colloids and it uses 2.docx

download colloids and it uses 2.docx

of 18

Transcript of colloids and it uses 2.docx

  • 7/27/2019 colloids and it uses 2.docx

    1/18

    Colloids and its uses

    A colloid is a substance microscopically dispersed throughout another substance.[1]

    The dispersed-phase particles have a diameter of between approximately 2 and

    500nanometers.[2]Such particles are normally invisible in an opticalmicroscope, though their

    presence can be confirmed with the use of an ultra microscope or anelectron

    microscope.Homogeneousmixtures with a dispersed phase in this size range may be

    called colloidal aerosols, colloidal emulsions, colloidal foams, colloidal dispersions, orhydrosols.

    The dispersed-phase particles or droplets are affected largely by thesurface chemistrypresent

    in the colloid.

    Some colloids are translucent because of theTyndall effect, which is the scattering of light by

    particles in the colloid. Other colloids may be opaque or have a slight color.

    Colloidal solutions (also called colloidal suspensions) are the subject ofinterface and colloid

    science. This field of study was introduced in 1861 byScottishscientistThomas Graham.

    Types of colloids

    Colloids are usually classified according to the original states of their constituent

    parts:

    Dispersing medium Dispersed phase Name

    Solid Solid Solid sol

    Solid Liquid Gel

    Solid Gas Solid foam

    Liquid Solid Sol

    Liquid Liquid Emulsion

    Liquid Gas Foam

    Gas Solid Solid aerosol

    Gas Liquid Aerosol

    http://en.wikipedia.org/wiki/Colloid#cite_note-1http://en.wikipedia.org/wiki/Colloid#cite_note-1http://en.wikipedia.org/wiki/Colloid#cite_note-1http://en.wikipedia.org/wiki/Nanometrehttp://en.wikipedia.org/wiki/Colloid#cite_note-2http://en.wikipedia.org/wiki/Colloid#cite_note-2http://en.wikipedia.org/wiki/Colloid#cite_note-2http://en.wikipedia.org/wiki/Microscopehttp://en.wikipedia.org/wiki/Microscopehttp://en.wikipedia.org/wiki/Microscopehttp://en.wikipedia.org/wiki/Electron_microscopehttp://en.wikipedia.org/wiki/Electron_microscopehttp://en.wikipedia.org/wiki/Electron_microscopehttp://en.wikipedia.org/wiki/Electron_microscopehttp://en.wikipedia.org/wiki/Homogeneous_(chemistry)http://en.wikipedia.org/wiki/Homogeneous_(chemistry)http://en.wikipedia.org/wiki/Homogeneous_(chemistry)http://en.wikipedia.org/wiki/Surface_sciencehttp://en.wikipedia.org/wiki/Surface_sciencehttp://en.wikipedia.org/wiki/Surface_sciencehttp://en.wikipedia.org/wiki/Tyndall_effecthttp://en.wikipedia.org/wiki/Tyndall_effecthttp://en.wikipedia.org/wiki/Tyndall_effecthttp://en.wikipedia.org/wiki/Interface_and_colloid_sciencehttp://en.wikipedia.org/wiki/Interface_and_colloid_sciencehttp://en.wikipedia.org/wiki/Interface_and_colloid_sciencehttp://en.wikipedia.org/wiki/Interface_and_colloid_sciencehttp://en.wikipedia.org/wiki/Scotlandhttp://en.wikipedia.org/wiki/Scotlandhttp://en.wikipedia.org/wiki/Scotlandhttp://en.wikipedia.org/wiki/Thomas_Graham_(chemist)http://en.wikipedia.org/wiki/Thomas_Graham_(chemist)http://en.wikipedia.org/wiki/Thomas_Graham_(chemist)http://en.wikipedia.org/wiki/Thomas_Graham_(chemist)http://en.wikipedia.org/wiki/Scotlandhttp://en.wikipedia.org/wiki/Interface_and_colloid_sciencehttp://en.wikipedia.org/wiki/Interface_and_colloid_sciencehttp://en.wikipedia.org/wiki/Tyndall_effecthttp://en.wikipedia.org/wiki/Surface_sciencehttp://en.wikipedia.org/wiki/Homogeneous_(chemistry)http://en.wikipedia.org/wiki/Electron_microscopehttp://en.wikipedia.org/wiki/Electron_microscopehttp://en.wikipedia.org/wiki/Microscopehttp://en.wikipedia.org/wiki/Colloid#cite_note-2http://en.wikipedia.org/wiki/Nanometrehttp://en.wikipedia.org/wiki/Colloid#cite_note-1
  • 7/27/2019 colloids and it uses 2.docx

    2/18

    Kinetic-Molecular Theory

    The ideal gas equation

    pV = nRT

    Has been presented as a compilation of empirical observation, i.e. the historically

    significant Gas Laws, but does The Ideal Gas equation have some deeper, more

    fundamental meaning?

    The Kinetic-Molecular Theory ("the theory of moving molecules"; Rudolf Claudius,

    1857)

    1. Gases consist of large numbers of molecules (or atoms, in the case of the noblegases) that are in continuous, randommotion. Usually there is a great distance

    between each other, so the molecules travel in straight lines between abrupt

    collisions at the walls and between each other. These collisions randomize the

    motion of the molecules. Most of the collisions between molecules are binary,

    in that only two molecules are involved.

    2. The volumeof the moleculesof the gas is negligiblecompared to the totalvolume in which the gas is contained. A common bond length between atoms

    is about 10-10 m or 1 Angstrom. Small molecules are therefore on the order of

    10 Angstroms in diameter, or less than 10-24 Liters in Molecular Volume, quite

    tiny indeed! Remember, however that there can be a great many molecules in the

    sample of gas, perhaps on the order of a mole, or 6 x 1023. So that when

    concentrations of molecules exceed about 1 mol/liter, then the approximation

    that the volume of ALL the molecules in the container is much less than the

    volume of the container itself, fails. In the case of an ideal gas, we will assume

    that molecules are point masses, i.e., the volume of a mole of gas molecules (as

    if they were at rest) is zero, so molecular and container volumes never becomecomparable.

    3. Attr active forcesbetween gas molecules are negligible. We know that if theseforces were significant, the molecules would stick together. This happens

    when it rains and gaseous water molecules stick together to form a liquid.

    Water vapor is a condensable gas, and this shows us that gas molecules are

    sticky, but at a high enough temperature they form only a permanent gas,

  • 7/27/2019 colloids and it uses 2.docx

    3/18

    because their stickiness can be considered negligible. We will assume that in

    an ideal gas, molecular attractive forces are not just small, but identically zero.

    Boyles Law

    Boyle's law (sometimes referred to as the BoyleMariotte law) is an experimentalgas

    lawwhich describes how thepressureof agastends to decrease as thevolumeof a gas

    increases. A modern statement of Boyle's law is:

    The absolutepressureexerted by a given mass of anideal gasis inversely proportional to

    thevolumeit occupies if thetemperatureand amount remain unchanged within aclosed

    system.[1][2]

    which can be written as:

    or

    where:

    Pis thepressureof the gas

    Vis thevolumeof the gas

    kis aconstant.

    The equation states that product of pressure and volume is a constant for a

    given mass of confined gas as long as the temperature is constant. For

    comparing the same substance under two different sets of conditions, the

    law can be usefully expressed as follows:

    The equation shows that, as volume increases, the pressure of the gas

    decreases in proportion. Similarly, as volume decreases, the pressure of thegas increases. The law was named afterchemistandphysicistRobert

    Boyle, who published the original law in 1662.[3]

    Charles Law

    http://en.wikipedia.org/wiki/Gas_lawshttp://en.wikipedia.org/wiki/Gas_lawshttp://en.wikipedia.org/wiki/Gas_lawshttp://en.wikipedia.org/wiki/Gas_lawshttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Closed_systemhttp://en.wikipedia.org/wiki/Closed_systemhttp://en.wikipedia.org/wiki/Closed_systemhttp://en.wikipedia.org/wiki/Boyle's_law#cite_note-1http://en.wikipedia.org/wiki/Boyle's_law#cite_note-1http://en.wikipedia.org/wiki/Boyle's_law#cite_note-1http://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Constant_(mathematics)http://en.wikipedia.org/wiki/Constant_(mathematics)http://en.wikipedia.org/wiki/Constant_(mathematics)http://en.wikipedia.org/wiki/Chemistryhttp://en.wikipedia.org/wiki/Chemistryhttp://en.wikipedia.org/wiki/Chemistryhttp://en.wikipedia.org/wiki/Physicisthttp://en.wikipedia.org/wiki/Physicisthttp://en.wikipedia.org/wiki/Robert_Boylehttp://en.wikipedia.org/wiki/Robert_Boylehttp://en.wikipedia.org/wiki/Robert_Boylehttp://en.wikipedia.org/wiki/Robert_Boylehttp://en.wikipedia.org/wiki/Boyle's_law#cite_note-3http://en.wikipedia.org/wiki/Boyle's_law#cite_note-3http://en.wikipedia.org/wiki/Boyle's_law#cite_note-3http://en.wikipedia.org/wiki/Boyle's_law#cite_note-3http://en.wikipedia.org/wiki/Robert_Boylehttp://en.wikipedia.org/wiki/Robert_Boylehttp://en.wikipedia.org/wiki/Physicisthttp://en.wikipedia.org/wiki/Chemistryhttp://en.wikipedia.org/wiki/Constant_(mathematics)http://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Boyle's_law#cite_note-1http://en.wikipedia.org/wiki/Boyle's_law#cite_note-1http://en.wikipedia.org/wiki/Closed_systemhttp://en.wikipedia.org/wiki/Closed_systemhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Gas_lawshttp://en.wikipedia.org/wiki/Gas_laws
  • 7/27/2019 colloids and it uses 2.docx

    4/18

    (also known as the law of volumes) is an experimental law which describes howgasestend to

    expand when heated. A modern statement of Charles's law is:

    Thevolumeof a given mass of anideal gasisdirectly proportionalto its temperature on

    theabsolute temperature scale(in Kelvin) if pressure and theamount of gasremain constant;

    that is, the volume of the gas increases or decreases by the same factor as its temperature.[1]

    thisdirectly proportionalrelationship can be written as:

    or

    where:

    Vis thevolumeof the gas

    Tis thetemperatureof the gas (measured inKelvin).

    kis aconstant.

    This law explains how a gas expands as the temperature increases;

    conversely, a decrease in temperature will lead to a decrease in volume. For

    comparing the same substance under two different sets of conditions, the

    law can be written as:

    The equation shows that, as absolute temperature increases, the

    volume of the gas also increases in proportion. The law was named

    after scientistJacques Charles, who formulated the original law in his

    unpublished work from the 1780s.

    Gay-Lussac's Law

    A third gas law may be derived as a corollary to Boyle's and Charles's laws. Suppose we double

    the thermodynamic temperature of a sample of gas. According to Charless law, the volume

    should double. Now, how much pressure would be required at the higher temperature to return

    the gas to its original volume? According to Boyles law, we would have to double the pressure

    to halve the volume. Thus, if the volume of gas is to remain the same, doubling the temperature

    will require doubling the pressure. This law was first stated by the Frenchman Joseph Gay-

    http://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Proportionality_(mathematics)#Direct_proportionalityhttp://en.wikipedia.org/wiki/Proportionality_(mathematics)#Direct_proportionalityhttp://en.wikipedia.org/wiki/Proportionality_(mathematics)#Direct_proportionalityhttp://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Amount_of_substancehttp://en.wikipedia.org/wiki/Amount_of_substancehttp://en.wikipedia.org/wiki/Amount_of_substancehttp://en.wikipedia.org/wiki/Charles's_law#cite_note-1http://en.wikipedia.org/wiki/Charles's_law#cite_note-1http://en.wikipedia.org/wiki/Charles's_law#cite_note-1http://en.wikipedia.org/wiki/Proportionality_(mathematics)#Direct_proportionalityhttp://en.wikipedia.org/wiki/Proportionality_(mathematics)#Direct_proportionalityhttp://en.wikipedia.org/wiki/Proportionality_(mathematics)#Direct_proportionalityhttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Constant_(mathematics)http://en.wikipedia.org/wiki/Constant_(mathematics)http://en.wikipedia.org/wiki/Constant_(mathematics)http://en.wikipedia.org/wiki/Jacques_Charleshttp://en.wikipedia.org/wiki/Jacques_Charleshttp://en.wikipedia.org/wiki/Jacques_Charleshttp://void%280%29/http://chemed.chem.wisc.edu/chempaths/index.php?option=com_awiki&view=chemprime&Itemid=952&article=CoreChem:Boyle%27s_Lawhttp://chemed.chem.wisc.edu/chempaths/index.php?option=com_awiki&view=chemprime&Itemid=952&article=CoreChem:Charles%27s_Lawhttp://void%280%29/http://void%280%29/http://void%280%29/http://void%280%29/http://chemed.chem.wisc.edu/chempaths/index.php?option=com_awiki&view=chemprime&Itemid=952&article=CoreChem:Charles%27s_Lawhttp://chemed.chem.wisc.edu/chempaths/index.php?option=com_awiki&view=chemprime&Itemid=952&article=CoreChem:Boyle%27s_Lawhttp://void%280%29/http://en.wikipedia.org/wiki/Jacques_Charleshttp://en.wikipedia.org/wiki/Constant_(mathematics)http://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Proportionality_(mathematics)#Direct_proportionalityhttp://en.wikipedia.org/wiki/Charles's_law#cite_note-1http://en.wikipedia.org/wiki/Amount_of_substancehttp://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Proportionality_(mathematics)#Direct_proportionalityhttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Gas
  • 7/27/2019 colloids and it uses 2.docx

    5/18

    Lussac (1778 to 1850). According to Gay-Lussacs law, for a given amount of gas held at

    constant volume, the pressure is proportional to the absolute temperature. Mathematically,

    Where kG is the appropriate proportionality constant.

    Gay-Lussacs law tells us that it may be dangerous to heat a gas in a closed container. The

    increased pressure might cause the container to explode.

    Avogadro's law

    (Sometimes referred to as Avogadro's hypothesis orAvogadro's principle) is an

    experimentalgas lawrelating volume of a gas to theamount of substanceof gas present. A

    modern statement of Avogadro's law is:

    For a given mass of anideal gas, the volume and amount (moles) of the gas are directly

    proportional if the temperature andpressureare constant.

    Which can be written as?

    Or

    Where:

    Vis thevolumeof the gas

    Nis theamount of substanceof the gas (measured inmoles).

    Kis aconstant.

    This law explains how, under the same condition

    oftemperatureandpressure, equalvolumesof allgasescontain the same

    number of molecules. For comparing the same substance under two

    different sets of conditions, the law can be usefully expressed as follows:

    The equation shows that, as the number of moles of gas increases, the

    volume of the gas also increases in proportion. Similarly, if the number

    of moles of gas is decreased, then the volume also decreases. Thus,

    http://void%280%29/http://en.wikipedia.org/wiki/Gas_lawshttp://en.wikipedia.org/wiki/Gas_lawshttp://en.wikipedia.org/wiki/Gas_lawshttp://en.wikipedia.org/wiki/Amount_of_substancehttp://en.wikipedia.org/wiki/Amount_of_substancehttp://en.wikipedia.org/wiki/Amount_of_substancehttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Amount_of_substancehttp://en.wikipedia.org/wiki/Amount_of_substancehttp://en.wikipedia.org/wiki/Amount_of_substancehttp://en.wikipedia.org/wiki/Mole_(unit)http://en.wikipedia.org/wiki/Mole_(unit)http://en.wikipedia.org/wiki/Mole_(unit)http://en.wikipedia.org/wiki/Constant_(mathematics)http://en.wikipedia.org/wiki/Constant_(mathematics)http://en.wikipedia.org/wiki/Constant_(mathematics)http://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Constant_(mathematics)http://en.wikipedia.org/wiki/Mole_(unit)http://en.wikipedia.org/wiki/Amount_of_substancehttp://en.wikipedia.org/wiki/Volumehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Amount_of_substancehttp://en.wikipedia.org/wiki/Gas_lawshttp://void%280%29/
  • 7/27/2019 colloids and it uses 2.docx

    6/18

    the number of molecules or atoms in a specific volume of idealgasis

    independent of their size or themolar massof the gas.

    The law is named afterAmedeo Avogadrowho, in 1811,[1]hypothesized

    that two given samples of an ideal gas, of the same volume and at the

    same temperature and pressure, contain the same number ofmolecules. As an example, equal volumes of molecular hydrogen

    andnitrogencontain the same number of molecules when they are at

    the same temperature and pressure, and observe gas behavior. In

    practice, real gases show small deviations from the ideal behavior and

    the law holds only approximately, but are still a useful approximation for

    scientists.

    Grahams law of effusion

    Graham's law, known as Graham's law ofeffusion, was formulated by Scottish physical

    chemistThomas Grahamin 1848. Graham found experimentally that the rate ofeffusionof a

    gas is inversely proportional to the square root of the mass of its particles.[1]This formula can be

    written as:

    Where:

    Rate1 is the rate of effusion of the first gas (volume or number of moles per unit time).

    Rate2 is the rate of effusion for the second gas.

    M1 is themolar massof gas 1

    M2 is the molar mass of gas 2.

    Graham's law states that the rate of effusion of a gas is inversely

    proportional to the square root of its molecular weight. Thus, if the molecular

    weight of one gas is four times that of another, it would diffuse through a

    porous plug or escape through a small pinhole in a vessel at half the rate of

    the other (heavier gases diffuse more slowly). A complete theoretical

    explanation of Graham's law was provided years later by thekinetic theory

    of gases. Graham's law provides a basis for separatingisotopesby diffusion

    a method that came to play a crucial role in the development of the

    atomic bomb.

    Graham's law is most accurate for moleculareffusionwhich involves the

    movement of one gas at a time through a hole. It is only approximate

    http://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Molar_masshttp://en.wikipedia.org/wiki/Molar_masshttp://en.wikipedia.org/wiki/Molar_masshttp://en.wikipedia.org/wiki/Amedeo_Avogadrohttp://en.wikipedia.org/wiki/Amedeo_Avogadrohttp://en.wikipedia.org/wiki/Amedeo_Avogadrohttp://en.wikipedia.org/wiki/Avogadro's_law#cite_note-1http://en.wikipedia.org/wiki/Avogadro's_law#cite_note-1http://en.wikipedia.org/wiki/Avogadro's_law#cite_note-1http://en.wikipedia.org/wiki/Nitrogenhttp://en.wikipedia.org/wiki/Nitrogenhttp://en.wikipedia.org/wiki/Nitrogenhttp://en.wikipedia.org/wiki/Effusionhttp://en.wikipedia.org/wiki/Effusionhttp://en.wikipedia.org/wiki/Effusionhttp://en.wikipedia.org/wiki/Thomas_Graham_(chemist)http://en.wikipedia.org/wiki/Thomas_Graham_(chemist)http://en.wikipedia.org/wiki/Thomas_Graham_(chemist)http://en.wikipedia.org/wiki/Effusionhttp://en.wikipedia.org/wiki/Effusionhttp://en.wikipedia.org/wiki/Effusionhttp://en.wikipedia.org/wiki/Graham's_law#cite_note-LM-1http://en.wikipedia.org/wiki/Graham's_law#cite_note-LM-1http://en.wikipedia.org/wiki/Graham's_law#cite_note-LM-1http://en.wikipedia.org/wiki/Molar_masshttp://en.wikipedia.org/wiki/Molar_masshttp://en.wikipedia.org/wiki/Molar_masshttp://en.wikipedia.org/wiki/Kinetic_theoryhttp://en.wikipedia.org/wiki/Kinetic_theoryhttp://en.wikipedia.org/wiki/Kinetic_theoryhttp://en.wikipedia.org/wiki/Kinetic_theoryhttp://en.wikipedia.org/wiki/Isotopeshttp://en.wikipedia.org/wiki/Isotopeshttp://en.wikipedia.org/wiki/Isotopeshttp://en.wikipedia.org/wiki/Effusionhttp://en.wikipedia.org/wiki/Effusionhttp://en.wikipedia.org/wiki/Effusionhttp://en.wikipedia.org/wiki/Effusionhttp://en.wikipedia.org/wiki/Isotopeshttp://en.wikipedia.org/wiki/Kinetic_theoryhttp://en.wikipedia.org/wiki/Kinetic_theoryhttp://en.wikipedia.org/wiki/Molar_masshttp://en.wikipedia.org/wiki/Graham's_law#cite_note-LM-1http://en.wikipedia.org/wiki/Effusionhttp://en.wikipedia.org/wiki/Thomas_Graham_(chemist)http://en.wikipedia.org/wiki/Effusionhttp://en.wikipedia.org/wiki/Nitrogenhttp://en.wikipedia.org/wiki/Avogadro's_law#cite_note-1http://en.wikipedia.org/wiki/Amedeo_Avogadrohttp://en.wikipedia.org/wiki/Molar_masshttp://en.wikipedia.org/wiki/Gas
  • 7/27/2019 colloids and it uses 2.docx

    7/18

    fordiffusionof one gas in another or in air, as these processes involve the

    movement of more than one gas.

    Daltons Law of gases

    Inchemistryandphysics,Dalton's law (also called Dalton's law of partial pressures) statesthat the totalpressureexerted by the mixture of non-reactive gases is equal to the sum of

    thepartial pressuresof individual gases. Thisempiricallaw was observed byJohn Daltonin

    1801 and is related to theidealgas laws.

    Mathematically, the pressure of a mixture of gases can be defined as the summation

    or

    Where represent the partial pressure of each component.

    It is assumed that the gases do notreactwith each other

    Where is themole fractionof the i-th component in the total mixture

    ofn components?

    The relationship below provides a way to determine thevolume based concentrationof

    any individual gaseous component

    Where is the concentration of the i-th component expressed inppm.

    Dalton's law is not exactly followed by real gases. Those deviations are

    considerably large at high pressures. In such conditions, the volume occupied by

    the molecules can become significant compared to the free space between them. In

    particular, the short average distances between molecules raise the intensity

    ofintermolecular forcesbetween gas molecules enough to substantially change the

    pressure exerted by them. Neither of those effects are considered by the ideal gas

    model.

    Ideal gas law

    An ideal gas is defined as one in which all collisions between atoms or molecules are

    perfectly elastic and in which there are no intermolecular attractive forces. One can

    visualize it as a collection of perfectly hard spheres which collide but which otherwise

    do not interact with each other. In such a gas, all theinternal energyis in the form of

    http://en.wikipedia.org/wiki/Diffusionhttp://en.wikipedia.org/wiki/Diffusionhttp://en.wikipedia.org/wiki/Diffusionhttp://en.wikipedia.org/wiki/Chemistryhttp://en.wikipedia.org/wiki/Chemistryhttp://en.wikipedia.org/wiki/Chemistryhttp://en.wikipedia.org/wiki/Physicshttp://en.wikipedia.org/wiki/Physicshttp://en.wikipedia.org/wiki/Physicshttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Partial_pressurehttp://en.wikipedia.org/wiki/Partial_pressurehttp://en.wikipedia.org/wiki/Partial_pressurehttp://en.wikipedia.org/wiki/Empiricalhttp://en.wikipedia.org/wiki/Empiricalhttp://en.wikipedia.org/wiki/Empiricalhttp://en.wikipedia.org/wiki/John_Daltonhttp://en.wikipedia.org/wiki/John_Daltonhttp://en.wikipedia.org/wiki/John_Daltonhttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/Gas_lawshttp://en.wikipedia.org/wiki/Gas_lawshttp://en.wikipedia.org/wiki/Gas_lawshttp://en.wikipedia.org/wiki/Chemical_reactionhttp://en.wikipedia.org/wiki/Chemical_reactionhttp://en.wikipedia.org/wiki/Chemical_reactionhttp://en.wikipedia.org/wiki/Mole_fractionhttp://en.wikipedia.org/wiki/Mole_fractionhttp://en.wikipedia.org/wiki/Mole_fractionhttp://en.wikipedia.org/wiki/Concentrationhttp://en.wikipedia.org/wiki/Concentrationhttp://en.wikipedia.org/wiki/Concentrationhttp://en.wikipedia.org/wiki/Parts_per_millionhttp://en.wikipedia.org/wiki/Parts_per_millionhttp://en.wikipedia.org/wiki/Parts_per_millionhttp://en.wikipedia.org/wiki/Intermolecular_forcehttp://en.wikipedia.org/wiki/Intermolecular_forcehttp://en.wikipedia.org/wiki/Intermolecular_forcehttp://hyperphysics.phy-astr.gsu.edu/hbase/thermo/inteng.html#c2http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/inteng.html#c2http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/inteng.html#c2http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/inteng.html#c2http://en.wikipedia.org/wiki/Intermolecular_forcehttp://en.wikipedia.org/wiki/Parts_per_millionhttp://en.wikipedia.org/wiki/Concentrationhttp://en.wikipedia.org/wiki/Mole_fractionhttp://en.wikipedia.org/wiki/Chemical_reactionhttp://en.wikipedia.org/wiki/Gas_lawshttp://en.wikipedia.org/wiki/Ideal_gashttp://en.wikipedia.org/wiki/John_Daltonhttp://en.wikipedia.org/wiki/Empiricalhttp://en.wikipedia.org/wiki/Partial_pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Physicshttp://en.wikipedia.org/wiki/Chemistryhttp://en.wikipedia.org/wiki/Diffusion
  • 7/27/2019 colloids and it uses 2.docx

    8/18

    kinetic energy and any change in internal energy is accompanied by a change

    intemperature.

    An ideal gas can be characterized by threestate variables: absolute pressure (P),

    volume (V), and absolute temperature (T). The relationship between them may be

    deduced fromkinetic theoryand is called the

    n = number ofmoles

    R = universal gas constant = 8.3145 J/mol K

    N = number of molecules

    k = Boltzmann constant = 1.38066 x 10-23 J/K = 8.617385 x 10-5 eV/K

    k = R/NA NA = Avogadro's number = 6.0221 x 10

    23 /mol

    The ideal gas law can be viewed as arising from thekinetic pressureof gas molecules

    colliding with the walls of a container in accordance with Newton's laws. But there is

    also a statistical element in the determination of the average kinetic energy of those

    molecules. The temperature is taken to be proportional to this average kinetic energy;

    this invokes the idea ofkinetic temperature. One mole of an ideal gas atSTPoccupies

    22.4 liters.

    Combined Gas Law:

    The pressure and volume of a gas are inversely proportional to each other, but directly

    proportional to the temperature of that gas.

    Mathematically, this can be represented as:

    Temperature = Volume x Pressure / Constant

    or

    Volume = Constant x Temperature / Pressureor

    Pressure = Constant x Temperature / Volume

    or

    Pressure x Volume/Temperature = Constant

    Substituting in variables, the formula is:

    http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper.html#c1http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper.html#c1http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper.html#c1http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idegas.html#c3http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idegas.html#c3http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idegas.html#c3http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kinthe.html#c1http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kinthe.html#c1http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kinthe.html#c1http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idegas.html#c4http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idegas.html#c4http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idegas.html#c4http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kinthe.html#c3http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kinthe.html#c3http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kinthe.html#c3http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kintem.html#c1http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kintem.html#c1http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kintem.html#c1http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idegas.html#c4http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idegas.html#c4http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idegas.html#c4http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idegas.html#c4http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kintem.html#c1http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kinthe.html#c3http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idegas.html#c4http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kinthe.html#c1http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/idegas.html#c3http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper.html#c1
  • 7/27/2019 colloids and it uses 2.docx

    9/18

    PV/T=K

    Because the formula is equal to a constant, it is possible to solve for a change in

    volume, temperature, or pressure using a proportion:

    PV/T = P1V1/T1

    Atomic structures

    The text provides a historical perspective of how the internal structure

    of the atom was discovered. It is certainly one of the most important

    scientific discoveries of this century, and I recommend that you read

    through it. However, we will begin our discussion of the atom from the

    modern day perspective.

    All atoms are made from three subatomic particles

    Protons, neutron & electrons.These particles have the following properties:

    Particle Charge Mass (g) Mass (amu)

    Proton +1 1.6727 x 10-24 g 1.007316

    Neutron 0 1.6750 x 10-24 g 1.008701

    Electron -1 9.110 x 10-28 g 0.000549

    History of the development of the atomictheory

    The earliest Greek philosophers thought that all the different things in the world were

    made out of a single basic substance. Some thought that water was the fundamental

    substance and that all other substances were derived from it. Others thought

  • 7/27/2019 colloids and it uses 2.docx

    10/18

    that air was the basic substance; still others favored fire. But neither water, nor air nor

    fire was satisfactory. No one substance seemed to have enough different properties to

    give rise to the enormous variety of substances in the world. According to another

    view introduced by Empedocles around 450 B.C., there were four basic types of

    matter- earth, air, fire, and water. All material things were made out of them. He

    proposed that these four basic materials could mingle and separate and reunite indifferent proportions. By doing so they could produce the vast variety of familiar

    objects around us as well as explain the changes in those objects. But the basic four

    materials, called elements, were supposed to persist through all these changes. This

    theory was the first appearance of a model of matterexplaining all material things as

    just different arrangements of a few elements.

    The first atomic theory of matter was introduced by the Greek

    philosopherLeucippus, born about 500 B.C. and his pupil Democritus. Only

    scattered fragments of the writings of these two philosophers remain. But their ideas

    were discussed in considerable detail by the Greek

    philosophers Aristotle and Epicurus, and later by the Latin poet Lucretius. To these

    men we owe most of our knowledge of ancient atomism. The theory of the atomists

    was based on the following assumptions:

    1. Matter is eternal - no material thing can come from nothing, nor can anymaterial thing pass into nothing.

    2. Material things consist of very small indivisible particles. The word atommeant "uncut table" in Greek.

    3. Atoms differ chiefly in theirsizes and shapes.4. Atoms exist in otherwise empty space (the void) which separates them, and

    this space allows them to move from one place to another.

    5. Atoms are continually in motion, although the nature and cause of the motionare not clear.

    6. In the course of their motions atoms come together and formcombinations which are the material substances we know. When the atoms

    forming these combinations separate, the substances decay or break up. Thus,

    the combinations and separations of atoms give rise to the changes which

    take place in the world.

    7. The combinations and separations take place according to natural laws whichare not yet clear, but do not require the action of gods or demons or othersupernatural powers. In fact, one of the chief aims of the atomists was to

    liberate people from superstition and fear. With these assumptions, the ancient

    atomists worked out a consistent story of change, which they sometimes

    called "coming-to-be" and "passing away". They could not demonstrate

  • 7/27/2019 colloids and it uses 2.docx

    11/18

    experimentally that their theory was correct - it was simply an explanation

    derived from assumptions that seemed reasonable to them.

    The atomic theory was severely criticized by Aristotle. He argued logically - from his

    own assumptions - that no vacuum or void could exist. Therefore, the idea of atoms in

    continual motion must be rejected. He was also probably aware of the fact that in his

    time belief in atomism was identified with atheism as it stated that gods were

    unnecessary - not a very healthy view in 450 B.C

    Daltons atomic theory.

    Democritus first suggested the existence of the atom but it took almost two

    millennia before the atom was placed on a solid foothold as a fundamental chemical

    object by John Dalton (1766-1844). Although two centuries old, Dalton's atomic

    theory remains valid in modern

    Dalton's Atomic Theory

    1) All matter is made of atoms. Atoms are indivisible and

    indestructible.

    2) All atoms of a given element are identical in mass andproperties

    3) Compounds are formed by a combination of two or more

    different kinds of atoms.

    4) A chemical reaction is arrangementof atoms.

    Modern atomic theory is, of course, a little more involved than Dalton's theory but the

    essence of Dalton's theory remains valid. Today we know that atoms can be destroyed

    via nuclear reactions but not by chemical reactions. Also, there are different kinds ofatoms (differing by their masses) within an element that is known as "isotopes", but

    isotopes of an element have the same chemical properties.

    Chemical thought.

  • 7/27/2019 colloids and it uses 2.docx

    12/18

    Modern atomic theory

    In 1808 an English schoolteacher proposed the following explanation ofmatter. Since then we have learned more about the atom and now

    have a slightly different theory.

    All matter is composed of extremely small particles called

    atoms.

    Atoms of a given element are identical in size, mass and other

    properties. Atoms of different elements differ in size, mass and

    other properties.

    Atoms cannot be subdivided, created, or destroyed.

    Atoms of different elements combine in simple whole number

    ratios.

    in chemical reactions, atoms are combined, separated, or

    rearranged.

    Isotopes

    Atoms of the same element can have different numbers of neutrons; the

    different possible versions of each element are called isotopes. For example,

    the most common isotope of hydrogen has no neutrons at all; there's also a

    hydrogen isotope called deuterium, with one neutron, and another, tritium,

    with two neutrons.

    Hydrogen Deuterium Tritium

  • 7/27/2019 colloids and it uses 2.docx

    13/18

    If you want to refer to a certain isotope, you write itlike this:AXZ. Here X is the

    chemical symbol for the element, Z is theatomic number, and A is the number of

    neutrons and protons combined, called the mass number. For instance, ordinary

    hydrogen is written 1H1, deuterium is2H1, and tritium is

    3H1.

    Alkaline earth metals (uses)

    , alkaline earth metals any of the sixchemical elementsthat comprise Group 2

    (IIa) of theperiodictable. The elementsareberyllium(Be),magnesium(Mg),calcium(Ca),strontium(Sr),barium(Ba),andradium(Ra).

    Occurrence, properties, and uses

    Prior to the 19th century, substances that were nonmetallic, insoluble inwater, and unchanged byfire were known as earths. Those earths, such as lime (calcium oxide), that resembled

    thealkalies(soda ash andpotash) were designated alkaline earths. Alkaline earths were thus

    distinguished from the alkalies and from other earths, such asaluminaand therare earths. By the

    early 1800s it ... (100 of 3,073 words)

    Boron group (uses)

    The boron group is theseriesofelementsingroup 13(IUPACstyle) in theperiodic

    table. The boron group consists

    ofboron(B),aluminium(Al),gallium(Ga),indium(In),thallium(Tl),

    andununtrium(Uut).

    Uses of boron

    1) used as a deoxidizer in casting of copper

    2) used as control rods in atomic reactors3) catalytic agent

    Uses of compounds of boron

    1) Borax

    stiffening of candles

    making optical and borosilicate glasses

    http://www.colorado.edu/physics/2000/isotopes/iso_notation.htmlhttp://www.colorado.edu/physics/2000/isotopes/iso_notation.htmlhttp://www.colorado.edu/physics/2000/isotopes/iso_notation.htmlhttp://www.colorado.edu/physics/2000/periodic_table/atomic_number.htmlhttp://www.colorado.edu/physics/2000/periodic_table/atomic_number.htmlhttp://www.colorado.edu/physics/2000/periodic_table/atomic_number.htmlhttp://global.britannica.com/EBchecked/topic/108636/chemical-elementhttp://global.britannica.com/EBchecked/topic/108636/chemical-elementhttp://global.britannica.com/EBchecked/topic/108636/chemical-elementhttp://global.britannica.com/EBchecked/topic/451901/periodic-lawhttp://global.britannica.com/EBchecked/topic/451901/periodic-lawhttp://global.britannica.com/EBchecked/topic/451901/periodic-lawhttp://global.britannica.com/EBchecked/topic/62913/beryllium-Behttp://global.britannica.com/EBchecked/topic/62913/beryllium-Behttp://global.britannica.com/EBchecked/topic/62913/beryllium-Behttp://global.britannica.com/EBchecked/topic/356899/magnesium-Mghttp://global.britannica.com/EBchecked/topic/356899/magnesium-Mghttp://global.britannica.com/EBchecked/topic/356899/magnesium-Mghttp://global.britannica.com/EBchecked/topic/88956/calcium-Cahttp://global.britannica.com/EBchecked/topic/88956/calcium-Cahttp://global.britannica.com/EBchecked/topic/88956/calcium-Cahttp://global.britannica.com/EBchecked/topic/569485/strontium-Srhttp://global.britannica.com/EBchecked/topic/569485/strontium-Srhttp://global.britannica.com/EBchecked/topic/569485/strontium-Srhttp://global.britannica.com/EBchecked/topic/53345/barium-Bahttp://global.britannica.com/EBchecked/topic/53345/barium-Bahttp://global.britannica.com/EBchecked/topic/53345/barium-Bahttp://global.britannica.com/EBchecked/topic/489270/radium-Rahttp://global.britannica.com/EBchecked/topic/489270/radium-Rahttp://global.britannica.com/EBchecked/topic/489270/radium-Rahttp://global.britannica.com/EBchecked/topic/636754/waterhttp://global.britannica.com/EBchecked/topic/636754/waterhttp://global.britannica.com/EBchecked/topic/636754/waterhttp://global.britannica.com/EBchecked/topic/15573/alkalihttp://global.britannica.com/EBchecked/topic/15573/alkalihttp://global.britannica.com/EBchecked/topic/15573/alkalihttp://global.britannica.com/EBchecked/topic/472354/potashhttp://global.britannica.com/EBchecked/topic/472354/potashhttp://global.britannica.com/EBchecked/topic/472354/potashhttp://global.britannica.com/EBchecked/topic/17897/aluminahttp://global.britannica.com/EBchecked/topic/17897/aluminahttp://global.britannica.com/EBchecked/topic/17897/aluminahttp://global.britannica.com/EBchecked/topic/491579/rare-earth-elementhttp://global.britannica.com/EBchecked/topic/491579/rare-earth-elementhttp://global.britannica.com/EBchecked/topic/491579/rare-earth-elementhttp://www.wikipedia.org/wiki/Chemical_serieshttp://www.wikipedia.org/wiki/Chemical_serieshttp://www.wikipedia.org/wiki/Chemical_serieshttp://www.wikipedia.org/wiki/Chemical_elementhttp://www.wikipedia.org/wiki/Chemical_elementhttp://www.wikipedia.org/wiki/Chemical_elementhttp://www.wikipedia.org/wiki/Periodic_table_grouphttp://www.wikipedia.org/wiki/Periodic_table_grouphttp://www.wikipedia.org/wiki/Periodic_table_grouphttp://www.wikipedia.org/wiki/IUPAChttp://www.wikipedia.org/wiki/IUPAChttp://www.wikipedia.org/wiki/IUPAChttp://www.wikipedia.org/wiki/Periodic_tablehttp://www.wikipedia.org/wiki/Periodic_tablehttp://www.wikipedia.org/wiki/Periodic_tablehttp://www.wikipedia.org/wiki/Periodic_tablehttp://www.wikipedia.org/wiki/Boronhttp://www.wikipedia.org/wiki/Boronhttp://www.wikipedia.org/wiki/Boronhttp://www.wikipedia.org/wiki/Aluminiumhttp://www.wikipedia.org/wiki/Aluminiumhttp://www.wikipedia.org/wiki/Aluminiumhttp://www.wikipedia.org/wiki/Galliumhttp://www.wikipedia.org/wiki/Galliumhttp://www.wikipedia.org/wiki/Galliumhttp://www.wikipedia.org/wiki/Indiumhttp://www.wikipedia.org/wiki/Indiumhttp://www.wikipedia.org/wiki/Indiumhttp://www.wikipedia.org/wiki/Thalliumhttp://www.wikipedia.org/wiki/Thalliumhttp://www.wikipedia.org/wiki/Thalliumhttp://www.wikipedia.org/wiki/Ununtriumhttp://www.wikipedia.org/wiki/Ununtriumhttp://www.wikipedia.org/wiki/Ununtriumhttp://global.britannica.com/EBchecked/media/91/Modern-version-of-the-periodic-table-of-the-elementshttp://www.wikipedia.org/wiki/Ununtriumhttp://www.wikipedia.org/wiki/Thalliumhttp://www.wikipedia.org/wiki/Indiumhttp://www.wikipedia.org/wiki/Galliumhttp://www.wikipedia.org/wiki/Aluminiumhttp://www.wikipedia.org/wiki/Boronhttp://www.wikipedia.org/wiki/Periodic_tablehttp://www.wikipedia.org/wiki/Periodic_tablehttp://www.wikipedia.org/wiki/IUPAChttp://www.wikipedia.org/wiki/Periodic_table_grouphttp://www.wikipedia.org/wiki/Chemical_elementhttp://www.wikipedia.org/wiki/Chemical_serieshttp://global.britannica.com/EBchecked/topic/491579/rare-earth-elementhttp://global.britannica.com/EBchecked/topic/17897/aluminahttp://global.britannica.com/EBchecked/topic/472354/potashhttp://global.britannica.com/EBchecked/topic/15573/alkalihttp://global.britannica.com/EBchecked/topic/636754/waterhttp://global.britannica.com/EBchecked/topic/489270/radium-Rahttp://global.britannica.com/EBchecked/topic/53345/barium-Bahttp://global.britannica.com/EBchecked/topic/569485/strontium-Srhttp://global.britannica.com/EBchecked/topic/88956/calcium-Cahttp://global.britannica.com/EBchecked/topic/356899/magnesium-Mghttp://global.britannica.com/EBchecked/topic/62913/beryllium-Behttp://global.britannica.com/EBchecked/topic/451901/periodic-lawhttp://global.britannica.com/EBchecked/topic/108636/chemical-elementhttp://www.colorado.edu/physics/2000/periodic_table/atomic_number.htmlhttp://www.colorado.edu/physics/2000/isotopes/iso_notation.html
  • 7/27/2019 colloids and it uses 2.docx

    14/18

    in water softening

    as a flux

    in qualitative analysis

    2) orthoboric acid

    in glass industryfood preservative

    eye wash and antiseptic

    3) diborane

    reducing agent

    catalyst in polymerization reactions

    Carbon group

    The carbon group is aperiodic table groupconsisting

    ofcarbon(C),silicon(Si),germanium(Ge),tin(Sn),lead(Pb), andflerovium(Fl).

    In modernIUPACnotation, it is called Group 14. In the field ofsemiconductor physics, it is still

    universally called Group IV. The group was once also known as the tetrels (from Greek tetra,

    four), stemming from the Roman numeral IV in the group names, or (not coincidentally) from the

    fact that these elements have fourvalence electrons(see below). The group is sometimes also

    referred to as tetragens orcrystallogens.

    Carbon uses

    Heat resistant devices, tools and metal cutters have carbon built in. The metal is also

    used in cooling systems and machinery. Carbon monoxide is employed as a reduction

    agent. This is necessary to get compounds and other elements.

    As carbon dioxide, it can be found in dry ice, fire extinguishers, carbonated and fizzy

    drinks. Vegetal carbon is sometimes used as a gas absorbent or bleaching agent. The

    http://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Carbonhttp://en.wikipedia.org/wiki/Carbonhttp://en.wikipedia.org/wiki/Carbonhttp://en.wikipedia.org/wiki/Siliconhttp://en.wikipedia.org/wiki/Siliconhttp://en.wikipedia.org/wiki/Siliconhttp://en.wikipedia.org/wiki/Germaniumhttp://en.wikipedia.org/wiki/Germaniumhttp://en.wikipedia.org/wiki/Germaniumhttp://en.wikipedia.org/wiki/Tinhttp://en.wikipedia.org/wiki/Tinhttp://en.wikipedia.org/wiki/Tinhttp://en.wikipedia.org/wiki/Leadhttp://en.wikipedia.org/wiki/Leadhttp://en.wikipedia.org/wiki/Leadhttp://en.wikipedia.org/wiki/Fleroviumhttp://en.wikipedia.org/wiki/Fleroviumhttp://en.wikipedia.org/wiki/Fleroviumhttp://en.wikipedia.org/wiki/IUPAChttp://en.wikipedia.org/wiki/IUPAChttp://en.wikipedia.org/wiki/IUPAChttp://en.wikipedia.org/wiki/Semiconductor_physicshttp://en.wikipedia.org/wiki/Semiconductor_physicshttp://en.wikipedia.org/wiki/Semiconductor_physicshttp://en.wikipedia.org/wiki/Valence_electronhttp://en.wikipedia.org/wiki/Valence_electronhttp://en.wikipedia.org/wiki/Valence_electronhttp://www.usesof.net/wp-content/uploads/2012/05/carbon.jpghttp://en.wikipedia.org/wiki/Valence_electronhttp://en.wikipedia.org/wiki/Semiconductor_physicshttp://en.wikipedia.org/wiki/IUPAChttp://en.wikipedia.org/wiki/Fleroviumhttp://en.wikipedia.org/wiki/Leadhttp://en.wikipedia.org/wiki/Tinhttp://en.wikipedia.org/wiki/Germaniumhttp://en.wikipedia.org/wiki/Siliconhttp://en.wikipedia.org/wiki/Carbonhttp://en.wikipedia.org/wiki/Group_(periodic_table)
  • 7/27/2019 colloids and it uses 2.docx

    15/18

    same element is utilized as a decorative tool for jewelry. Many inkjet printers employ

    carbon as ink base. It is applied as a black fume pigment in car rims.

    Nitrogen group

    The pnictogens[1]/nktdnz/are thechemical elementsingroup 15of theperiodic table.

    This group is also known as the nitrogen family. It consists of the

    elementsnitrogen(N),phosphorus(P),arsenic(As),antimony(Sb),bismuth(Bi) and

    thesynthetic elementununpentium(Uup) (unconfirmed).

    In modernIUPACnotation, it is called Group 15. InCASand the old IUPAC systems it was

    called Group VA and Group VB, respectively (pronounced "group five A" and "group five B", "V"

    for theRoman numeral5).[2]In the field ofsemiconductor physics, it is still usually called Group

    V.[3]The "five" ("V") in the historical names comes from the "pentavalency" of nitrogen, reflected

    by thestoichiometryof compounds such as N2O5.

    Chalcogen group

    The chalcogens(/klkdnz/) are thechemical elementsingroup16 of theperiodic table.

    This group is also known as the oxygen family orgroup 16. It consists of theelementsoxygen(O),sulfur(S),selenium(Se),tellurium(Te), and theradioactiveelement

    polonium (Po). Thesynthetic elementlivermorium(Lv) is predicted to be a chalcogen as

    well.[1]The word chalcogen is derived from a combination of the Greek word khalks()

    principally meaningcopper(the term was also used forbronze/brass, any metal in the poetic

    sense,oreorcoin),[2][3]and the Latinized Greek word genes, meaning born orproduced.[4][

    Halogen group

    The halogens orhalogen elements(/hldn/) are agroupin the table consisting of five

    chemically relatedelements,fluorine(F),chlorine(Cl),bromine(Br),iodine(I), andastatine(At).

    The artificially created element 117 (ununseptium) may also be a halogen. In the

    modernIUPACnomenclature, this group is known as group 17.

    http://en.wikipedia.org/wiki/Pnictogen#cite_note-1http://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Periodic_tablehttp://en.wikipedia.org/wiki/Periodic_tablehttp://en.wikipedia.org/wiki/Periodic_tablehttp://en.wikipedia.org/wiki/Nitrogenhttp://en.wikipedia.org/wiki/Nitrogenhttp://en.wikipedia.org/wiki/Nitrogenhttp://en.wikipedia.org/wiki/Phosphorushttp://en.wikipedia.org/wiki/Phosphorushttp://en.wikipedia.org/wiki/Phosphorushttp://en.wikipedia.org/wiki/Arsenichttp://en.wikipedia.org/wiki/Arsenichttp://en.wikipedia.org/wiki/Arsenichttp://en.wikipedia.org/wiki/Antimonyhttp://en.wikipedia.org/wiki/Antimonyhttp://en.wikipedia.org/wiki/Antimonyhttp://en.wikipedia.org/wiki/Bismuthhttp://en.wikipedia.org/wiki/Bismuthhttp://en.wikipedia.org/wiki/Bismuthhttp://en.wikipedia.org/wiki/Synthetic_elementhttp://en.wikipedia.org/wiki/Synthetic_elementhttp://en.wikipedia.org/wiki/Synthetic_elementhttp://en.wikipedia.org/wiki/IUPAChttp://en.wikipedia.org/wiki/IUPAChttp://en.wikipedia.org/wiki/IUPAChttp://en.wikipedia.org/wiki/Chemical_Abstracts_Servicehttp://en.wikipedia.org/wiki/Chemical_Abstracts_Servicehttp://en.wikipedia.org/wiki/Chemical_Abstracts_Servicehttp://en.wikipedia.org/wiki/Roman_numeralhttp://en.wikipedia.org/wiki/Roman_numeralhttp://en.wikipedia.org/wiki/Roman_numeralhttp://en.wikipedia.org/wiki/Pnictogen#cite_note-2http://en.wikipedia.org/wiki/Pnictogen#cite_note-2http://en.wikipedia.org/wiki/Pnictogen#cite_note-2http://en.wikipedia.org/wiki/Semiconductor_physicshttp://en.wikipedia.org/wiki/Semiconductor_physicshttp://en.wikipedia.org/wiki/Semiconductor_physicshttp://en.wikipedia.org/wiki/Pnictogen#cite_note-3http://en.wikipedia.org/wiki/Pnictogen#cite_note-3http://en.wikipedia.org/wiki/Pnictogen#cite_note-3http://en.wikipedia.org/wiki/Valence_(chemistry)http://en.wikipedia.org/wiki/Valence_(chemistry)http://en.wikipedia.org/wiki/Valence_(chemistry)http://en.wikipedia.org/wiki/Stoichiometryhttp://en.wikipedia.org/wiki/Stoichiometryhttp://en.wikipedia.org/wiki/Stoichiometryhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Periodic_tablehttp://en.wikipedia.org/wiki/Periodic_tablehttp://en.wikipedia.org/wiki/Periodic_tablehttp://en.wikipedia.org/wiki/Oxygenhttp://en.wikipedia.org/wiki/Oxygenhttp://en.wikipedia.org/wiki/Oxygenhttp://en.wikipedia.org/wiki/Sulfurhttp://en.wikipedia.org/wiki/Sulfurhttp://en.wikipedia.org/wiki/Sulfurhttp://en.wikipedia.org/wiki/Seleniumhttp://en.wikipedia.org/wiki/Seleniumhttp://en.wikipedia.org/wiki/Seleniumhttp://en.wikipedia.org/wiki/Telluriumhttp://en.wikipedia.org/wiki/Telluriumhttp://en.wikipedia.org/wiki/Telluriumhttp://en.wikipedia.org/wiki/Radioactive_decayhttp://en.wikipedia.org/wiki/Radioactive_decayhttp://en.wikipedia.org/wiki/Radioactive_decayhttp://en.wikipedia.org/wiki/Synthetic_elementhttp://en.wikipedia.org/wiki/Synthetic_elementhttp://en.wikipedia.org/wiki/Livermoriumhttp://en.wikipedia.org/wiki/Livermoriumhttp://en.wikipedia.org/wiki/Livermoriumhttp://en.wikipedia.org/wiki/Chalcogen#cite_note-ReferenceB-1http://en.wikipedia.org/wiki/Chalcogen#cite_note-ReferenceB-1http://en.wikipedia.org/wiki/Chalcogen#cite_note-ReferenceB-1http://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Bronzehttp://en.wikipedia.org/wiki/Bronzehttp://en.wikipedia.org/wiki/Brasshttp://en.wikipedia.org/wiki/Brasshttp://en.wikipedia.org/wiki/Brasshttp://en.wikipedia.org/wiki/Orehttp://en.wikipedia.org/wiki/Orehttp://en.wikipedia.org/wiki/Orehttp://en.wikipedia.org/wiki/Coinhttp://en.wikipedia.org/wiki/Coinhttp://en.wikipedia.org/wiki/Coinhttp://en.wikipedia.org/wiki/Chalcogen#cite_note-Chalco--2http://en.wikipedia.org/wiki/Chalcogen#cite_note-Chalco--2http://en.wikipedia.org/wiki/Chalcogen#cite_note-Chalco--2http://en.wikipedia.org/wiki/Chalcogen#cite_note-4http://en.wikipedia.org/wiki/Chalcogen#cite_note-4http://en.wikipedia.org/wiki/Chalcogen#cite_note-4http://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Fluorinehttp://en.wikipedia.org/wiki/Fluorinehttp://en.wikipedia.org/wiki/Fluorinehttp://en.wikipedia.org/wiki/Chlorinehttp://en.wikipedia.org/wiki/Chlorinehttp://en.wikipedia.org/wiki/Chlorinehttp://en.wikipedia.org/wiki/Brominehttp://en.wikipedia.org/wiki/Brominehttp://en.wikipedia.org/wiki/Brominehttp://en.wikipedia.org/wiki/Iodinehttp://en.wikipedia.org/wiki/Iodinehttp://en.wikipedia.org/wiki/Iodinehttp://en.wikipedia.org/wiki/Astatinehttp://en.wikipedia.org/wiki/Astatinehttp://en.wikipedia.org/wiki/Astatinehttp://en.wikipedia.org/wiki/Ununseptiumhttp://en.wikipedia.org/wiki/Ununseptiumhttp://en.wikipedia.org/wiki/Ununseptiumhttp://en.wikipedia.org/wiki/IUPAChttp://en.wikipedia.org/wiki/IUPAChttp://en.wikipedia.org/wiki/IUPAChttp://en.wikipedia.org/wiki/IUPAChttp://en.wikipedia.org/wiki/Ununseptiumhttp://en.wikipedia.org/wiki/Astatinehttp://en.wikipedia.org/wiki/Iodinehttp://en.wikipedia.org/wiki/Brominehttp://en.wikipedia.org/wiki/Chlorinehttp://en.wikipedia.org/wiki/Fluorinehttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Chalcogen#cite_note-4http://en.wikipedia.org/wiki/Chalcogen#cite_note-Chalco--2http://en.wikipedia.org/wiki/Chalcogen#cite_note-Chalco--2http://en.wikipedia.org/wiki/Coinhttp://en.wikipedia.org/wiki/Orehttp://en.wikipedia.org/wiki/Brasshttp://en.wikipedia.org/wiki/Bronzehttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Chalcogen#cite_note-ReferenceB-1http://en.wikipedia.org/wiki/Livermoriumhttp://en.wikipedia.org/wiki/Synthetic_elementhttp://en.wikipedia.org/wiki/Radioactive_decayhttp://en.wikipedia.org/wiki/Telluriumhttp://en.wikipedia.org/wiki/Seleniumhttp://en.wikipedia.org/wiki/Sulfurhttp://en.wikipedia.org/wiki/Oxygenhttp://en.wikipedia.org/wiki/Periodic_tablehttp://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Stoichiometryhttp://en.wikipedia.org/wiki/Valence_(chemistry)http://en.wikipedia.org/wiki/Pnictogen#cite_note-3http://en.wikipedia.org/wiki/Semiconductor_physicshttp://en.wikipedia.org/wiki/Pnictogen#cite_note-2http://en.wikipedia.org/wiki/Roman_numeralhttp://en.wikipedia.org/wiki/Chemical_Abstracts_Servicehttp://en.wikipedia.org/wiki/IUPAChttp://en.wikipedia.org/wiki/Synthetic_elementhttp://en.wikipedia.org/wiki/Synthetic_elementhttp://en.wikipedia.org/wiki/Bismuthhttp://en.wikipedia.org/wiki/Antimonyhttp://en.wikipedia.org/wiki/Arsenichttp://en.wikipedia.org/wiki/Phosphorushttp://en.wikipedia.org/wiki/Nitrogenhttp://en.wikipedia.org/wiki/Periodic_tablehttp://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Pnictogen#cite_note-1
  • 7/27/2019 colloids and it uses 2.docx

    16/18

    The group of halogens is the onlyperiodic table groupwhich contains elements in all three

    familiarstates of matteratstandard temperature and pressure. All of the halogens form acids

    when bonded to hydrogen. Most halogens are typically produced frommineralsof salts. The

    middle halogens, that is, chlorine, bromine and iodine, are often used as disinfectants. The

    halogens are also all toxic.

    Noble gasThe noble gases make a group ofchemical elementswith similar properties: under standard,

    they are all odorless, colorless,monatomicgases with very low chemical. The six noble gases

    that occur naturally arehelium (He),neon (Ne),argon (Ar),krypton (Kr),xenon (Xe), and the

    radioactiveradon (Rn).

    For the first six periods of the periodic table, the noble gases are exactly the members of

    group 18 of theperiodic table. It is possible that due torelativistic effects, thegroup

    14elementfleroviumexhibits some noble-gas-like properties,[1]instead of the group 18

    elementununoctium.[2]

    The properties of the noble gases can be well explained by modern theories ofatomic structure:

    theirouter shellofvalence electronsis considered to be "full", giving them little tendency to

    participate in chemical reactions, and it has been possible to prepare only a few hundrednoble

    gas compounds. Themeltingandboiling pointsfor a given noble gas are close together,

    differing by less than 10 C (18 F); that is, they are liquids over only a small temperature range.

    Neon, argon, krypton, and xenon are obtained fromairin anair separationunit using the

    methods ofliquefaction of gasesandfractional distillation. Helium is sourced fromnatural gas

    fieldswhich have high concentrations of helium in thenatural gas, usingcryogenicgas

    separationtechniques, and radon is usually isolated from theradioactive decayof dissolved

    radium compounds. Noble gases have several important applications in industries such as

    lighting, welding, and space exploration. A helium-oxygen breathing gas is often used by deep-

    sea divers at depths of seawater over 55 m (180 ft) to keep the diver from experiencing oxygen,

    the lethal effect of high-pressure oxygen, andnitrogen narcosis, the distracting narcotic effect of

    the nitrogen in air beyond this partial-pressure threshold. After the risks caused by the

    flammability ofhydrogenbecame apparent, it was replaced with helium inblimpsandballoons.

    http://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/Group_(periodic_table)http://en.wikipedia.org/wiki/States_of_matterhttp://en.wikipedia.org/wiki/States_of_matterhttp://en.wikipedia.org/wiki/States_of_matterhttp://en.wikipedia.org/wiki/Standard_conditions_for_temperature_and_pressurehttp://en.wikipedia.org/wiki/Standard_conditions_for_temperature_and_pressurehttp://en.wikipedia.org/wiki/Standard_conditions_for_temperature_and_pressurehttp://en.wikipedia.org/wiki/Mineralhttp://en.wikipedia.org/wiki/Mineralhttp://en.wikipedia.org/wiki/Mineralhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Monatomichttp://en.wikipedia.org/wiki/Monatomichttp://en.wikipedia.org/wiki/Monatomichttp://en.wikipedia.org/wiki/Heliumhttp://en.wikipedia.org/wiki/Heliumhttp://en.wikipedia.org/wiki/Heliumhttp://en.wikipedia.org/wiki/Neonhttp://en.wikipedia.org/wiki/Neonhttp://en.wikipedia.org/wiki/Argonhttp://en.wikipedia.org/wiki/Argonhttp://en.wikipedia.org/wiki/Argonhttp://en.wikipedia.org/wiki/Kryptonhttp://en.wikipedia.org/wiki/Kryptonhttp://en.wikipedia.org/wiki/Kryptonhttp://en.wikipedia.org/wiki/Xenonhttp://en.wikipedia.org/wiki/Xenonhttp://en.wikipedia.org/wiki/Xenonhttp://en.wikipedia.org/wiki/Radonhttp://en.wikipedia.org/wiki/Radonhttp://en.wikipedia.org/wiki/Radonhttp://en.wikipedia.org/wiki/Periodic_tablehttp://en.wikipedia.org/wiki/Periodic_tablehttp://en.wikipedia.org/wiki/Periodic_tablehttp://en.wikipedia.org/wiki/Relativistic_quantum_chemistryhttp://en.wikipedia.org/wiki/Relativistic_quantum_chemistryhttp://en.wikipedia.org/wiki/Relativistic_quantum_chemistryhttp://en.wikipedia.org/wiki/Carbon_grouphttp://en.wikipedia.org/wiki/Carbon_grouphttp://en.wikipedia.org/wiki/Carbon_grouphttp://en.wikipedia.org/wiki/Fleroviumhttp://en.wikipedia.org/wiki/Fleroviumhttp://en.wikipedia.org/wiki/Fleroviumhttp://en.wikipedia.org/wiki/Noble_gas#cite_note-1http://en.wikipedia.org/wiki/Noble_gas#cite_note-1http://en.wikipedia.org/wiki/Noble_gas#cite_note-1http://en.wikipedia.org/wiki/Ununoctiumhttp://en.wikipedia.org/wiki/Ununoctiumhttp://en.wikipedia.org/wiki/Noble_gas#cite_note-2http://en.wikipedia.org/wiki/Noble_gas#cite_note-2http://en.wikipedia.org/wiki/Noble_gas#cite_note-2http://en.wikipedia.org/wiki/Atomic_structurehttp://en.wikipedia.org/wiki/Atomic_structurehttp://en.wikipedia.org/wiki/Atomic_structurehttp://en.wikipedia.org/wiki/Electron_shellhttp://en.wikipedia.org/wiki/Electron_shellhttp://en.wikipedia.org/wiki/Electron_shellhttp://en.wikipedia.org/wiki/Valence_electronhttp://en.wikipedia.org/wiki/Valence_electronhttp://en.wikipedia.org/wiki/Valence_electronhttp://en.wikipedia.org/wiki/Noble_gas_compoundhttp://en.wikipedia.org/wiki/Noble_gas_compoundhttp://en.wikipedia.org/wiki/Noble_gas_compoundhttp://en.wikipedia.org/wiki/Noble_gas_compoundhttp://en.wikipedia.org/wiki/Melting_pointhttp://en.wikipedia.org/wiki/Melting_pointhttp://en.wikipedia.org/wiki/Melting_pointhttp://en.wikipedia.org/wiki/Boiling_pointhttp://en.wikipedia.org/wiki/Boiling_pointhttp://en.wikipedia.org/wiki/Boiling_pointhttp://en.wikipedia.org/wiki/Airhttp://en.wikipedia.org/wiki/Airhttp://en.wikipedia.org/wiki/Airhttp://en.wikipedia.org/wiki/Air_separationhttp://en.wikipedia.org/wiki/Air_separationhttp://en.wikipedia.org/wiki/Air_separationhttp://en.wikipedia.org/wiki/Liquefaction_of_gaseshttp://en.wikipedia.org/wiki/Liquefaction_of_gaseshttp://en.wikipedia.org/wiki/Liquefaction_of_gaseshttp://en.wikipedia.org/wiki/Fractional_distillationhttp://en.wikipedia.org/wiki/Fractional_distillationhttp://en.wikipedia.org/wiki/Fractional_distillationhttp://en.wikipedia.org/wiki/Natural_gas_fieldshttp://en.wikipedia.org/wiki/Natural_gas_fieldshttp://en.wikipedia.org/wiki/Natural_gas_fieldshttp://en.wikipedia.org/wiki/Natural_gas_fieldshttp://en.wikipedia.org/wiki/Natural_gashttp://en.wikipedia.org/wiki/Natural_gashttp://en.wikipedia.org/wiki/Natural_gashttp://en.wikipedia.org/wiki/Cryogenichttp://en.wikipedia.org/wiki/Cryogenichttp://en.wikipedia.org/wiki/Gas_separationhttp://en.wikipedia.org/wiki/Gas_separationhttp://en.wikipedia.org/wiki/Gas_separationhttp://en.wikipedia.org/wiki/Gas_separationhttp://en.wikipedia.org/wiki/Radioactive_decayhttp://en.wikipedia.org/wiki/Radioactive_decayhttp://en.wikipedia.org/wiki/Radioactive_decayhttp://en.wikipedia.org/wiki/Nitrogen_narcosishttp://en.wikipedia.org/wiki/Nitrogen_narcosishttp://en.wikipedia.org/wiki/Nitrogen_narcosishttp://en.wikipedia.org/wiki/Hydrogenhttp://en.wikipedia.org/wiki/Hydrogenhttp://en.wikipedia.org/wiki/Hydrogenhttp://en.wikipedia.org/wiki/Blimphttp://en.wikipedia.org/wiki/Blimphttp://en.wikipedia.org/wiki/Blimphttp://en.wikipedia.org/wiki/Gas_balloonhttp://en.wikipedia.org/wiki/Gas_balloonhttp://en.wikipedia.org/wiki/Gas_balloonhttp://en.wikipedia.org/wiki/Gas_balloonhttp://en.wikipedia.org/wiki/Blimphttp://en.wikipedia.org/wiki/Hydrogenhttp://en.wikipedia.org/wiki/Nitrogen_narcosishttp://en.wikipedia.org/wiki/Radioactive_decayhttp://en.wikipedia.org/wiki/Gas_separationhttp://en.wikipedia.org/wiki/Gas_separationhttp://en.wikipedia.org/wiki/Cryogenichttp://en.wikipedia.org/wiki/Natural_gashttp://en.wikipedia.org/wiki/Natural_gas_fieldshttp://en.wikipedia.org/wiki/Natural_gas_fieldshttp://en.wikipedia.org/wiki/Fractional_distillationhttp://en.wikipedia.org/wiki/Liquefaction_of_gaseshttp://en.wikipedia.org/wiki/Air_separationhttp://en.wikipedia.org/wiki/Airhttp://en.wikipedia.org/wiki/Boiling_pointhttp://en.wikipedia.org/wiki/Melting_pointhttp://en.wikipedia.org/wiki/Noble_gas_compoundhttp://en.wikipedia.org/wiki/Noble_gas_compoundhttp://en.wikipedia.org/wiki/Valence_electronhttp://en.wikipedia.org/wiki/Electron_shellhttp://en.wikipedia.org/wiki/Atomic_structurehttp://en.wikipedia.org/wiki/Noble_gas#cite_note-2http://en.wikipedia.org/wiki/Ununoctiumhttp://en.wikipedia.org/wiki/Noble_gas#cite_note-1http://en.wikipedia.org/wiki/Fleroviumhttp://en.wikipedia.org/wiki/Carbon_grouphttp://en.wikipedia.org/wiki/Carbon_grouphttp://en.wikipedia.org/wiki/Relativistic_quantum_chemistryhttp://en.wikipedia.org/wiki/Periodic_tablehttp://en.wikipedia.org/wiki/Radonhttp://en.wikipedia.org/wiki/Xenonhttp://en.wikipedia.org/wiki/Kryptonhttp://en.wikipedia.org/wiki/Argonhttp://en.wikipedia.org/wiki/Neonhttp://en.wikipedia.org/wiki/Heliumhttp://en.wikipedia.org/wiki/Monatomichttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Mineralhttp://en.wikipedia.org/wiki/Standard_conditions_for_temperature_and_pressurehttp://en.wikipedia.org/wiki/States_of_matterhttp://en.wikipedia.org/wiki/Group_(periodic_table)
  • 7/27/2019 colloids and it uses 2.docx

    17/18

    Early transition metal

    Early transition metals are does starting at the beginning of the transition metals (i.e. Sc)

    and going through about d5 which would be Mn. These metals are less electron rich ascompared to the so-called "late" transition metals and the chemistry of each is somewhat

    different and definitely unique. Hardness and softness of the each of these groups changes

    (see Hard Soft Acid Base Theory) as does the stable oxidation states and coordination

    numbers.

    Late transition metal

    A transition metal carbine complex is a organ metallic compound featuring a divalent organic

    ligand. The divalent organic ligand coordinated to the metal center is called a carbine. All

    transition metals form such complexes. Many methods for synthesizing them and reactions

    utilizing them have been reported. The term carbene ligand is formalism since many are not

    derived from carbenes and almost none exhibit the reactivity characteristic of carbenes.

    Described often as M=CR2, they represent a class of organic ligands intermediate between

    alkyls (-CR3) and carbynes (CR). They feature in many catalytic reactions in the petrochemical

    industry and are of increasing interest in fine chemicals.

    The characterization of (CO) 5Cr (COCH3 (Ph)) in the 1960's is often cited as the starting point

    of the area,[1] although carbenoid ligands had been previously implicated.

    Lanthanides & Actinides

    Thelanthanideandactinideseries make up the inner transition metals.They belong between groups 2 and 3 of the transition metals.

    The lanthanide series includes elements 58 to 71, which fill their 4f sublevel

    progressively. The actinides are elements 90 to 103 and fill their 5f sublevelprogressively.

    Actinide series are typical metals and have properties of both the d blockand the f block elements, but they are also radioactive. Lanthanides havedifferent chemistry from transition metals because their 4f orbitals areshielded from theatom's environment.

    https://www.boundless.com/chemistry/definition/lanthanide/https://www.boundless.com/chemistry/definition/lanthanide/https://www.boundless.com/chemistry/definition/lanthanide/https://www.boundless.com/chemistry/definition/actinide/https://www.boundless.com/chemistry/definition/actinide/https://www.boundless.com/chemistry/definition/actinide/https://www.boundless.com/chemistry/definition/atom/https://www.boundless.com/chemistry/definition/atom/https://www.boundless.com/chemistry/definition/atom/https://www.boundless.com/chemistry/definition/atom/https://www.boundless.com/chemistry/definition/actinide/https://www.boundless.com/chemistry/definition/lanthanide/
  • 7/27/2019 colloids and it uses 2.docx

    18/18

    TERMS

    lanthanide

    Any of the 14 rare earth elements from cerium (or from lanthanum) tolutetium in the periodic table. Because their outermost orbitals are empty,they have very similar chemistry. Below them are the actinides.

    lanthanide contraction

    The progressive decrease in the radii of atoms of the lanthanide elements asthe atomic increases; evident in various physical properties of the elementsand their compounds

    actinide

    Any of the 14 radioactive elements of the periodic table that are positionedunder the lanthanides, with which they share similar chemistry

    EXAMPLES

    Atomic bombs charged with plutonium (actinoid) were used in World WarII (Figure 1). Plutonium was a power source for Voyager spacecraftslaunched in 1977 and is also used in artificial heart pacemakers.

    Atomic Bomb Explosion

    Plutonium charge was used in the atomic bomb dropped on Nagasaki.

    https://www.boundless.com/chemistry/definition/lanthanide/https://www.boundless.com/chemistry/definition/lanthanide/https://www.boundless.com/chemistry/definition/lanthanide-contraction/https://www.boundless.com/chemistry/definition/lanthanide-contraction/https://www.boundless.com/chemistry/definition/actinide/https://www.boundless.com/chemistry/definition/actinide/https://www.boundless.com/chemistry/definition/actinide/https://www.boundless.com/chemistry/definition/lanthanide-contraction/https://www.boundless.com/chemistry/definition/lanthanide/