Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron...

34
Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL) G. Kuznetsov, A. Romanov (BINP Novosibirsk / FNAL) J. Smith (SLAC) U.S. LHC Accelerator Research Program Collaboration Meeting 14 26–28 April 2010 G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 1 / 34

Transcript of Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron...

Page 1: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Collimation with hollow electron beams

A. Drozhdin, V. Shiltsev, G. Stancari,D. Still, A. Valishev, L. Vorobiev (FNAL)

G. Kuznetsov, A. Romanov (BINP Novosibirsk / FNAL)J. Smith (SLAC)

U.S. LHC Accelerator Research ProgramCollaboration Meeting 14

26–28 April 2010

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 1 / 34

Page 2: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Motivation

LHC collimation system:graphite primaries at 6σ from core, secondaries at 7σ

No beam scrapers in LHC: intolerable material damage below 5σ

Great interest in investigating magnetized hollow electron beams ascollimators/scrapers

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 2 / 34

Page 3: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Concept of hollow electron beam collimator (HEBC)

Cylindrical, hollow, magnetically confined, (pulsed or dc) electron beamoverlapping with halo and leaving core unperturbed

Halo experiences nonlinear transverse kicks

Shiltsev, BEAM06, Yellow Report CERN-2007-002

Shiltsev et al., EPAC08

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 3 / 34

Page 4: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Hollow-beam collimation concept

electron beam can be placed close to core (∼ 3–4σ), no material damage

size of electron beam in overlap region rmain determined by ‘compressionratio’ of gun to main solenoid strength:

rmain = rgun

√Bgun

Bmain;

range of available beam sizes determined by transport efficiency, instabilitythresholds, and magnet technology

kicks are small and not random in space or time:

removal is gradual, no loss spikes due to beam jitter on hard-edge collimatorsresonant excitation tuned to betatron frequencies is possible

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 4 / 34

Page 5: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Transverse kicks for protons

In cylindrically symmetrical case,

θr =2 Ir L (1± βeβp)

r βe βp c2 (Bρ)p

(1

4πε0

)− : vp · ve > 0+ : vp · ve < 0

Example (TEL2, vp · ve > 0): Ir = 2.5 A, L = 2.0 m, βe = 0.19 (10 kV),r = 3.5 mm (5σ)

p energy (TeV) 0.150 0.980 7kicks (µrad):

hollow-beam max 2.4 0.36 0.051collimator rms (Tevatron) 110 17collimator rms (LHC) 4.5

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 5 / 34

Page 6: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Hollow-beam collimation concept

position controlled by magnetic correctors, no motors or bellows

no ion breakup

axial magnetic field ensures low impedance, stable beam; reducing the fieldallows greater range in radii, but may cause instability if residual electric fieldin hole is nonzero

abundance of theoretical modeling, technical designs, and operationalexperience on interaction of keV–MeV electrons with MeV–TeV(anti)protons

electron coolingTevatron electron lenses

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 6 / 34

Page 7: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Existing Tevatron electron lenses

TEL1 used for abort-gap clearing during normal operations

TEL2 used as TEL1 backup and for studies

Typical parametersPeak energy 10 keVPeak current 3 AMax gun field Bg 0.3 TMax main field Bm 6.5 TLength L 2 mRep. period 21 µsRise time <200 ns

Shiltsev et al., Phys. Rev. ST AB 11, 103501 (2008)

Shiltsev et al., New J. Phys. 10, 043042 (2008)

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 7 / 34

Page 8: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

TEL2 timing example

cathode current

collector current

pickup signal

revolution marker

bunch train

proton bunch

antiproton bunch

abort gap

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 8 / 34

Page 9: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Losses during store #7407

Beam intensityRing energy

Total losses show large fluctuationsAbort-gap losses are smooth (TEL1 clearing)

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 9 / 34

Page 10: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Hollow-beam collimation concept

hollow beams can be unstable due to space charge forces

alignment of electron beam is critical

cylindrically symmetric current distribution ensures zero electric field on axis;if not, mitigate by

segmented control electrodes near cathodecrossed-field (E× B) drift of guiding centers

large amplitude functions at collimator preferred, to translate transversekicks into large displacements

if proton beam is not round (βx 6= βy ), separate horizontal and verticalscraping is required

cost: ≈ 5 M$ (2 M$ material and supplies, 3 M$ salaries)

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 10 / 34

Page 11: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Modeling

kick maps ⇒in overlap region

analytical formideal case

2D from measured profilesPoisson solver

3D particle-in-cell Warp code(LBNL), effects of

TEL2 bendsprofile evolutionalignment

tracking softwarewith lattice and apertures

STRUCT

lifetrac

SixTrack

DMAD

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 11 / 34

Page 12: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Simulations with ideal current distribution

Studied halo lifetimes, impact parameter, resonant excitation:

1D model (V. Shiltsev, FERMILAB-CONF-07-69)

STRUCT model of Tevatron (A. Drozhdin)

lifetrac model of Tevatron and LHC (A. Valishev)

SixTrack model of LHC (Smith et al., PAC09, SLAC-PUB-13745)

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 12 / 34

Page 13: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Conclusions of exploratory studies

HEBC as ‘soft-edge’ scraper to complement/improve traditional collimationsystem

Fast cleaning (‘collimation’) would require much higher electron currents

HEBC may allow collimators to be retracted (probably not feasible in LHC)

resonant kicks are very effective

effects should be detectable in Tevatron

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 13 / 34

Page 14: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Design of 15-mm-diameter hollow gun

Convex tungsten dispenser cathode with BaO:CaO:Al2O3 impregnant

7.6-mm outer radius, 4.5-mm-radius bore

Electrode design based upon existing 0.6-in SEFT TEL2 gun

Calculations with SAM code(L. Vorobiev)

Mechanical design (G. Kuznetsov)

Cathode

(w/o bore) Assembled gun

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 14 / 34

Page 15: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Test bench at Fermilab

Built to develop TELs, now used to characterize electron guns and to studyplasma columns for space-charge compensation

High-perveance electronguns: ∼amps peak currentat 10 kV, pulse width ∼µs,average current <2.5 mA

Gun / main /collector solenoids(<0.4 T) withmagnetic correctorsand pickupelectrodes

Water-cooledcollector with0.2-mm pinhole forprofilemeasurements

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 15 / 34

Page 16: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Performance of hollow gun vs voltage and temperature

P = 4 µperv

50 100 200 500 1000 5000 20000

0.00

20.

010

0.05

00.

200

1.00

0

CATHODE VOLTAGE (V)

CO

LLE

CT

OR

CU

RR

EN

T (

A)

5.58 A (696 C)

5.79 A (741 C)

5.99 A (771 C)

6.2 A (810 C)6.43 A (832 C)

6.65 A (868 C)

6.93 A (918 C)

7.21 A (978 C)

7.45 A (1030 C)

7.75 A (1090 C) 7.92 A (1130 C)8.17 A (1150 C) 7.75 A (1150 C)

●●●●●●●●●

●●

●●●●●●●

●●●●●●

●●●●

●●●

●●●●

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 16 / 34

Page 17: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Profile measurements

Horizontal and vertical magnetic steerers deflect electron beamCurrent through 0.2-mm-diam. pinhole is measured vs steerer strength

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 17 / 34

Page 18: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Profile evolutionwith increasing

current and voltage

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 18 / 34

Page 19: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Hollow-beam instabilities

Profiles measured 2.8 m downstream of cathode

In previous plots, magnetic field kept constant at 0.3 T

If current density is not axially symmetric, neither are space-charge forces

Guiding-center drift velocities v ∝ E× B depend on r and φ

Electron beam behaves like incompressible, frictionless 2D fluid

Typical nonneutral plasma slipping-stream (‘diocotron’) instabilities arise,vortices appear

Kyhl and Webster, IRE Trans. Electron Dev. 3, 172 (1956)

Levy, Phys. Fluids 8, 1288 (1965)

Kapatenakos et al., Phys. Rev. Lett. 30, 1303 (1973)

Driscoll and Fine, Phys. Fluids B 2, 1359 (1990)

Perrung and Fajans, Phys. Fluids A 5, 493 (1993)

Current-density distribution evolves as the beam propagates

(evolution time) ∝ (current)

(magnetic field)× (voltage)

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 19 / 34

Page 20: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

CATHODE VOLTAGE (kV)

MAG

NETI

C FI

ELD

(T)

0 0.25 0.5 1 1.5 2 3 4 5 6 7.5 9

0.0

0.1

0.2

0.3

0.4

0.5

0 0.01 0.1 0.5 1 1.5 2 2.5

BEAM CURRENT (A)

0.0

0.1

0.2

0.3

0.4

0.5

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 20 / 34

Page 21: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Profile reproducibility

0.5 kV 2 kV 7.5 kVO

ct20

09Ja

n20

10

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 21 / 34

Page 22: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Profiles vs temperature

0.5 kV 7.5 kV

32W

(741

C)

66W

(109

0C

)

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 22 / 34

Page 23: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Warp calculation of 2D fields from measured profiles

(thanks to D. Grote, J.-L. Vay, M. Venturini (LBNL) for kind support)

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 23 / 34

Page 24: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Electric field at 2 kV, 330 mA

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 24 / 34

Page 25: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Electric fields at 0.5 kV, 44 mA

CALCULATED HOLLOW−BEAM FIELDfrom MEASURED PROFILE at 66W 0.5kV 3kG 44mA

TRANSVERSE POSITION / (σy = 0.71 mm)

ELE

CT

RIC

FIE

LD S

TR

EN

GT

H (

kV/m

)

−15 −10 −5 0 5 10 15

0.05

0.10

0.20

0.50

1.00

2.00

5.00

10.00

20.00Bg = 0.3 T

E(x,0) Bm=0.33 TE(0,y) Bm=0.33 TE(x,0) Bm=0.74 TE(0,y) Bm=0.74 TE(x,0) Bm=1.33 TE(0,y) Bm=1.33 T 2D WARP calculation

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 25 / 34

Page 26: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Electric fields at 2 kV, 330 mA

CALCULATED HOLLOW−BEAM FIELDfrom MEASURED PROFILE at 66W 2kV 3kG 330mA

TRANSVERSE POSITION / (σy = 0.71 mm)

ELE

CT

RIC

FIE

LD S

TR

EN

GT

H (

kV/m

)

−15 −10 −5 0 5 10 15

0.2

0.5

1.0

2.0

5.0

10.0

20.0

50.0Bg = 0.3 T

E(x,0) Bm=0.33 TE(0,y) Bm=0.33 TE(x,0) Bm=0.74 TE(0,y) Bm=0.74 TE(x,0) Bm=1.33 TE(0,y) Bm=1.33 T 2D WARP calculation

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 26 / 34

Page 27: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Electric fields at 7.5 kV, 2040 mA

CALCULATED HOLLOW−BEAM FIELDfrom MEASURED PROFILE at 66W 7.5kV 3kG 2040mA

TRANSVERSE POSITION / (σy = 0.71 mm)

ELE

CT

RIC

FIE

LD S

TR

EN

GT

H (

kV/m

)

−15 −10 −5 0 5 10 15

2

5

10

20

50

100

200Bg = 0.3 T

E(x,0) Bm=0.33 TE(0,y) Bm=0.33 TE(x,0) Bm=0.74 TE(0,y) Bm=0.74 TE(x,0) Bm=1.33 TE(0,y) Bm=1.33 T 2D WARP calculation

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 27 / 34

Page 28: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Electric fields at 9 kV, 2490 mA

CALCULATED HOLLOW−BEAM FIELDfrom MEASURED PROFILE at 66W 9kV 3kG 2490mA

TRANSVERSE POSITION / (σy = 0.71 mm)

ELE

CT

RIC

FIE

LD S

TR

EN

GT

H (

kV/m

)

−15 −10 −5 0 5 10 15

1

2

5

10

20

50

100

200 Bg = 0.3 T

E(x,0) Bm=0.33 TE(0,y) Bm=0.33 TE(x,0) Bm=0.74 TE(0,y) Bm=0.74 TE(x,0) Bm=1.33 TE(0,y) Bm=1.33 T 2D WARP calculation

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 28 / 34

Page 29: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Helical-beam studies in Recycler Ring

A. Shemyakin and A. Valishev, Beams-doc-3554-v1 (19 Feb 2010)

Can a helical electron beam approximate the effect of a hollow beam?

Need integer number of turns, short pitch compared to amplitude functions

Preliminary study with 8-GeV protons in electron cooler

Helical electron trajectory generated by upstream correctors

Indications of scraping: core has longer lifetime than halo

Very short lifetimes (not understood), work in progress

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 29 / 34

Page 30: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Planned Tevatron studies with hollow electron beams

Experimental goals

verify hollow-beam alignment procedures

evaluate effect on core lifetime

measure losses at collimators, absorbers and detectors vs HEBC parameters:position, angle, intensity, pulse timing, excitation pattern

assess improvement of loss spikes

Prefer 980 GeV over injection: stable orbits and emittances, collimationsystem in normal operating conditions (but effect is smaller)

Take advantage of important TEL2 improvements:

Stacked-transformer modulator (faster, complex waveforms)BPM system readout

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 30 / 34

Page 31: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Alignment experiments

Procedure for aligning present TEL2 Gaussian gun:

Align electrons with (anti)protons according to TEL2 BPMs

Scan horizontally and vertically

With nominal tunes, no increase in losses

By moving lattice tunes closer to resonance, losses depend onposition/angle, consistent with Gaussian lens tune shift and nonlinearity

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 31 / 34

Page 32: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Vertical scan of Gaussian beam on antiprotons

D0

loss

esfo

rb

un

chA

15

Vertical position (2 mm/div)

Center of loss curve coincides with BPM alignment to within 0.1 mm

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 32 / 34

Page 33: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Example of HEBC at TEL2 location in Tevatron

Lattice:

βx = 66 m, βy = 160 mDx = 1.18 m, Dy = −1.0 m

Protons:

ε = 20 µm (95%, normalized)∆p/p = 1.2× 10−4

xco = +2.77 mm, yco = −2.69 mmσx = 0.46 mm, σy = 0.71 mm

Antiprotons:

ε = 10 µm (95%, normalized)∆p/p = 1× 10−4

xco = −2.77 mm, yco = +2.69 mmσx = 0.32 mm, σy = 0.50 mm

Electrons:

I = 2.5 ABg = 0.3 T, Bm = 0.74 Tr1 = 4.5 mm, r2 = 7.62 mm at gunrmin = 2.9 mm = 4σp

y , rmax = 4.9 mm in main solenoid

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 33 / 34

Page 34: Collimation with hollow electron beams - INDICO-FNAL (Indico) · Collimation with hollow electron beams A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL)

Next steps

Modeling:

performance vs lattice parameterseffect of misalignments, field-line ripple, bends3D kick maps with bends and profile evolution

Test bench:

time stability of current density within each pulsescaling of hollow beam profiles with I , V , Bdesign and test 25-mm cathode (∼7 A) with smoother profile

Recycler Ring:

Continue measurements with helical beam in electron cooler?

Tevatron:Gaussian gun currently installed in TEL2

study of nonlinear head-on beam-beam compensation:bunch-by-bunch lifetimes, tunes, tune spreads

install 15-mm hollow gun in TEL2 (July shutdown)start parasitical and dedicated studies on collimation

Thank you for your attention

G. Stancari (Fermilab) Hollow beam collimation LARP CM14 : 26–28 Apr 2010 34 / 34