Collective diffusion of the interacting surface gas

51
Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

description

Collective diffusion of the interacting surface gas. M agdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences. Random walk. Diffusion coefficient D. Collective diffusion. + mass conservation. local density. Equilibrium distribution. c – microstate. Local density. - PowerPoint PPT Presentation

Transcript of Collective diffusion of the interacting surface gas

Collective diffusion of the interacting surface gas

Magdalena Załuska-Kotur

Institute of Physics,

Polish Academy of Sciences

Random walk

DtR 42 Diffusion coefficient D

),(),( txPDtxPdt

d

rrDt

)(

DJ

+ mass conservation

Collective diffusion

local density

The model – noninteracting lattice gas

''' )],(),'([),(

ccccc tcPWtcPWtcP

t

Equilibrium distribution

c – microstate

Local density

k

knVcH )(

1)( cPeq

c

xi tcPnn ),(

1,0kn

ijij

jjii nnWnnWn

ti

)1()1(

ijjii nWnzWn

tsingle particle result

Noninteracting system

)()()(2)( keeWkWkt

ikaika

)()( xPekx

ixka

Do=Wa2for small k

20 Dk

Single particle diffusion – noninteracting gas.

Interacting particles

Interacting particles –2D system with repulsive interactions

J’=3/4J

Square lattice

Questions

How diffusion depends on interactions?

How minima of the density-diffusion plot are related to the phase diagram?

Where are phase transition points?

Are there some other characteristic points?

Example - hexagonal lattice - repulsion

kT=0.25J

kT=0.5J

kT=J

Attraction

J<0 T=0.89Tc

Tc=1.8|J|/k

J’=2J

J’=JJ’=0

J=0

J’=J

J’=2JJ>0

Repulsion

Experimental results - Pb/Cu(100)

Simulation methods

Harmonic density perturbation

Step profile decay

kT=0.25JkT=0.5J

kT=J

Profile evolution

Boltzmann –Matano method

Definition of transition rates

ks

jg

nJVV

nJVV

''

i

iijiij

iji nVnnJnH })({

The model

),(),'( '' tcPWtcPW eqcceqcc

k

kkl

lk nVnnJcH )(

''' )],(),'([),(

ccccc tcPWtcPWtcP

t

Detailed balance condition

)()( cHeq ecP Equilibrium

distribution

c – microstate

Possible approaches

0 11

2)()0(

)(2

1 N

ii

N

iieq tvvdt

ND

ijijij

jjijii nnWnnWn

ti

)1()1(

Hierarchy of equations

),(

kjijiji nnnnnfnnt

- QCA

X

Analysis of microscopic equations.

c

xx tcPn ),(Local density

],...,,[],[ 11 NmmXXc m

]5,3,1,[X

''' )],(),'([),(

ccccc tcPWtcPWtcP

t

L - lattice sites + periodic boundary conditions

X),( tXPm

Fourier transformation of master equation.

'

'' ),()()(m

mmmm tkPkMkP

),(),(1

tXPetkPL

x

ikxmm

ikacc ek )('F when reference particle jumps

=1 otherwise

)1()()( ''''

''' mmmmmm ccccc

cc WkWkM F

2)1(000

)1(400

0

004)1(

00)1(2

)(ˆ

ika

ika

ika

ika

eW

eWW

W

We

eW

kM

For N=2

Eigenvalue of matrix M

Approximation:

Eigenvalue

2)( Dkk dLN

L

/

0k

Limit

1)exp( ikaL

Approximate eigenvector for interacting gas

)(cHeq eP one interaction constant J

x - number of bonds xJxeq peP

Definition of transition rates in 1D system

Possible transitions

( )

Diffusion coefficient of 1D system

Grand canonical regime

Low temperature approximation

Diffusion coefficient - repulsive interactions

p=2,10,100

Diffusion coefficient - repulsive - QCA

p=2,10,100

Activation energy –repulsive interactions

AEeD )()(

VeWaD 20

||

)(||

2

)()0()( J

VE

Tk

J A

BeWaD

D

Diffusion coefficient - attractive interactions

p=0.5,0.3,0.1

Diffusion coefficient - attractive QCA

p=0.5,0.3,0.1

Activation energy – attractive interactions

AEeD )()(

VeWaD 2)0(

||

)(||

2

)()0()( J

VE

Tk

J A

BeWaD

D

Eigenvector for random state

1)( iN Initial configuration

Repulsive far from equilibrium case

θ

θ

ν

VWW

JEA

)34)((

)34(

p=100

2x2 ordering –definition of transition rates

J

J’

M. A. Załuska-Kotur Z.W.Gortel – to be published

Equilibrium probability

strong repulsion

Diagonal matrix

Components of eigenvector

* *

Primary configurations:

Secondary configurations (average of neighbouring primary ones):

Result

Upper line: Lower line:

J’=3/4J

Ordered phase

Other parameters – kT/J=0.3

Other parameters – kT/J’=0.4

Other parameters – J’=0

New approach to the collective diffusion problem, based on many-body function description – analytic theory.

Exact solution for noninteracting system.

Collective diffusion in 1D system with nearest neighbor attractive and repulsive interactions.

Diffusion coefficient in 2D lattice gas of 2X2 ordered phase with repulsive forces.

Agrement with numerical results

Numerical approaches: step density profile evolution and harmonic density perturbation decay methods

Summary

Possible applications

Analysis of

Far from equlibrium systems.

More complex interactions – long range

Surfaces with steps

Phase transitions

J=0

J’=2J

J=J’

J’=2J

Jak dyfuzja zależy od oddziaływań?

x

i

j

)]},()([exp{),( 0 jiEiEjiW barinit

i

iijiij

iji nVnnJnH })({

Gaz cząstek na dwuwymiarowej sieci

Einit,(i) - lokalna energia jednocząstkowa

Ebar (ij) - energia cząstki w punkcie siodłowym

Szybkość przeskoków jednocząstkowych

)/(1 TkB

Analysis of microscopic equations.

c

xx tcPn ),(Local density

''' )],(),'([),(

ccccc tcPWtcPWtcP

t

1D -- z=2

ii

ika nekn )(

Do=Wa2for small k

DtR 42 20 Dk

)()()(2)( kneeWkWnknt

ikaika

Calculation

ssNxeq CpppP

= n1 –n2

for s clusters

Y:

Łukasz Badowski, M. A. Załuska-Kotur – to be published

Do=Wa2

Site blocking – noninteracting lattice gas

Eigenvalue -

WeW

eWWW

W

WeW

eWW

kM

ika

ika

ika

ika

2)1(000

)1(400

0

004)1(

00)1(2

)(ˆ

For N=2