seigler D.S. & Clarke H.D. (2000) Taxonomic revision of South American species of the

genus Acacia subgenus Acacia (Fabaceae: Mimosoideae). Systematic Botany 25, 588-617.

Escudero A., Albert M.J., Pita J.M. & Pérez-García F. (2000) Inhibitory effects of Artemisia herba-alba

on the germination of the gypsophyte Helianthemum squamatum. Plant Ecology 148, 71-80.

Espelta J.M., Cortés P., Mangirón M., Retana J. (2005) Differences in biomass partitioning, leaf nitrogen

content, and water use efficiency (δ13C) result in similar performance of seedlings of two

Mediterranean oaks with contrasting leaf habit. Ecoscience 12, 447-454.

García D., Obeso J.R. (2003) Facilitation by herbivore mediated nurse plants in a threatened tree, Taxus

baccata: local effects and landscape level consistency. Ecography 26, 739-750.

Page 124: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Gerhardt K. (1996) Effects of root competition and canopy openness on survival and growth of tree

seedlings in a tropical seasonal dry forest. Forest Ecology and Management 82, 33-48.

González L., Souto X.C. & Reigosa M.J. (1995) Allelopathic effects of Acacia melanoxylon R. Br.

phyllodes during their decomposition. Forest Ecology and Management 77, 53-63.

Guevara S., Meave J., Moreno-Casasola P. & Laborde J. (1992) Floristic composition and structure of

vegetation under isolated trees in neotropical pastures. Journal of Vegetation Science 3, 655-664.

Guevara S., Purata S.E. & Maarel E. (1986) The role of remnant forest trees in tropical secondary

succession. Plant Ecology 66, 77-84.

Hilhorst H.W.M. & Karssen C.M. (2000) Effect of chemical environment on seed germination. In: Fenner

M (ed) Seeds: The ecology of regeneration in plant communities. CABI, New York, pp. 293–309

Holl K.D. (1998) Effects of above-and below-ground competition of shrubs and grass on Calophyllum

brasiliense (Camb.) seedling growth in abandoned tropical pasture. Forest Ecology and

Management 109, 187-195.

Holl K.D., Aide T.M. (2011) When and where to actively restore ecosystems? Forest Ecology and

Management 261, 1558–1563.

Holl K.D., Loik M.E., Lin E.H.V., Samuels I.A. (2000) Tropical montane forest restoration in Costa Rica:

overcoming barriers to dispersal and establishment. Restoration Ecology 8, 339-349.

Holmgren M. (2000) Combined effects of shade and drought on tulip poplar seedlings: trade-off in

tolerance or facilitation? Oikos 90, 67-78.

Holmgren M., Scheffer M. & Huston M.A. (1997) The interplay of facilitation and competition in plant

communities. Ecology 78,1966-1975.

Inderjit & Duke S.O. (2003) Ecophysiological aspects of allelopathy. Planta 217, 529-539.

Janzen D.H. (1988) Management of habitat fragments in a tropical dry forest: growth. Annals of Missouri

Botanical Garden 75,105-116.

Jurado E., Garcia J.F., Flores J. & Estrada E. (2006) Leguminous seedling establishment in Tamaulipan

thornscrub of northeastern Mexico. Forest Ecology and Management 221,133-139.

Larcher W. (2003) Physiological plant ecology: ecophysiology and stress physiology of functional

groups. Springer-Verlag, Berlin

Lebrija-Trejos E., Bongers F., Pérez-García E.A. & Meave J.A. (2008) Successional change and

resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40,

422-431.

Lorenzo P., Palomera-Pérez A., Reigosa M.J. & González L. (2011) Allelopathic interference of invasive

Acacia dealbata Link on the physiological parameters of native understory species. Plant

Ecology 212, 403-412.

Macías-Rubalcava M.L., Hernández-Bautista B.E., Jiménez-Estrada M., Cruz-Ortega R. & Anaya A.L.

(2007) Pentacyclic triterpenes with selective bioactivity from Sebastiania adenophora leaves,

Euphorbiaceae. Journal of Chemical Ecology 33, 147-156.

Maestre F.T., Bautista S. & Cortina J. (2003) Positive, negative, and net effects in grass-shrub

interactions in Mediterranean semiarid grasslands. Ecology 84, 3186-3197.

Page 125: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

McAuliffe J.R. (1986) Herbivore-Limited Establishment of a Sonoran Desert Tree, Cercidium

microphyllum. Ecology 67, 276-280.

Moles A.T., Westoby M. (2004) Seedling survival and seed size: a synthesis of the literature. Journal of

Ecology 92, 372-383.

Munzbergova Z. & Ward D. (2002) Acacia trees as keystone species in Negev desert ecosystems. Journal

of Vegetation Science 13, 227-236.

Nilsson M.C. (1994) Separation of allelopathy and resource competition by the boreal dwarf shrub

Empetrum hermaphroditum, Hagerup. Oecologia 98, 1-7.

Nobel P.S. (1989) Temperature, Water Availability, and Nutrient Levels at Various Soil Depths--

Consequences for Shallow-Rooted Desert Succulents, Including Nurse Plant Effects. American

Journal of Botany 76, 1486-1492.

Olson D.M. & Dinerstein E. (2002) The Global 200: Priority ecoregions for global conservation. Annals

of Missouri Botanical Garden 89, 199-224.

Orr S.P., Rudgers J.A. & Clay K. (2005) Invasive plants can inhibit native tree seedlings: testing potential

allelopathic mechanisms. Plant Ecology 181, 153-165.

Peterson C.J. & Carson W.P. (2008) Processes Constraining Woody Species Succession on Abandoned

Pastures in the Tropics: On the Relevance of Temperate Models of Succession. In: Carson WP

and Schnitzer SA (eds) Tropical Forest Community Ecology. Wiley-Blackwell, UK, pp. 367-383

Purata S.E., Greenberg R., Barrientos V., López-Portillo J. (1999) Economic potential of the huizache,

Acacia pennatula (Mimosoideae) in central Veracruz, Mexico. Economic Botany 53, 15-29.

Putz F.E. & Canham C.D. (1992) Mechanisms of arrested succession in shrublands: root and shoot

competition between shrubs and tree seedlings. Forest Ecology and Management 49, 267-275.

Reigosa M.J., Sanchez-Moreiras A. & Gonzalez L. (1999) Ecophysiological approach in allelopathy.

Critical Reviews in Plant Science 18, 577-608.

Ridenour W.M. & Callaway R.M. (2001) The relative importance of allelopathy in interference: the

effects of an invasive weed on a native bunchgrass. Oecologia 126, 444-450.

Rios M.Y. (2005) Terpenes, coumarins, and flavones from Acacia pennatula. Chemistry of Natural

Compounds 41, 297-298.

Romero-Duque L.P., Jaramillo V.J. & Pérez-Jiménez A. (2007) Structure and diversity of secondary

tropical dry forests in Mexico, differing in their prior land-use history. Forest Ecology and

Management 253, 38-47.

Slocum M.G. (2001) How tree species differ as recruitment foci in a tropical pasture. Ecology 82, 2547-

2559.

Tarrasón D., Urrutia J.T., Ravera F., Herrera E., Andrés P. & Espelta J.M. (2010) Conservation status of

tropical dry forest remnants in Nicaragua: Do ecological indicators and social perception tally?

Biodiversity and Conservation 19, 813-827.

Yarranton G.A. & Morrison R.G. (1974) Spatial dynamics of a primary succession: nucleation. Journal of

Ecology 62, 417-428.

Page 126: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

0 4 8 16 25 50

Treatment (%)

0.025

0.02

0.015

0.01

0.005

0

Bio

ma

ss (

gr)

a

cc

d

b

a

Figure 1. Effect of treatment solutions of A. pennatula leaves on the early growth of C.

odorata seedlings (Mean ± SE of total dry biomass). Different letters indicate

significant differences according to Fisher-LSD test.

Page 127: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Roots Stems Leaves

Treatment (%)

Re

lativ

e W

eig

ht

1

0.8

0.6

0.4

0.2

0

ab

ccd

d

ea a

bbc

c

daa

bc c

d

0 4 8 16 25 50

Figure 2. Effect of treatment solutions of A. pennatula leaves on the resource allocation

of C. odorata seedlings (mean values for the relative weights of roots, stems and leaves;

SE of each compartment are not shown). Different letters indicate significant

differences among treatment solutions according to Fisher-LSD test.

Page 128: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Sur

viva

l Pro

bab

ility

1

0.8

0.6

0.4

0.2

0

Aa

BaBab

Bb

Bc

AaAa

Ab

Trunk Crown Edge Outside

Figure 3. Seedling survival by position relative to the crown of A. pennatula trees two

and four months after transplant (open and closed blocks respectively). Different letters

indicate significant differences between the two sampling times in the same position

(upper case letters) and between positions within the same sampling time (lower case

letters), according to LS means tests.

Soil Water Content (%) PAR (μmol photons m-2 s-1)

Trunk 6.3 1.1 a 481 32 a

Crown 5.2 0.4 a 637 54 b

Edge 5.0 0.3 a 652 51 b

Out 3.5 0.3 b 892 64 c

Table 1. Differences in Soil Water Content (mean SE) and PAR at seedlings level

(mean SE) among different positions under trees of A. pennatula after four months of

seedling transplant. Different letters indicate significant differences according to Fisher-

LSD test.

Page 129: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Resumen de las conclusiones principales. 

Capítulo1.

Rebrota o muere – La presencia inevitable de las perturbaciones repetidas. 

• Los individuos de Acacia pennatula que fueron quemados sobrevivieron un

16% menos que aquellos que fueron cortados, mientras que la recuperación de

aquellos individuos perturbados de manera repetida no se vio más afectada

que la de aquellos individuos que fueron perturbados una sola vez. Esto pone

en duda por un lado que esta especie esté específicamente adaptada al fuego y

sin embargo subraya su capacidad para afrontar perturbaciones moderadas

frecuentes.

• El efecto de los tratamientos, tanto el corte como la quema, fueron

especialmente acusados justo después de la estación seca que fue cuando se

alcanzaron mayores mortalidades y una menor capacidad de recuperación

(menor número de rebrotes y menores tasas de crecimiento).

• La capacidad de rebrote tras la estación seca puede estar limitada por una

menor disponibilidad de nitrógeno y particularmente fósforo, tal y como

sugieren los menores valores almacenados en la raíz principal pero no por las

reservas de carbohidratos (almidón).

Capítulo2.

La aptitud  frugívora del ganado y  la quema de pastos  ‐  Los primeros  ingredientes 

para una receta de éxito.

• El ganado ingirió ávidamente los frutos de las tres especies testadas (Acacia

pennatula, Guazuma ulmifolia, Enterolobium cyclocarpum). No obstante,

atributos específicos como un mayor número de semillas por fruto, convierten

Page 130: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

• Las semillas de las tres especies fueron capaces de sobrevivir al paso por el

tracto digestivo el cual no incrementó los porcentajes de germinación. En

cambio el fuego estimuló la germinación especialmente cuando se aplicaron

golpes de calor de más de 90ºC y 6 minutos de exposición. No hubo

interacción entre endozoocória y fuego sobre la respuesta germinativa de las

tres especies testadas.

• El éxito colonizador de las especies testadas puede ser en parte explicado por

la aptitud del ganado para dispersar sus semillas (vector de dispersión), por la

capacidad de éstas para resistir el paso por el tracto digestivo, y por el fuego

que en última instancia es el factor responsable de romper la latencia de las

semillas favoreciendo su germinación

Capítulo3.

Al  cerro  vengo  subiendo…  –  Depredación  de  semillas  a  lo  largo  de  un  gradiente 

altitudinal. 

• A nivel de individuo, cuanto mayor fue la producción de frutos menor fue la

proporción de semillas depredadas, y cuanto mayor fue la tasa de aborto de

semillas en los frutos mayor fue la mortalidad de las larvas de los

depredadores de semillas.

• Tanto el saciado de los insectos depredadores mediante producciones masivas

de frutos como el aumento de la mortalidad de sus larvas relacionado con el

aborto de semillas, actúan simultáneamente como mecanismos de defensa

aunque su contribución relativa varia a lo largo del rango de distribución

altitudinal de A. pennatula: mientras el saciado predomina en las partes

Page 131: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

• A nivel de sitio, el número de semillas sanas que escaparon a la depredación

estuvo relacionado con el número de plántulas que encontramos durante la

siguiente estación húmeda lo cual subraya la importancia demográfica que

tienen los mecanismos de defensa de semillas.

Capítulo4.

Demasiados depredadores para una misma semilla – ¿Una coexistencia mediada por 

los frugívoros? 

• La proporción de semillas depredadas de Acacia pennatula y Guazuma

ulmifolia por parte de sus insectos depredadores especialistas (brúquidos) fue

significativamente mayor en ausencia de ganado, lo cual sugiere que al

alimentarse de sus frutos, las vacas pueden ejercer un cierto control sobre las

poblaciones de depredadores pre-dispersivos de ambas especies y por tanto

disminuir sus tasas de depredación de semillas.

• La especie de brúquido con mayor tiempo de permanencia en el fruto -y de

ciclo de vida univoltino- Amblycerus cistelinus, se vio más afectada por la

presencia de ganado lo cual sugiere que los frugívoros podrían facilitar la

coexistencia de varias especies de depredadores sobre la misma planta

huésped.

Capítulo5.

Una  oportunidad  o  una  barrera  –  Inhibición  o  facilitación  del  establecimiento  de 

plántulas. 

• Los extractos acuosos de hojas de Acacia pennatula no disminuyeron la

capacidad de germinación de Cedrela odorata pero si redujeron sensiblemente

Page 132: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

• Las plántulas de Cedrela odorata, Guazuma ulmifolia y Enterolobium

cyclocarpum plantadas bajo la copa de individuos de Acacia pennatula

sobrevivieron menos cuanto más cerca del tronco se encontraban y este efecto

fue más acusado a medida que la estación seca avanzó.

• En conjunto estos dos resultados ponen en duda la capacidad de A. pennatula

de nuclear la sucesión secundaria y alertan sobre la posibilidad que esta

especie bloquee la sucesión tras un eventual abandono de los sistemas silvo-

pastoriles en los cuales es dominante.

Page 133: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Retorno a Nicaragua: Implicaciones y perspectivas para la gestión. 

Acacia pennatula es a todas luces una especie capaz de colonizar y persistir en los

pastos tras la transformación de los bosques tropicales secos en sistemas silvo-

pastoriles.

Para comprender en que radica esta capacidad, en primer lugar debemos apreciar

su capacidad para superar la barrera que supone la falta de dispersión de semillas en la

matriz paisajística que representa el pasto (capítulo 2). El ganado, atraído por el alto

valor nutritivo de sus frutos, actúa de agente dispersor eficaz de sus semillas durante la

época seca. Las semillas, viables pero mayoritariamente aún latentes tras su paso por el

tracto digestivo, encuentran en la quema de los pastos durante la época seca un factor

idóneo para liberarlas de la latencia impuesta por su cubierta impermeable

permitiéndoles por tanto germinar con las primeras lluvias y así aprovechar al máximo

la época favorable para el establecimiento. Estos atributos son compartidos por un

considerable número de especies forestales características del bosque seco

mesoamericano, las cuales muy probablemente fueron también dispersadas por la mega-

fauna herbívora pleistocénica. Este hecho notable permite al ganado ser actualmente un

eficaz sustituto de aquella fauna ya extinta y por tanto dispersar eficientemente las

semillas de diversas especies forestales, las cuales además tienen un comportamiento

germinativo similar en relación al fuego.

De todo esto se puede colegir que mediante una gestión adecuada, el ganado

gracias a su función dispersora junto con el fuego que estimula la germinación, pueden

promover la regeneración del bosque seco mesoamericano. Para lograr tal objetivo la

dieta del ganado podría enriquecerse con frutos de aquellas especies forestales cuyas

semillas son potencialmente dispersadas por el ganado como por ejemplo: además de las

3 especies aquí testadas como Leucaena sp., Pithecellobium sp. (Fabáceae), Crescentia

Page 134: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

sp. (Bignoniaceae), Psidium sp. (Myrtaceae), Byrsonima sp. (Malpighiaceae), Anona sp.

(Annonaceae), etc. En relación al fuego es necesario señalar que si bien estimula

inicialmente la germinación, empleado de manera indiscriminada y recurrente también

puede dificultar el establecimiento de las especies forestales cuya regeneración se quiere

promover, de manera que su uso debería ser limitado o aplicado solo de manera puntual

o selectiva.

Ciertamente, teniendo en cuenta que la quema de pastos estimula la germinación

de A. pennatula, y que sus individuos una vez establecidos se comportan como

“rebrotadores” extraordinariamente recalcitrantes (capítulo 1), podemos llegar a la

conclusión un tanto paradójica de que el uso indiscriminado del fuego como medida de

control de leñosas podría haber favorecido la actual dominancia de esta especie en

sistemas silvo-pastoriles como los que aquí han sido estudiados en el centro-Norte de

Nicaragua. Así, si el objetivo es controlar o incluso eliminar esta especie de los pastos,

en base a los resultados presentados se puede recomendar la aplicación de las medidas

de control habituales, chapia y quema, al final o justo después de la época seca que es

cuando los individuos de A. pennatula encuentran más dificultades para sobrevivir y

rebrotar, quizá por haber movilizado sus reservas (nitrógeno y fosforo) hacia la parte

aérea a fin de afrontar la prolongada sequía. De manera particular el fuego, para ser una

medida más efectiva de control de A. pennatula, debiera de aplicarse de manera

selectiva, es decir solo sobre los individuos establecidos que se quieren eliminar y así

evitar el efecto estimulante de la germinación de un hipotético banco de semillas

remanente en el suelo (capítulo 2).

Por otro lado, para mantener poblaciones viables los individuos ya establecidos

de A. pennatula deben defender sus semillas de la depredación pre-dispersiva que

ejercen determinados insectos especialistas y que puede llegar a comprometer el

Page 135: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

reclutamiento de plántulas (capítulo 3). A tal fin, el saciado de los depredadores

mediante la producción masiva de frutos es un mecanismo de defensa efectivo a lo largo

del rango de distribución altitudinal de esta especie aunque posiblemente requiere de

unas condiciones ambientales adecuadas para el esfuerzo reproductivo que significa

para los individuos. Condiciones éstas que progresivamente dejan de ser favorables a

medida que nos acercamos a los extremos del rango altitudinal y particularmente en la

parte superior del mismo. Simultáneamente, el aborto de semillas en los frutos se

relaciona con una mayor mortalidad de las larvas de los depredadores lo cual también

contribuye a la defensa de las semillas maduras. Este proceso es con toda probabilidad

desencadenado o bien por limitaciones por polen o bien por cuestiones ambientales

desfavorables a la reproducción de las plantas como el déficit hídrico o las bajas

temperaturas, condiciones climáticas por otra parte características de la periferia del

rango altitudinal de distribución de esta especie. No obstante, como mecanismo de

defensa solo puede ser efectivo dentro de un umbral por encima del cual la excesiva

pérdida de semillas abortadas, aún disminuyendo sensiblemente el éxito de infestación

de los insectos depredadores, no compensa los costos invertidos y la consecuente

disminución neta en el número de semillas maduras disponibles para la dispersión.

Ante el presente escenario de cambio climático, una de las más asentadas

respuestas, comprobada ya para diversas especies de plantas, es la migración de sus

poblaciones en altura en un proceso que se ha designado “rastreo climático” (ver

capítulo 3). Es decir que las plantas estarían ascendiendo siguiendo su óptimo

ambiental a medida que el clima cambia. Este proceso se espera que sea especialmente

acusado en el trópico y se cree que puede venir mediado o dificultado por los cambios

en las interacciones bióticas que el cambio climático puede suscitar. Así, teniendo en

cuenta que las condiciones ambientales en las partes más altas del rango de distribución

Page 136: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

de A. pennatula se espera que se tornen progresivamente más favorables, es de esperar

también que las tasas de aborto se reduzcan y la capacidad de producir mayores

cosechas de frutos aumenten, de manera que en conjunto se posibilite una mejor defensa

de las semillas por saciado de sus depredadores pre-dispersivos mediando así una

expansión de esta especie en altura.

En relación a la defensa de las semillas ante la depredación pre-dispersiva por

parte de insectos cabe señalar también el efecto positivo que de manera indirecta el

ganado puede ejercer (capítulo 4). Al ingerir los frutos de A. pennatula y de G.

ulmifolia, el ganado no solo dispersa sus semillas si no que también depreda de manera

accidental aquellas larvas o pupas que aún permanecen dentro del fruto, de manera que

podrían llegar a ejercer un cierto control poblacional que en último término se tradujera

en una menor proporción de semillas depredadas. Aún siendo preliminares, estos

resultados también sugieren que las distintas especies que depredan sobre las semillas

de la misma planta huésped pueden experimentar distintas vulnerabilidades en función

de su tiempo de permanencia en el fruto, de manera que el ganado podría incluso tener

un papel importante como mediador de la coexistencia de estas especies de

depredadores especialistas.

Por último, la capacidad de colonización y persistencia en el pasto (capítulos 1 y

2), junto con los indicios presentados sobre interferencia alelopática (capítulo 5),

alertan sobre una posible invasión y bloqueo de la sucesión (o “encroachment”) de A.

pennatula tras un eventual abandono de los pastos en los que actualmente es una especie

dominante. De ser así la formación de rodales de elevada densidad y casi mono-

específicos (por ejemplo tacotales y latizales relativamente abundantes en la zona de

estudio) requeriría de labores de aclareo y enriquecimiento de especies a fin de

promover el avance de la sucesión secundaria hacia formaciones forestales más

Page 137: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

desarrolladas. Para evitar este tipo de situaciones otra medida recomendable seria el

enriquecimiento de la comunidad de árboles dispersos en los potreros.

Page 138: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Publicaciones ‐ Publications 

Versiones ligeramente modificadas de los presentes capítulos de esta tesis están

publicados o en vista de ser publicados como:

Slightly modified versions of the present chapters of this thesis are published or in view

to be published as:

Capítulo 1.  Peguero, G. and Espelta, J.M. 2011. Disturbance intensity and seasonality

affect the resprouting ability of the neotropical dry-forest tree Acacia

pennatula: do resources stored below-ground matter? Journal of

Tropical Ecology 27:539-546.

Capítulo 2.  Peguero, G. and Espelta, J.M. Oldies and newbies, but all goodies? No

interaction between endozoochory and fire in the germination ability of

tropical-dry tree species. Manuscript submitted.

Capítulo  3.  Peguero, G., Bonal, R. and Espelta, J.M. Spatial variability in seed defence

mechanisms: Seed predator satiation and seed abortion vary along an

altitudinal gradient in Acacia pennatula. Manuscript submitted.

Capítulo  4.  Peguero, G. and Espelta, J.M. Frugivores can mediate the coexistence of

insect seed predators depending on larval development time within the

fruit. Manuscript submitted.

Capítulo 5.  Peguero, G., Lanuza, O.R., Savé, R. and Espelta, J.M. 2011. Allelopathic

potential of the neotropical dry-forest tree Acacia pennatula Benth.:

inhibition exceeds facilitation under tree canopies. Plant Ecology, in

press, DOI: 10.1007/s11258-011-0014-0

Page 139: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Apéndice fotográfico ‐ Photo Appendix 

Foto 0.1 Cultivo de musáceas y frijol. Avance de la frontera agrícola en Jalapa (Nicaragua).

Foto 0.2 Sistema silvo-pastoril fruto de la transformación del bosque tropical seco. Miraflor-

Moropotente (Nicaragua).

Page 140: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Foto 0.3 Sistema silvo-pastoril dominado por Acacia pennatula durante la estación húmeda en

las Mesas de Moropotente (Nicaragua).

Foto 0.4 Sistema silvo-pastoril dominado por Acacia pennatula durante la estación seca en las

Mesas de Moropotente (Nicaragua).

Page 141: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Foto 0.5 Quema de potreros para el control de las especies leñosas en los pastos. Las Mesas

de Moropotente (Nicaragua).

Foto 1.1 Aplicación de tratamientos de corte en Acacia pennatula.

Page 142: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Foto 1.2 Aplicación de tratamientos de quema en Acacia pennatula.

Foto 1.3 Detalle de tocones de Acacia pennatula tras la aplicación de los tratamientos de corte

y de quema.

Page 143: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Foto 1.4 Detalle de rebrote de Acacia pennatula.

Foto 1.5 Obtención de raíces principales de Acacia pennatula para el análisis del contenido en

almidón, nitrógeno y fósforo.

Page 144: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Foto 2.1 Experimentos de cafetería con frutos de Acacia pennatula, Guazuma ulmifolia y

Enterolobium cyclocarpum.

Foto 2.2 Detalle del comedero tras una prueba de cafetería. Nótese en este caso la clara

preferencia mostrada.

Page 145: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Foto 2.3 Detalle del tratamiento de simulación del paso de las semillas de Acacia pennatula,

Guazuma ulmifolia y Enterolobium cyclocarpum (en bolsas de nylon) por el tracto digestivo del

ganado. Etapa ruminal realizada in situ en vaca canulada.

Page 146: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Foto 2.4 Adición del inóculo intestinal a las botellas de incubación. Etapa intestinal del tránsito

digestivo realizada ex situ en incubador rotacional Daisy.

Foto 2.5 Semillas en placas de Petri tras la aplicación de golpes de calor y previo paso por la

cámara de germinación.

Page 147: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Foto 3.1 Muestreo de vainas de Acacia pennatula en El Brasil – Mesas de Moropotente

(Nicaragua).

Foto 3.2 Detalle del embolsado de vainas para la recolección de insectos depredadores de

semillas (Mimosestes humeralis y Mimosestes anomalus).

Page 148: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Foto 3.3 Detalle de la depredación de las semillas por Mimosestes sp.

Foto 3.4 Medición de vainas y recuento de semillas abortadas, depredadas y sanas.

Page 149: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Foto 4.1 Aplicación de los extractos acuosos de hojas de Acacia pennatula en plántulas de

Cedrela odorata.

Foto 4.2 Detalle de individuo aislado de Acacia pennatula bajo la copa del cual se plantaron

plántulas de Cedrela odorata, Guazuma ulmifolia y Enterolobium cyclocarpum.

Page 150: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Foto 4.3 Detalle de plantula de Cedrela odorata.

Foto 4.4 Detalle de plántula de Guazuma ulmifolia.

Foto 4.5 Detalle de plántula de Enterolobium cyclocarpum.

Page 151: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Agradecimientos 

Como en todas las tesis en esta también hay un conjunto de personas a las que tengo

mucho que agradecer.

En primer lugar debo mencionar a Pilar Andrés por brindarme la oportunidad de

trabajar en Nicaragua en un viaje que se encuentra en el origen de todo esto. A David

Tarrasón y Federica Rávera por acompañar allí mis primeros pasos y abrirme la puerta

de las Mesas de Moropotente. Y a Joan Franch por invitarme a conocer, en un viaje

iniciático inolvidable, la otra Nicaragua que se encuentra en el lado atlántico. Brisa

Delgado y Edurne Larracoetxea por su ejemplo y por hacerme reflexionar sobre qué

hacía yo en Nicaragua. Y también a Virginia García con quién he tenido el gusto de

compartir algunas de las alegrías e incertidumbres asociadas a llevar a cabo una tesis en

Nicaragua.

Mención especial merecen todas aquellas personas que en la FAREM-Estelí han

colaborado durante el desarrollo de esta tesis doctoral, sin la ayuda de las cuales ésta no

hubiera llegado a buen término. Aún a riesgo de olvidarme de alguien, no puedo dejar

de mencionar a: Oscar Rafael Lanuza, mi más voluntarioso compañero de fatigas el cual

siempre estuvo dispuesto a una hora más, una parcela más, unas cuantas muestras más.

Gracias por tu paciencia conmigo. Norman Gutiérrez quien más me ha ilustrado sobre

los pormenores de la revolución y sus secuelas contemporáneas. Keny López quien

“dobló el lomo” a mi lado desde el primer día y con quien compartí cervezas hasta

tomar la última, “la del estribo”. Josué Urrutia quien solidariamente me enseñó el ABC

de la flora del país. Don Bladimir Acuña, héroe nacional y referente en lo personal en

quien siempre confié ciegamente en llegar a donde hiciera falta y volver de una sola

pieza. Francisco Llanes cuyo discreto saber hacer facilitó enormemente toda la etapa

final de este trabajo. El resto del equipo “multicriterio”, a saber, Alejandrina Herrera,

Page 152: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Jaime Rocha y Abner Rivera con quienes aprendí a trabajar en las Mesas en aquellos

primeros días. Y algunos otros cuya colaboración en alguna de las investigaciones

también merece ser debidamente mencionada, como la de Jasser Obando, Francisco

“Lumumba” Mendoza y Orlando “Rambo” Rodríguez.

En el campo, allí en Nicaragua, también tengo muchas personas a las que

agradecer mucho. Por un lado Don Denis Rodríguez y Don “Chelao” Castillo (D.E.P)

que me brindaron la oportunidad de trabajar en sus potreros. Por otro, y de manera muy

especial, a Doña Corina y Don Andrés Rodríguez quienes me cuidaron maternal y

paternalmente, me abrieron las puertas de su casa, compartieron su maíz y sus frijoles

conmigo, y en concreto Don Andrés que me regaló su sabiduría durante largos

atardeceres, fumando Belmont y escuchando La Hora Ranchera.

En otro orden pero igualmente importante, se encuentran todas aquellas personas que

han compartido su conocimiento científico conmigo. En la facultad de Veterinaria, Jordi

Bartolomé, María Rodríguez y en especial Sara Cavini que me enseñó a trabajar con

vacas de una manera hasta entonces completamente insospechada por mi parte. En el

IRTA Robert Savé que siempre ha estado presto a colaborar y con quien compartí uno

de los momentos más duros de la tesis: un eterno viaje a oscuras y bajo la lluvia en la

pick up de una ranchera por inescrutables caminos en los que solo Bladimir, siempre

Bladimir, se orientaba. A Raúl Bonal quien, junto con Tete, me transmitió la pasión por

los gorgojos sensu latto y me enseñó en Royal City los principios del apasionante

mundo de la taxonomía molecular.

Y por supuesto Tete, quien como Stanley con Livingstone, me recuperó de la

selva, para luego confiar en mí y educarme científicamente (y como persona) a base de

amables sonrisas y pertinentes collejas. Aunque sea un tópico no puedo dejar de decir

que esta tesis no seria sin él y que de lo bueno lo mejor se debe también a él.

Page 153: Colonización y persistencia de Acacia pennatula en bosques ... · al. 1995, Pennington et al. 2009, Dirzo et al. 2011), bosques secos tropicales o subtropicales de hoja ancha y de

Y como no, todas aquellas personas que han convivido y compartido la

experiencia del doctorado en el CREAF. Becarios doctorales, técnicos, investigadores

futboleros et álii, todas ellas son responsables de hacer único este centro. Las del piso -1

(y algunas de otros pisos) y allegados de otros departamentos, sois demasiadas para

dejaros escritas en una lista pero vuestra alegría, las cenas, las fiestas, cualquier ocasión

que fuera buena y lo fueron todas, han ahuyentado día tras día el tedio y la monotonía.

No puedo sin embargo no mencionar a Josep Barba y Jara Andreu que me han

soportado pacientemente cada día en el despacho y que han jurado dejar de hacerlo sino

aparecen aquí sus nombres (Es-cán-da-lo, es un escándalo). También Xapa, Cela, Uli,

Roger y otros tantos amigos y amigas que me habéis ayudado a no pensar solo en esto y

recordarme que hay vida más allá de la tesis.

Gracias a mi padre Salvador y a mi madre Rafi por haber desarrollado y

estimulado en mí la curiosidad y las ganas de aprender. A mi hermana mayor Ana, por

ayudarme siempre desde que di mis primeros pasos de su mano hasta el doctorado. Y a

mi abuelo y abuela, yayo y yaya a quienes siempre tendré en el corazón al lado de mi

infancia.

Y por último a ti Laia por tu amor y por tu paciencia.

No tinc paraules per expressar-t’ho.

Esta tesis está dedicada a todas aquellas personas que allí en Nicaragua me enseñaron

con su humilde ejemplo, su mirada limpia y su corazón franco, a ser mejor persona.