Collection_Abaqus.pdf

download Collection_Abaqus.pdf

of 176

Transcript of Collection_Abaqus.pdf

  • 8/10/2019 Collection_Abaqus.pdf

    1/1762012 Hormoz Zareh & Jenna Bell 1 Portland State University, Mechanical Engineering

    Abaqus/CAE (ver. 6.11)Shell Tutor ial

    Problem Description

    The aluminum arch (E = 70 GPa, = 0.3) shown below is completely clamped along the flat faces. The arch

    supports a pressure of 100 MPa.

    In this example, we also practice how to mesh a portion of geometry and how to avoid modeling

    unnecessary segments!

  • 8/10/2019 Collection_Abaqus.pdf

    2/1762012 Hormoz Zareh & Jenna Bell 2 Portland State University, Mechanical Engineering

    Analysis Steps1. Start Abaqus and choose to create a new model database

    2. In the model tree double click on the Parts node (or right click on parts and select Create)

    3. In the Create Part dialog box (shown above) name the part and

    a. Select 3D

    b. Select Deformable

    c. Select Shell

    d. Select Extrusion

    e.

    Set approximate size = 100f. Click Continue

    4. Create the geometry shown below (not discussed here). Units shown are in mm.

  • 8/10/2019 Collection_Abaqus.pdf

    3/1762012 Hormoz Zareh & Jenna Bell 3 Portland State University, Mechanical Engineering

    a.

    Click Done

    b.

    Set Depth = 10

    c. Click OK

    5. Double click on the Materials node in the model tree

    a.

    Name the new material and give it a description

    b. Click on the Mechanical tabElasticityElastic

    c. Define Youngs Modulus and the Poissons Ratio (use SI (mm) units)

    i. WARNING: There are no predefined system of units within Abaqus, so the user is

    responsible for ensuring that the correct values are specified

    ii. See the table of consistent units below

    Quantity SI SI (mm) US Unit (ft) US Unit (inch)

    Length m mm ft in

    Force N N lbf lbf

    Mass kg tonne (103kg) slug lbf s

    2/in

    Time s s s s

    Stress Pa (N/m2) MPa (N/mm

    2) lbf/ft

    2 psi (lbf/in

    2)

    Energy J mJ (103

    J) ft lbf in lbfDensity kg/m

    3 tonne/mm

    3 slug/ft

    3 lbf s

    2/in

    4

    d. Click OK

  • 8/10/2019 Collection_Abaqus.pdf

    4/1762012 Hormoz Zareh & Jenna Bell 4 Portland State University, Mechanical Engineering

    6.

    Double click on the Sections node in the model treea. Name the section shell_properties and select Shell for the category and Homogeneous for the

    type

    b. Click Continue

    c. Select the material created above (aluminum) and set the thickness to 1 (mm).

    d. Adjust the thickness integration points if necessary

    i. For Simpson integration the number of points must be odd and between 3 and 15

    ii. For Gauss integration the number of points must be between 2 and 15

    e. Click OK

    7. Expand the Parts node in the model tree, expand the node of the part just created, and double click on

    Section Assignments

    a. Select the entire geometry in the viewport and press Done in the prompt area

    b. Select the section created above (shell_properties).

    c. Specify shell offset if necessary. For this example use the default of middle surface.

    d. Click OK

  • 8/10/2019 Collection_Abaqus.pdf

    5/1762012 Hormoz Zareh & Jenna Bell 5 Portland State University, Mechanical Engineering

    8. In the toolbox area click on the Partition Face: Sketch icon

    a.

    Select all faces and click Done

    b.

    Select one of the flat faces as the sketch plane

    c. Specify Through All for the projection distance. Note the arrow should encompass the entire part.

    d. Select Flip if the arrow showing the project direction is incorrect, and/or press OK

    e. Select one of the edges on the end of the part as the vertical sketch direction

    f.

    Create a sketch that will divide the part into quarters. For example: draw a vertical line, select the

    equal distance constraint, pick the node at the upper right, pick the node at the upper left, then pick

    the drawn vertical line. The constraint will move the line to the midpoint.

    g. Select Done

  • 8/10/2019 Collection_Abaqus.pdf

    6/1762012 Hormoz Zareh & Jenna Bell 6 Portland State University, Mechanical Engineering

    9.Expand the Assembly node in the model tree and then double click on Instances

    a.

    Select Dependent for the instance type

    b.

    Click OK

    10.Save the model

    a.

    This model will be used as a starting place for further tutorials

  • 8/10/2019 Collection_Abaqus.pdf

    7/1762012 Hormoz Zareh & Jenna Bell 7 Portland State University, Mechanical Engineering

    11.Double click on the Steps node in the model tree

    a.

    Name the step, set the procedure to General, and select Static, General

    b.

    Give the step a description

    12.Expand the History Output Requests node in the model tree, and then right click on H-Output-1 (H-Output-1

    was automatically generated when creating the step) and select Delete

  • 8/10/2019 Collection_Abaqus.pdf

    8/1762012 Hormoz Zareh & Jenna Bell 8 Portland State University, Mechanical Engineering

    13.Expand the Field Output Requests node in the model tree, and then double click on F-Output-1 (F-Output-1

    was automatically generated when creating the step)

    a.

    Uncheck the variables Strains and Contact

    14.Because the part is symmetrical and the flat surfaces are fully restrained only a quarter of the arch needs to

    be modeled.

    15.

    Because the flat surfaces are assumed to be fully restrained we do not need to include them, and can insteadfix just the edge.

    16.Double click on the BCs node in the model tree

    a. Name the boundary conditioned Fixed and select Symmetry/Antisymmetry/Encastre for the type

  • 8/10/2019 Collection_Abaqus.pdf

    9/1762012 Hormoz Zareh & Jenna Bell 9 Portland State University, Mechanical Engineering

    b.

    Select the edge shown below and click Done

    c. Select ENCASTRE for the boundary condition and click OK

    Note:Restraining the entire surface will be inefficient, requiring

    unnecessary meshing of the portion of the geometry which will haveno influence on the stiffness properties, and thus the result of

    simulation. Therefore, the restraint is applied to the shown edge to

    reduce the problem size. Noting this, the geometry creation couldhave been simplified right from the start!

    17.

    Double click on the BCs node in the model tree

    a.

    Name the boundary conditioned Zsymm and select

    Symmetry/Antisymmetry/Encastre for the type

    b. Select the edge shown below and click Done

  • 8/10/2019 Collection_Abaqus.pdf

    10/1762012 Hormoz Zareh & Jenna Bell 10 Portland State University, Mechanical Engineering

    c.

    Select ZSYMM for the boundary condition

    d. Repeat for the other edge and select Xsymm to apply x-dir symmetry condition.

    18.Double click on the Loads node in the model tree

    a. Name the load Pressure and select Pressure as the type

  • 8/10/2019 Collection_Abaqus.pdf

    11/1762012 Hormoz Zareh & Jenna Bell 11 Portland State University, Mechanical Engineering

    b.

    Select the quarter of the arch surface with the boundary conditions applied to it

    c.

    Select the color corresponding to the top surface

    d. For the magnitude enter 600

  • 8/10/2019 Collection_Abaqus.pdf

    12/1762012 Hormoz Zareh & Jenna Bell 12 Portland State University, Mechanical Engineering

    19. In the model tree double click on Mesh for the Arch part, and in the toolbox area click on the Assign

    Element Type icon

    a.

    Select the portion of the geometry associated with the boundary conditions and load

    b. Select Standard for element type

    c. Select Linear for geometric order

    d. Select Shell for family

    e.

    Note that the name of the element (S4R) and its description are given below the element controlsf. Select OK

    20. In the toolbox area click on the Assign Mesh Controls icon

    a. Select the portion of the geometry

    associated with the boundary

    conditions and load

    b. Change the element shape to Quad

    21. In the toolbox area click on the Seed Edges icon

    a.

    Select the shorter edges of the portion of the geometry associated with the

    boundary conditions and load

    i. Select By Number method and Specify 5 elements

  • 8/10/2019 Collection_Abaqus.pdf

    13/1762012 Hormoz Zareh & Jenna Bell 13 Portland State University, Mechanical Engineering

    b.Repeat step a. for the longer curved edges of the portion of the geometry associated with the

    boundary conditions and load

    ii.

    Specify 10 elements

    c. Select Done

    22. In the toolbox area click on the Mesh Region icon

    d. Select the portion of the geometry associated with the boundary conditions and load

    e. Select Done

  • 8/10/2019 Collection_Abaqus.pdf

    14/1762012 Hormoz Zareh & Jenna Bell 14 Portland State University, Mechanical Engineering

    23. In the model tree double click on the Job node

    a.

    Name the job arch_linear_static

    b.

    Give the job a description

    24. In the model tree right click on the job just created (arch_linear_static) and select Submit

    f. Ignore the message about unmeshed portions of the geometry, click yes to continue.

    g. While Abaqus is solving the problem right click on the job submitted (arch_linear_static), and select

    Monitor

    h. In the Monitor window check that there are no errors or warnings

    iii. If there are errors, investigate the cause(s) before resolving

    iv.

    If there are warnings, determine if the warnings are relevant, some warnings can be safely

    ignored

  • 8/10/2019 Collection_Abaqus.pdf

    15/176

    2012 Hormoz Zar

    25. In the m

    Result

    26.

    In the m

    a.

    b.

    eh & Jenna Bell

    odel tree rig

    enu bar clic

    Uncheck the

    The location

    Annotations

    ht click on th

    on Viewpor

    Show comp

    of viewport

    Options

    15

    e submitted

    Viewport

    ass option

    items can be

    nd successf

    nnotations

    specified on

    lly complete

    Options

    the corresp

    ortland State Uni

    d job (arch_l

    nding tab in

    versity, Mechanic

    inear_static),

    the Viewpor

    al Engineering

    and select

    t

  • 8/10/2019 Collection_Abaqus.pdf

    16/1762012 Hormoz Zareh & Jenna Bell 16 Portland State University, Mechanical Engineering

    27.Display the deformed contour of the (Von) Mises stress overlaid with the undeformed geometry

    a.

    In the toolbox area click on the following icons

    i.

    Plot Contours on Deformed Shape

    ii. Allow Multiple Plot States

    iii. Plot Undeformed Shape

    28.

    In the toolbox area click on the Common Plot

    Options icon

    a. Set the Deformation Scale Factor to 10

    b.

    Click OK

  • 8/10/2019 Collection_Abaqus.pdf

    17/1762012 Hormoz Zareh & Jenna Bell 17 Portland State University, Mechanical Engineering

    29.To determine the stress values, click on the probe values icon

    a.

    Set the probe to Nodes

    b.

    In the viewport mouse over the element of interest

    c. Note that Abaqus reports stress values from the integration points, which may differ slightly from the

    values determined by projecting values from surrounding integration points to the nodes

    i. The minimum and maximum stress values contained in the legend are from the stresses

    projected to the nodesd. Click on an element to store it in the Selected Probe Values portion of the dialogue box

    30.The field output tool bar can be used to change the output displayed

    a.

    The middle drop down tab selects the field output of interest.

    b. The right drop down is used to select the variant or component.

  • 8/10/2019 Collection_Abaqus.pdf

    18/1762011 Hormoz Zareh 1 Portland State University, Mechanical Engineering

    Abaqus/CAE (ver. 6.10) Material Nonlinearity Tutorial

    Problem Description

    A rectangular steel cantilevered beam has a downward load applied to the one end. The load is expected to

    produce plastic deformation. An experimentally determined stress strain curve was supplied for the steelmaterial. We will investigate the magnitude and depth of plastic strain.

  • 8/10/2019 Collection_Abaqus.pdf

    19/1762011 Hormoz Zareh 2 Portland State University, Mechanical Engineering

    Analysis Steps1. Start Abaqus and choose to create a new model database

    2. In the model tree double click on the Parts node (or right click on parts and select Create)

    3. In the Create Part dialog box (shown above) name the part and

    a.

    Select 2D Planar

    b. Select Deformable

    c. Select Shell

    d. Set approximate size = 200

    e. Click Continue

    4.

    Create the geometry shown below (not discussed here)

  • 8/10/2019 Collection_Abaqus.pdf

    20/1762011 Hormoz Zareh 3 Portland State University, Mechanical Engineering

    5.Double click on the Materials node in the model tree

    a. Name the new material and give it a description

    b. The stress strain data, shown below, was measured for the material used

    i. This data is based on the nominal (engineering) stress and strain

    Nominal Stress (Pa) Nominal Strain

    0.00E+00 0.00E+00

    2.00E+08 9.50E-04

    2.40E+08 2.50E-02

    2.80E+08 5.00E-02

    3.40E+08 1.00E-01

    3.80E+08 1.50E-01

    4.00E+08 2.00E-01

    ii. Abaqus expects the stress strain data to be entered as true stress and true plastic strain

    1. In addition the modulus of elasticity must correspond to the slope defined by the

    first point (the yield point)

    iii.

    To convert the nominal stress to true stress, use the following equation1. = ( 1 + )

    iv. To convert the nominal strain to true strain, use the following equation

    1. = (1 + )

    v. To calculate the modulus of elasticity, divide the first nonzero true stress by the first nonzero

    true strain

    vi. To convert the true strain to true plastic strain, use the following equation

    1. =

    0.00E+00

    1.00E+08

    2.00E+08

    3.00E+08

    4.00E+08

    -5.00E-16 2.50E-02 5.00E-02 7.50E-02 1.00E-01 1.25E-01 1.50E-01 1.75E-01 2.00E-01

    NominalSt

    ress(Pa)

    Nominal Strain

  • 8/10/2019 Collection_Abaqus.pdf

    21/1762011 Hormoz Zareh 4 Portland State University, Mechanical Engineering

    vii.The results should be

    True Stress (Pa) Plastic Strain Elastic Modulus (Pa)

    2.002E+08 0.000E+00 2.1083E+11

    2.460E+08 2.374E-02

    2.940E+08 4.784E-02

    3.740E+08 9.436E-02

    4.370E+08 1.388E-01

    4.800E+08 1.814E-01

    c. Click on the Mechanical tabElasticityElastic

    i. Enter the calculated modulus of elasticity, and Poisons ratio of 0.3

    d. Click on the Mechanical tabPlasticityPlastic

    i. Enter the calculated true stress and plastic strain

    1. Note that you can simply copy your calculated values from Excel (or similar) and

    paste them into Abaqus

    e. Click OK

    6. Double click on the Sections node in the model tree

    a. Name the section PlaneStressProperties and select Solid for the category and Homogeneous

    for the type

    b. Click Continue

    c. Select the material created above (Steel) and set the thickness to 5.

    d. Click OK

  • 8/10/2019 Collection_Abaqus.pdf

    22/1762011 Hormoz Zareh 5 Portland State University, Mechanical Engineering

    7. Expand the Parts node in the model tree, expand the node of the part just created, and double click on

    Section Assignments

    a.

    Select the entire geometry in the viewport and press Done in the prompt area

    b.

    Select the section created above (PlaneStressProperties)

    c. Verify From section is selected under Thickness

    d. Click OK

    8. Expand the Assembly node in the model tree and then double click on Instances

    a. Select Dependent for the instance type

    b. Click OK

  • 8/10/2019 Collection_Abaqus.pdf

    23/1762011 Hormoz Zareh 6 Portland State University, Mechanical Engineering

    9. Double click on the Steps node in the model tree

    a.

    Name the step, set the procedure to General, and select Static, General

    b. On the Basic tab, give the step a description and change the time period to 2

    i. For this analysis neglect the effects of geometric nonlinearities (Nlgeom = Off)

    c. On the Incrementation tab,

    i.

    Set the initial increment size to 0.05

    ii. Set the maximum increment size to 0.2

  • 8/10/2019 Collection_Abaqus.pdf

    24/1762011 Hormoz Zareh 7 Portland State University, Mechanical Engineering

    d. Click OK

    10.Double click on the BCs node in the model tree

    a. Name the boundary conditioned Fixed and select Symmetry/Antisymmetry/Encastre for the type

    b.

    Select the left edge and click Done

    c. Select ENCASTRE for the boundary condition and click OK

    11.Double click on the Amplitudes node in the model tree

    a.

    Name the amplitude Triangular Loading and select Tabular

    b. Enter the data points shown below

  • 8/10/2019 Collection_Abaqus.pdf

    25/1762011 Hormoz Zareh 8 Portland State University, Mechanical Engineering

    i.Abaqus multiplies the load by the amplitude definition, therefore 0 is no load and 1 is the full

    load

    12.Double click on the Loads node in the model tree

    a. Name the load and select Surface traction as the type

    b.

    Select the right edge

  • 8/10/2019 Collection_Abaqus.pdf

    26/1762011 Hormoz Zareh 9 Portland State University, Mechanical Engineering

    c. Under Direction, click edit and select the upper-right corner as the first point, and the lower-right

    corner as the second point

    d. For the magnitude, enter 5e6

    e. For the amplitude, select the amplitude created above (Triangular loading)

  • 8/10/2019 Collection_Abaqus.pdf

    27/1762011 Hormoz Zareh 10 Portland State University, Mechanical Engineering

    13. In the model tree double click on Mesh for the beam part, and in the toolbox area click on the Assign

    Element Type icon

    a.

    Select the entire geometry

    b. Select Standard for element type

    c. Select Quadratic for geometric order

    d. Select Plane stress for family

    e.

    Note that the name of the element (S4R) and its description are given below the element controlsf. Select OK

    14.

    In the toolbox area click on the Assign Mesh Controls icon

    a. Select the portion of the geometry associated with the boundary conditions and load

    b. Change the element shape to Quad

    c. Set the technique to Structured

  • 8/10/2019 Collection_Abaqus.pdf

    28/1762011 Hormoz Zareh 11 Portland State University, Mechanical Engineering

    15. In the toolbox area click on the Seed Edges icon

    a. Select the left and right edges, click Done

    b.

    Select By number

    c. Set Bias to None

    d. Under Sizing Controls enter 8 elements, Click OK

    16. In the toolbox area ensure the Seed Edges icon is still selected

    a.

    Select the top and bottom edges

    b. Set Method to By number and Bias to Single

    c. Set the number of elements to 50

    d. Set the bias ratio to 2

  • 8/10/2019 Collection_Abaqus.pdf

    29/1762011 Hormoz Zareh 12 Portland State University, Mechanical Engineering

    e. The bias arrows point towards the direction of the smaller elements, so in this case they should point

    to the left. If they dont, click the Select button located to the right of Flip Bias

    f. Select the top and bottom edges and select Done

    g.

    The arrows should now point to the left

    h. Click the OK button

    17. In the toolbox area click on the Mesh Part icon

    18. In the model tree double click on the Job node

  • 8/10/2019 Collection_Abaqus.pdf

    30/1762011 Hormoz Zareh 13 Portland State University, Mechanical Engineering

    a. Name the job plastic_beam

    b.

    Give the job a description

    19. In the model tree right click on the job just created and select Submit

    a. Ignore the message about unmeshed portions of the geometry

    b. While Abaqus is solving the problem right click on the job submitted, and select Monitor

    c.

    d. In the Monitor window check that there are no errors or warnings

    i.

    If there are errors, investigate the cause(s) before resolvingii. If there are warnings, determine if the warnings are relevant, some warnings can be safely

    ignored

    iii. In the far right column, note how Abaqus adjusted the increment

  • 8/10/2019 Collection_Abaqus.pdf

    31/1762011 Hormoz Zareh 14 Portland State University, Mechanical Engineering

    20. In the model tree right click on the submitted and successfully completed job, and select Results

    21. In the menu bar click on ViewportViewport Annotations Options

    a. Uncheck the Show compass option

    b. The locations of viewport items can be specified on the corresponding tab in the Viewport

    Annotations Options

  • 8/10/2019 Collection_Abaqus.pdf

    32/1762011 Hormoz Zareh 15 Portland State University, Mechanical Engineering

    22.

    Display the deformed contour of the (Von) Mises stress

    a. In the toolbox area click on the following icons

    i. Plot Contours on Deformed Shape

    23. In the toolbox area click on the Common Plot Options icon

    a.

    Set the Deformation Scale Factor to 1b. Click OK

    24.Click on the arrows on the context bar to change the time step being displayed

    a.

    Click on the three squares to bring up the frame selector slider bar

  • 8/10/2019 Collection_Abaqus.pdf

    33/1762011 Hormoz Zareh 16 Portland State University, Mechanical Engineering

    25.To change the output being displayed, in the menu bar click on ResultsField Output

    a.

    Select one of the plastic strain related outputs (PE or PEEQ)

    b. Click OK

    Alternatively, you can select the output variable from the corresponding toolbar (shown below).

    Hint: If you dont see the toolbar, go to viewToolbars and activate the Field output to display the

    toolbar (a checkmark will appear next to it).

    Note that PE displays individual plastic strain (similar to principal strain) components, while PEEQ variable

    provides the equivalent plastic strain value (similar to vonMises equivalent stress).

  • 8/10/2019 Collection_Abaqus.pdf

    34/176

    Spring 2011 01/21/11

    ABAQUS Tutorial

    3D Modeling

    This exercise intends to demonstrate the steps you would follow in creating and analyzing a

    simple solid model using ABAQUS CAE.

    Introduction

    A solid undergoes thermal expansion due to the application of heat along with deformation due to

    applied load.

    Model Definition

    Consider a thin aluminum cylinder of length 1 m and inner and outer radii 0.2 m & 0.21 m respectively.

    The cylinder is kept fixed at one end and at the other end a tensile load of 200 kPa is applied. The fixed

    end of the cylinder is at 273.15 K (the ambient temperature) and the free end at 274.15 K (all other sides

    are insulated). The cylinder expands due to the heat flow.

    The various functions within ABAQUS are organized into modules and we are going to use these

    modules to define the steps in our procedure.

    1. >module load abaqus/6.9-2

    2. >abaqus cae

    3. Once you start ABAQUS CAE select Create Model Databaseto create a new model.

    4. The default module that opens up is the Part Module.

  • 8/10/2019 Collection_Abaqus.pdf

    35/176

    Part Module:

    This module allows you to create the geometry required for the problem. To create a 3-D

    geometry you first create a 2-D profile and then manipulate it to obtain the solid geometry.

    1. From the Part Toolbox on the left of the viewport select Create Part.

    2. You can name the part as cylinderor anything else you like. We are going to create a

    deformable solidshape in the 3-Dmodeling space through extrusionso we do not

    change the default selections.

    3. Enter 1 as the approximate size and clickContinue.

  • 8/10/2019 Collection_Abaqus.pdf

    36/176

    4. Click Create Circle Center and Perimeteron the drawing toolbox and enter 0, 0 as the

    center point in field below the viewport and press Enter. Enter the perimeter point as

    0.21, 0 and press Enterto complete the circle. Similarly make another circle with the

    same center and the perimeter point as 0.2, 0. Press Escto exit the circle definition and

    then press Done.

    5. Enter the extrusion depth as 1 and press OK.

    6. Click Auto-Fit Viewin the toolbar above to zoom out and view all the points.

  • 8/10/2019 Collection_Abaqus.pdf

    37/176

    This finishes our work in the Partmodule. SelectModule: Property from the toolbar above the

    viewport.

    Property Module:

    In this module you define the material properties for your analysis and assign those properties

    to the available parts.

    1. Select Create Material from the Property Toolbox.

    2. Enter material name as Aluminum. Click on the General tab and select Densityfrom the

    drop-down menu. Type in the mass density as 2700. Click on the Mechanicaltab and

    select Elasticity>Elasticfrom the drop-down menu. Enter the Youngs Modulus as 70E9

    and the Poissons Ratio as 0.33. Click on the Mechanicaltab and select Expansion. Edit

    the reference temperature to 273.15 and the expansion coefficient to 23e-6. Click on

  • 8/10/2019 Collection_Abaqus.pdf

    38/176

    the Thermaltab and select Conductivity. Enter the thermal conductivity as 160. Click on

    the Thermaltab and select Specific Heat. Enter the value as 900 and click OK.

  • 8/10/2019 Collection_Abaqus.pdf

    39/176

    3. Select Create Section from the property toolbox. Name the section as you like. We need

    a solid homogeneoussection for our problem. Click Continue. Select the material as

    Aluminum and click OK.

    4. Click Assign Section on the property toolbox and select the part from the viewport. Click

    Donebelow. Select the section you had created and click OK.

  • 8/10/2019 Collection_Abaqus.pdf

    40/176

    Our work in the Property module is done and we select the Assembly Module from the toolbar

    above the viewport.

    Assembly Module:

    This module allows you to assemble together parts that you have created. Even if you have a

    single part you need to include it in your assembly.

    1. Select InstancePartfrom the Assembly Toolbox.

    2. Select the part you have created from the parts list and then select Instance type:

    Independent. Click OK.

  • 8/10/2019 Collection_Abaqus.pdf

    41/176

    Select Module: Stepfrom the toolbar above.

    Step Module:

    This module allows you to select the kind of analysis you want to perform on your model and

    define the parameters associated with it. You can also select which variables you want to

    included in the output files in this modules. You apply loads over a step. To apply a sequence of

    loads create several steps and define the loads for each of them.

    1.

    Select Create Stepfrom the Step Toolbox.

    2. Name the step as you want and select Coupled temp-displacementas the procedure.

    Click Continue.

  • 8/10/2019 Collection_Abaqus.pdf

    42/176

    3. The edit step dialog box lets you choose the solution technique, the solver type and

    define the time stepping strategy.

    4. Under Basicchange the Response to Steady-stateand click OK.

    The Interaction Moduleallows you to set up interactions (contact, film), constraints,

    connectors, fasteners and wire feature between parts. Our problem does not involve any of

    these features but it will be a good idea to explore this module on your own at a later time.

    Select Module: Load fromthe toolbar above.

    Load Module:

    The Load Module is where you define the loads and boundary conditions for your model for a

    particular step (indicated in the toolbar above). You can even define loads and boundary

    conditions as fields like electric potential, acoustic pressure, etc.

    1. Select Create Loadfrom the Load Toolbox. Select SurfaceTraction and click Continue.

    Select the top face of the cylinder (z=1) (it gets highlighted in red) and click Done.

  • 8/10/2019 Collection_Abaqus.pdf

    43/176

    2. Change the Tractiontype to General. Click on the Edit tab under Directionin the dialog

    box. Enter the starting point of the direction vector as (0, 0, 0) and the end point as (0,0,

    1). Enter the Magnitudeas 2e5 and click OK.

    3. Select Create Boundary Conditionfrom the Load Toolbox. Select Symmetry /

    Antisymmetry / Encastreand click Continue. Select the bottom face (z=0) of the

    cylinder and click Done.Select Pinned(U1=0, U2=0, U3=0) and click OK.

  • 8/10/2019 Collection_Abaqus.pdf

    44/176

    4.

    Again select Create Boundary Conditionfrom the Load Toolbox. Switch Category to

    Otherand select Temperature and click Continue. Select the bottom face of the cylinder

    and press Done. Enter the magnitude as 273.15 and click OK. Similarly put the top face

    at 274.15.

  • 8/10/2019 Collection_Abaqus.pdf

    45/176

    Now that we have defined the loads and the boundary conditions we move on to mesh the

    geometry. SelectModule: Mesh from the toolbar above the viewport.

    Mesh Module:

    The mesh model controls how you mesh your modelthe type of element, their size etc.

    1.

    Select Seed Part Instance from the mesh toolbox. Enter the approximate global size as

    0.025.

  • 8/10/2019 Collection_Abaqus.pdf

    46/176

    2. Click on Mesh Part Instanceand then on Yesto mesh the model.

  • 8/10/2019 Collection_Abaqus.pdf

    47/176

    3.

    Select Assign Element Typefrom the mesh toolbox. Under Family select Coupled

    Temperature-Displacement and switch Geometric Orderto Quadratic. Click OK.

  • 8/10/2019 Collection_Abaqus.pdf

    48/176

    When finished select Module: Job from the toolbar above.

    Job Module:

    This module allows you to submit your model for analysis.

    1. Select Create Jobfrom the Job Toolbox. Name the job as you like. Select your model

    and click Continue.

    2. You can add a description to the job, allocate memory, allot multiple processors and

    select precision. Use the default values and click OK.

    3. Select the Job Managerfrom the toolbox and click on the Write Input tab.

  • 8/10/2019 Collection_Abaqus.pdf

    49/176

    4. If you are running the job for the first time it is advisable to run Data Checkto check the

    input file for errors. Click OK to overwrite the job files.

    5. Once the data check is completed Submit the job for analysis. Click OK to overwrite the

    job files. You can click Monitorto observe the progress of the solution process. You cansee the errors, warnings, data and message file.

  • 8/10/2019 Collection_Abaqus.pdf

    50/176

    6. Once the job is completed click on the Results tab on the job manager. This opens the

    VisualizationModulefor postprocessing.

    VisualizationModule:

    This model allows you to look at your model after deformation. You can also plot values of

    stress, displacement, reaction forces, etc. as contours on your model surface or as vectors

    or tensors.

    1. Select PlotDeformed Shape from the Visualization toolbox.

    2. Select PlotContours on Deformed Shape to plot stress contours on the model

    surface.

  • 8/10/2019 Collection_Abaqus.pdf

    51/176

    3. You can see the location of the maximum & minimum stresses by selecting Contour

    Options>Limits>Show Location.

  • 8/10/2019 Collection_Abaqus.pdf

    52/176

    4.

    Select Results>Field Output from the main menu. This opens a dialog box that

    allows you to select the variable you want to plot in the viewport.

    5. Select U (Spatial Displacement at nodes)>Magnitude>OKto plot the displacement

    contours on the model.

  • 8/10/2019 Collection_Abaqus.pdf

    53/176

    6. To plot displacement vectors click on Plot Symbols on Deformed Shape on the

    toolbox.

    7. You can now animate this plot by selecting Animate Harmonic.

    Mouse Gestures:

    Ctrl+Alt+Left Click (MB1): Rotate View

    Ctrl+Alt+Middle Click (MB2): Pan View

    Ctrl+Alt+Right Click (MB3): Magnify View

    Use Shift key to select multiple objects.

    Note on System of Units:

    ABAQUS has no built-in system of units. Specify all unit data in consistent units. Some commonsystems of consistent units:

    SI: m, N, kg, s, Pa, J, kg/m3

    SI (mm): mm, N, tonne (1000 kg), s, MPa, mJ, tonne/mm3

    US Unit (ft): ft, lbf, slug, s, lbf/ft2, ft lbf, slug/ft

    3

    Questions, comments? Contact: [email protected]

  • 8/10/2019 Collection_Abaqus.pdf

    54/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 1 Portland State University, Mechanical Engineering

    Abaqus/CAE Truss Tutorial (Revised January 21, 2009)

    ProblemDescription:

    Solve for displacements of the free node and the reaction forces of the truss structure shown in the

    figure. This is the sample problem from the lecture note example.Material is Steel with E = 210 GPa and =0.25.

    1000 mm2

    1250 mm2

    750 mm

    1 kN

  • 8/10/2019 Collection_Abaqus.pdf

    55/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 2 Portland State University, Mechanical Engineering

    AnalysisSteps1. StartAbaqusandchoosetocreateanewmodeldatabase

    2. InthemodeltreedoubleclickonthePartsnode(orrightclickonpartsandselectCreate)

    3. IntheCreatePartdialogbox(shownabove)namethepartand

    a.

    Select2D

    Planar

    b. SelectDeformable

    c.

    SelectWire

    d.

    Setapproximatesize=1

    e. ClickContinue

    4. Createthegeometryshownbelow(notdiscussedhere)

  • 8/10/2019 Collection_Abaqus.pdf

    56/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 3 Portland State University, Mechanical Engineering

    5.

    DoubleclickontheMaterialsnodeinthemodeltree

    a. Namethenewmaterialandgiveitadescription

    b. ClickontheMechanicaltabElasticityElastic

    c. DefineYoungsModulusandPoissonsRatio(usebaseSIunits)

    i. WARNING: TherearenopredefinedsystemofunitswithinAbaqus,sotheuseris

    responsible

    for

    ensuring

    that

    the

    correct

    values

    are

    specified

    d. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    57/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 4 Portland State University, Mechanical Engineering

    6.

    Doubleclick

    on

    the

    Sections

    node

    in

    the

    model

    tree

    a. NamethesectionHorizontalBarandselectBeamforboththecategoryandTrussforthe

    type

    b.

    ClickContinue

    c. Selectthematerialcreatedabove(Steel)

    d. Setcrosssectionalarea=0.001(baseSIunits,m2)

    e. ClickOK

    f. RepeatfortheAngledBar

    i. Crosssectionalarea=0.00125

  • 8/10/2019 Collection_Abaqus.pdf

    58/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 5 Portland State University, Mechanical Engineering

    7. ExpandthePartsnodeinthemodeltree,expandthenodeofthepartjustcreated,anddoubleclick

    onSectionAssignments

    a. Selectthehorizontalportionofthegeometryintheviewport

    b.

    ClickDone

    c.

    SelecttheHorizontalBarsectioncreatedabove

    d. ClickOK

    e. Repeatfortheangledportionofthegeoemetry

    8.

    ExpandtheAssemblynodeinthemodeltreeandthendoubleclickonInstances

    a. SelectDependentfortheinstancetype

    b. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    59/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 6 Portland State University, Mechanical Engineering

    9. DoubleclickontheStepsnodeinthemodeltree

    a. Namethestep,settheproceduretoGeneral,andselectStatic,General

    b. ClickContinue

    c.

    Givethestepadescription

    d.

    ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    60/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 7 Portland State University, Mechanical Engineering

    10.ExpandtheFieldOutputRequestsnodeinthemodeltree,andthendoubleclickonFOutput1(F

    Output1wasautomaticallygeneratedwhencreatingthestep)

    a. UncheckthevariablesStrainsandContact

    b.

    ClickOK

    11.

    Expandthe

    History

    Output

    Requests

    node

    in

    the

    model

    tree,

    and

    then

    right

    click

    on

    H

    Output

    1(H

    Output1wasautomaticallygeneratedwhencreatingthestep)andselectDelete

  • 8/10/2019 Collection_Abaqus.pdf

    61/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 8 Portland State University, Mechanical Engineering

    12.DoubleclickontheBCsnodeinthemodeltree

    a. NametheboundaryconditionedPinnedandselectDisplacement/Rotationforthetype

    b. ClickContinue

    c.

    Selecttheendpointsontheleft(shiftselect)andpressDoneinthepromptarea

    d.

    ChecktheU1andU2displacementsandsetthemto0

    e. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    62/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 9 Portland State University, Mechanical Engineering

    13.DoubleclickontheLoadsnodeinthemodeltree

    a. NametheloadPointLoadandselectConcentratedforceasthetype

    b. ClickContinue

    c.

    SelectthevertexontherightandpressDoneinthepromptarea

    d.

    SpecifyCF2 =1000

    e. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    63/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 10 Portland State University, Mechanical Engineering

    14. InthemodeltreedoubleclickonMeshfortheTrusspart,andinthetoolboxareaclickonthe

    AssignElementTypeicon

    a. SelectStandardforelementtype

    b.

    SelectLinearforgeometricorder

    c.

    SelectTrussforfamily

    d. Notethatthenameoftheelement(B21)anditsdescriptionaregivenbelowtheelement

    controls

    e. ClickOK

    15. InthetoolboxareaclickontheSeedEdge:ByNumbericon(holddownicontobringuptheother

    options)

    a. SelecttheentiregeometryandclickDoneinthepromptarea

  • 8/10/2019 Collection_Abaqus.pdf

    64/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 11 Portland State University, Mechanical Engineering

    b.

    Definethenumberofelementsalongtheedgesas1andclickEnterinthepromptregion,

    thenDoneinresponsetothenextprompt.

    c.

    16. InthetoolboxareaclickontheMeshParticon

    a.

    Click

    Yes

    in

    the

    prompt

    area

    17. InthemenubarselectViewPartDisplayOptions

    a. OntheMeshtabcheckShownodelabelsandShowelementlabels

    b.

    ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    65/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 12 Portland State University, Mechanical Engineering

    18. InthemodeltreedoubleclickontheJobnode

    a. NamethejobTruss

    b. ClickContinue

    c.

    Givethejobadescription

    d.

    ClickOK

    19. Inthemodeltreerightclickonthejobjustcreated(Truss)andselectSubmit

    a. WhileAbaqusissolvingtheproblemrightclickonthejobsubmitted(Truss),andselect

    Monitor

  • 8/10/2019 Collection_Abaqus.pdf

    66/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 13 Portland State University, Mechanical Engineering

    b. IntheMonitorwindowcheckthattherearenoerrorsorwarnings

    i. Ifthereareerrors,investigatethecause(s)beforeresolving

    ii. Iftherearewarnings,determineifthewarningsarerelevant,somewarningscanbe

    safelyignored

    20. Inthemodeltreerightclickonthesubmittedandsuccessfullycompletedjob(Truss),andselect

    Results

  • 8/10/2019 Collection_Abaqus.pdf

    67/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 14 Portland State University, Mechanical Engineering

    21. InthemenubarclickonViewportViewportAnnotationsOptions

    a. UnchecktheShowcompassoption

    b. ThelocationsofviewportitemscanbespecifiedonthecorrespondingtabintheViewport

    AnnotationsOptions

    c.

    ClickOK

    22.Displaythedeformedcontourofthe(Von)Misesstressoverlaidwiththeundeformedgeometry

    a. Inthetoolboxareaclickonthefollowingicons

    i.

    PlotContoursonDeformedShape

    ii. AllowMultiplePlotStates

    iii. PlotUndeformedShape

  • 8/10/2019 Collection_Abaqus.pdf

    68/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 15 Portland State University, Mechanical Engineering

    23. InthetoolboxareaclickontheCommonPlotOptionsicon

    a. NotethattheDeformationScaleFactorcanbesetontheBasictab

    b. OntheLabelstabcheckShowelementlabels,Shownodelabels,andShownode

    symbols

    c.

    ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    69/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 16 Portland State University, Mechanical Engineering

  • 8/10/2019 Collection_Abaqus.pdf

    70/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 17 Portland State University, Mechanical Engineering

    24.Todeterminethestressvalues,fromthemenubarclickToolsQuery ProbeValues, andclickOK.

    a. ChecktheboxeslabeledNodesandS,Mises

    b. Intheviewportmouseovertheelementofinterest

    c.

    NotethatAbaqusreportsstressvaluesfromtheintegrationpoints,whichmaydifferslightly

    fromthevaluesdeterminedbyprojectingvaluesfromthesurroundingintegrationpointsto

    thenodes

    i.

    Theminimum

    and

    maximum

    stress

    values

    contained

    in

    the

    legend

    are

    from

    the

    stressesprojectedtothenodes

    d.

    ClickonanelementtostoreitintheSelectedProbeValuesportionofthedialoguebox

    e.

    ClickCancel

    25.Tochangetheoutputbeingdisplayed,inthemenubarclickonResultsFieldOutput

    a.

    SelectSpatialdisplacementatnodes

    i.

    Component=U2

    b. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    71/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 18 Portland State University, Mechanical Engineering

    26.Tocreateatextfilecontainingthestresses,verticaldisplacements,andreactionforces(includingthe

    total),inthemenubarclickonReportFieldOutput

    a. Fortheoutputvariableselect(Von)Mises

    b. OntheSetuptabspecifythenameandthelocationforthetextfile

    c. UnchecktheColumntotalsoption

    d. ClickApply

  • 8/10/2019 Collection_Abaqus.pdf

    72/176

  • 8/10/2019 Collection_Abaqus.pdf

    73/176

    ME 455/555 Intro to Finite Element Analysis Winter 09 Abaqus/CAE truss tutorial

    2009 Hormoz Zareh & Jayson Martinez 20 Portland State University, Mechanical Engineering

    27.Openthe.rptfilewithanytexteditor

    a. Onethingtocheckisthatthetotaldownwardreactionforceisequaltotheappliedload

    (1,000N)

  • 8/10/2019 Collection_Abaqus.pdf

    74/176

    1

    Abaqus/CAE(ver.6.8)VibrationsTutorial

    ProblemDescription

    Thetwodimensionalbridgestructure,whichconsistsofsteelTsections,issimplysupportedatitslowercorners.

    Determinethefirst10eigenvaluesandnaturalfrequencies.

  • 8/10/2019 Collection_Abaqus.pdf

    75/176

    2

    Analysis

    Steps

    1. StartAbaqusandchoosetocreateanewmodeldatabase

    2. InthemodeltreedoubleclickonthePartsnode(orrightclickonpartsandselectCreate)

    3. IntheCreatePartdialogbox(shownabove)namethepartand

    a. Select2DPlanar

    b. SelectDeformable

    c.

    SelectWire

    d. Setapproximatesize=20

    e. ClickContinue

    4. Createthegeometryshownbelow(notdiscussedhere)

  • 8/10/2019 Collection_Abaqus.pdf

    76/176

  • 8/10/2019 Collection_Abaqus.pdf

    77/176

    4

    6. DoubleclickontheProfilesnodeinthemodeltree

    a. NametheprofileandselectTfortheshape

    i.

    NotethattheTshapeisoneofseveralpredefinedcrosssections

    b. ClickContinue

    c. Enterthevaluesfortheprofileshownbelow

    d. ClickOK

    7.

    DoubleclickontheSectionsnodeinthemodeltree

    a. NamethesectionBeamPropertiesandselectBeamforboththecategoryandthetype

    b. ClickContinue

    c. LeavethesectionintegrationsettoDuringAnalysis

    d. Selecttheprofilecreatedabove(TSection)

    e.

    Selectthematerialcreatedabove(Steel)

    f. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    78/176

    5

    8. ExpandthePartsnodeinthemodeltree,expandthenodeofthepartjustcreated,anddoubleclickon

    SectionAssignments

    a.

    Selecttheentiregeometryintheviewport

    b. Selectthesectioncreatedabove(BeamProperties)

    c. ClickOK

    9. ExpandtheAssemblynodeinthemodeltreeandthendoubleclickonInstances

    a.

    Select

    Dependent

    for

    the

    instance

    type

    b. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    79/176

    6

    10.DoubleclickontheStepsnodeinthemodeltree

    a. Namethestep,settheproceduretoLinearperturbation,andselectFrequency

    b.

    ClickContinue

    c. Givethestepadescription

    d. SelecttheradiobuttonValueunderNumberofeigenvaluesrequestedandenter 10

    e. ClickOK

    11.

    Doubleclick

    on

    the

    BCs

    node

    in

    the

    model

    tree

    a.

    NametheboundaryconditionedPinnedandselectDisplacement/Rotationforthetype

    b.

    ClickContinue

    c. SelectthelowerleftvertexofthegeometryandpressDoneinthepromptarea

    d. ChecktheU1andU2displacementsandsetthemto0

    e. ClickOK

    f. Repeatforthelowerrightvertex,butmodelarollerrestraint(onlyU2fixed)instead

  • 8/10/2019 Collection_Abaqus.pdf

    80/176

    7

    12. InthemodeltreedoubleclickonMeshfortheBridgepart,andinthetoolboxareaclickontheAssign

    ElementTypeicon

    a.

    SelectStandardforelementtype

    b. SelectLinearforgeometricorder

    c. SelectBeamforfamily

    d. Notethatthenameoftheelement(B21)anditsdescriptionaregivenbelowtheelementcontrols

    e.

    ClickOK

    13.

    InthetoolboxareaclickontheSeedEdge:ByNumbericon(holddownicontobringuptheotheroptions)

    a. SelecttheentiregeometryandclickDoneinthepromptarea

    b. Definethenumberofelementsalongtheedgesas5

    14. InthetoolboxareaclickontheMeshParticon

    a. ClickYesinthepromptarea

  • 8/10/2019 Collection_Abaqus.pdf

    81/176

    8

    15. InthemenubarselectViewPartDisplayOptions

    a. ChecktheRenderbeamprofilesoption

    b.

    ClickOK

    16.ChangetheModuletoProperty

    a. ClickontheAssignBeamOrientationicon

    b. Selecttheentiregeometryfromtheviewport

    c. ClickDoneinthepromptarea

    d. Acceptthedefaultvalueoftheapproximaten1direction

    17.Notethatthepreviewshowsthatthebeamcrosssectionsarenotallorientatedasdesired(seeProblem

    Description)

  • 8/10/2019 Collection_Abaqus.pdf

    82/176

    9

    18. InthetoolboxareaclickontheAssignBeam/TrussTangenticon

    a. Clickonthesectionsofthegeometrythatareoffby180degrees

    19. InthemodeltreedoubleclickontheJobnode

    a. NamethejobBridge

    b. ClickContinue

    c.

    Givethejobadescription

    d. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    83/176

    10

    20. Inthemodeltreerightclickonthejobjustcreated(Bridge)andselectSubmit

    a.

    WhileAbaqus

    is

    solving

    the

    problem

    right

    click

    on

    the

    job

    submitted

    (Bridge),

    and

    select

    Monitor

  • 8/10/2019 Collection_Abaqus.pdf

    84/176

  • 8/10/2019 Collection_Abaqus.pdf

    85/176

    12

    22. InthemenubarclickonViewportViewportAnnotationsOptions

    a. UnchecktheShowcompassoption

    b.

    ThelocationsofviewportitemscanbespecifiedonthecorrespondingtabintheViewportAnnotations

    Options

    c. ClickOK

    23.Displaythedeformedcontouroverlaidwiththeundeformedgeometry

    a. Inthetoolboxareaclickonthefollowingicons

    i. PlotContoursonDeformedShape

    ii. AllowMultiplePlotStates

    iii. PlotUndeformedShape

  • 8/10/2019 Collection_Abaqus.pdf

    86/176

    13

    24. InthetoolboxareaclickontheCommonPlotOptionsicon

    a. NotethattheDeformationScaleFactorcanbesetontheBasictab

    b.

    OntheLabelstabchecktheshownodesymbolsicon

    c. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    87/176

    14

    25. InthemenubarclickonResultsStep/Frame

    a. ChangethemodebydoubleclickingintheFrameportionofthewindow

    b.

    Observetheeigenvaluesandfrequencies

    c. ClickOK

    26. InthetoolboxareaclickonAnimationOptions

    a.

    ChangetheModetoSwing

    b. ClickOK

    c. AnimatebyclickingonAnimate: ScaleFactoriconinthetoolboxarea

    d. Stoptheanimationbyclickingontheiconagain

    27.

    ClickontheNextarrowonthecontextbartochangethemode

  • 8/10/2019 Collection_Abaqus.pdf

    88/176

    15

    28.ExpandtheBridge.odbnodeintheresulttree,expandtheHistoryOutputnode,andrightclickon

    Eigenfrequency:

    a.

    SelectSaveAs

    b. Name=Frequencies

    c. RepeatforEigenvalue

    d. ObservetheXYDatanodesintheresulttree

    29.

    Inthe

    menu

    bar

    click

    on

    ReportXY

    a. Selectfrom=AllXYdata

    b. HighlightEigenvalues

    c. ClickontheSetuptab

    d.

    ClickSelectandspecifythedesirednameandlocationofthereport

    e. ClickApply

    f. ClickontheXYDatatab

    g. HighlightFrequencies

    h.

    ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    89/176

    16

    30.Openthereport(.rptfile)withanytexteditor

  • 8/10/2019 Collection_Abaqus.pdf

    90/176

    2009

    Jayson

    Martinez

    &

    Hormoz

    Zareh

    1

    Portland

    State

    University,

    Mechanical

    Engineering

    Abaqus/CAEVibrationsTutorial

    ProblemDescription

    Thetableframe,madeofsteelboxsections,isfixedattheendofeachleg.Determinethefirst10eigenvaluesand

    naturalfrequencies.

    WARNING: ThereisnopredefinedsystemofunitswithinAbaqus,sotheuserisresponsibleforensuringthatthe

    correctvaluesarespecified.HereweuseSIunits

  • 8/10/2019 Collection_Abaqus.pdf

    91/176

    2009

    Jayson

    Martinez

    &

    Hormoz

    Zareh

    2

    Portland

    State

    University,

    Mechanical

    Engineering

    Analysis

    Steps

    1. StartAbaqusandchoosetocreateanewmodeldatabase

    2. InthemodeltreedoubleclickonthePartsnode(orrightclickonpartsandselectCreate)

    3. IntheCreatePartdialogbox(shownabove)namethepartand

    a. Select3D

    b. SelectDeformable

    c.

    SelectWire

    d. Setapproximatesize=5(Notimportant,determinessizeofgridtodisplay)

    e. ClickContinue

    f. Createthesketchshownbelow

  • 8/10/2019 Collection_Abaqus.pdf

    92/176

    2009

    Jayson

    Martinez

    &

    Hormoz

    Zareh

    3

    Portland

    State

    University,

    Mechanical

    Engineering

    4. InthetoolboxareaclickontheCreateDatumPlane: OffsetFromPrinciplePlaneicon

    a. SelecttheXYPlaneandenteravalueof1fortheoffset

    5. InthetoolboxareaclickontheCreateWire:Planaricon

    a. Clickontheoutlineofthedatumplanecreatedinthepreviousstep

    b. Selectanyoneofthelinestoappearverticalandontheright

    c.

    InthetoolboxareaclickontheProjectEdgesicon

    d.

    SelectallofthelinesintheviewportandclickDone

    6. InthetoolboxareaclickontheCreateDatumPlane:3pointsicon(clickonthesmallblacktriangleinthe

    bottomright

    corner

    of

    the

    icon

    to

    get

    all

    of

    the

    datum

    plane

    options)

    a.

    Select3pointsonthetopofthegeometry

  • 8/10/2019 Collection_Abaqus.pdf

    93/176

    2009

    Jayson

    Martinez

    &

    Hormoz

    Zareh

    4

    Portland

    State

    University,

    Mechanical

    Engineering

    7. InthetoolboxareaclickontheCreateWire:Planaricon

    a. Clickontheoutlineofthedatumplanecreatedinthepreviousstep

    b.

    Selectanyoneofthelinestoappearverticalandontheright

    c. Sketchtwolinestoconnectfinishthewireframeofthetable

    d. ClickonDone

    8. DoubleclickontheMaterialsnodeinthemodeltree

    a. Namethenewmaterialandgiveitadescription

    b. ClickontheMechanicaltabElasticityElastic

    c.

    DefineYoungsModulus(210e9) andPoissonsRatio (0.25)

  • 8/10/2019 Collection_Abaqus.pdf

    94/176

    2009

    Jayson

    Martinez

    &

    Hormoz

    Zareh

    5

    Portland

    State

    University,

    Mechanical

    Engineering

    d.

    ClickontheGeneraltabDensity

    e.

    Density=7800

    f. ClickOK

    9. DoubleclickontheProfilesnodeinthemodeltree

    a. NametheprofileandselectBoxfortheshape

    b.

    ClickContinue

    c. Enterthevaluesfortheprofileshownbelow

    d. ClickOK

    10.

    DoubleclickontheSectionsnodeinthemodeltree

    a.

    Namethe

    section

    BeamProperties

    and

    select

    Beam

    for

    both

    the

    category

    and

    the

    type

    b. ClickContinue

    c. LeavethesectionintegrationsettoDuringAnalysis

    d. Selecttheprofilecreatedabove(BoxProfile)

    e.

    Selectthematerialcreatedabove(Steel)

    f. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    95/176

    2009

    Jayson

    Martinez

    &

    Hormoz

    Zareh

    6

    Portland

    State

    University,

    Mechanical

    Engineering

    11.ExpandthePartsnodeinthemodeltree,expandthenodeofthepartjustcreated,anddoubleclickon

    SectionAssignments

    a.

    Selecttheentiregeometryintheviewport

    b. Selectthesectioncreatedabove(BeamProperties)

    c. ClickOK

    12.ExpandtheAssemblynodeinthemodeltreeandthendoubleclickonInstances

    a.

    SelectDependentfortheinstancetype

    b. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    96/176

    2009

    Jayson

    Martinez

    &

    Hormoz

    Zareh

    7

    Portland

    State

    University,

    Mechanical

    Engineering

    13.DoubleclickontheStepsnodeinthemodeltree

    a. Namethestep,settheproceduretoLinearperturbation,andselectFrequency

    b.

    ClickContinue

    c. Givethestepadescription

    d. SelectLanczosfortheEigensolver

    e. SelecttheradiobuttonValueunderNumberofeigenvaluesrequestedandenter 10

    f.

    ClickOK

    14.

    DoubleclickontheBCsnodeinthemodeltree

    a. NametheboundaryconditionedFixedandselectSymmetry/Antisymmetry/Encastreforthetype

    b. ClickContinue

    c. SelecttheendofeachlegandpressDoneinthepromptarea

    d.

    SelectENCASTREfortheboundarycondition(ENCASTREmeanscompletelyfixed/clamped)

    e.

    ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    97/176

  • 8/10/2019 Collection_Abaqus.pdf

    98/176

    2009

    Jayson

    Martinez

    &

    Hormoz

    Zareh

    9

    Portland

    State

    University,

    Mechanical

    Engineering

    18. InthemenubarselectViewPartDisplayOptions

    a. ChecktheRenderbeamprofilesoption

    b.

    ClickOK

    19.ChangetheModuletoProperty

    a. ClickontheAssignBeamOrientationicon

    b. SelecttheportionsofthegeometrythatareperpendiculartotheZaxis

    c. ClickDoneinthepromptarea

    d. Acceptthedefaultvalueoftheapproximaten1direction(0,0,1)

    e. ClickOKinthepromptarea

    f. SelecttheportionsofthegeometrythatareparalleltotheZaxis

  • 8/10/2019 Collection_Abaqus.pdf

    99/176

    2009

    Jayson

    Martinez

    &

    Hormoz

    Zareh

    10

    Portland

    State

    University,

    Mechanical

    Engineering

    g. ClickDoneinthepromptarea

    h. EnteravectorthatisperpendiculartotheZaxisfortheapproximaten1direction(i.e.0,1,0)

    i. ClickOKfollowedbyDoneinthepromptarea

    20. InthemodeltreedoubleclickontheJobnode

    j. NamethejobTableFrame

    k. ClickContinue

    l.

    Givethejobadescription

    m. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    100/176

    2009

    Jayson

    Martinez

    &

    Hormoz

    Zareh

    11

    Portland

    State

    University,

    Mechanical

    Engineering

    21. Inthemodeltreerightclickonthejobjustcreated(TableFrame)andselectSubmit

    n. WhileAbaqusissolvingtheproblemrightclickonthejobsubmitted(TableFrame),andselectMonitor

    o. IntheMonitorwindowcheckthattherearenoerrorsorwarnings

    i. Ifthereareerrors,investigatethecause(s)beforeresolving

    ii.

    If

    there

    are

    warnings,

    determine

    if

    the

    warnings

    are

    relevant,

    some

    warnings

    can

    be

    safely

    ignored

    22. Inthemodeltreerightclickonthesubmittedandsuccessfullycompletedjob(TableFrame),andselectResults

  • 8/10/2019 Collection_Abaqus.pdf

    101/176

  • 8/10/2019 Collection_Abaqus.pdf

    102/176

  • 8/10/2019 Collection_Abaqus.pdf

    103/176

  • 8/10/2019 Collection_Abaqus.pdf

    104/176

    2009

    Jayson

    Martinez

    &

    Hormoz

    Zareh

    15

    Portland

    State

    University,

    Mechanical

    Engineering

    30.Openthereport(.rptfile)withanytexteditor

    Note:Eigenvaluesthatareidenticalindicatesimilarvibrationmodes,activatedindifferentplanes.

  • 8/10/2019 Collection_Abaqus.pdf

    105/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEAxisymmetrictutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    1

    Portland

    State

    University,

    Mechanical

    Engineering

    Abaqus/CAE

    Axisymmetric

    Tutorial

    ProblemDescription

    Around

    bar

    with

    varying

    diameter

    has

    atotal

    load

    of

    1000

    N

    applied

    to

    its

    top

    face.

    The

    bottom

    of

    the

    bar

    is

    completely

    fixed.Determinestressanddisplacementvaluesinthebarresultingfromtheload.

  • 8/10/2019 Collection_Abaqus.pdf

    106/176

  • 8/10/2019 Collection_Abaqus.pdf

    107/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEAxisymmetrictutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    3

    Portland

    State

    University,

    Mechanical

    Engineering

    5. DoubleclickontheMaterialsnodeinthemodeltree

    a. Namethenewmaterialandgiveitadescription

    b. ClickontheMechanicaltabElasticityElastic

    c.

    DefineYoungsModulusandthePoissonsRatio(useSIunits)

    i. WARNING: TherearenopredefinedsystemofunitswithinAbaqus,sotheuserisresponsible

    for

    ensuring

    that

    the

    correct

    values

    are

    specified

    6. DoubleclickontheSectionsnodeinthemodeltree

    a. NamethesectionAxisymmetricPropertiesandselectSolidforthecategoryandHomogeneousfor

    thetype

    b. Selectthematerialcreatedabove(Steel)

  • 8/10/2019 Collection_Abaqus.pdf

    108/176

  • 8/10/2019 Collection_Abaqus.pdf

    109/176

  • 8/10/2019 Collection_Abaqus.pdf

    110/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEAxisymmetrictutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    6

    Portland

    State

    University,

    Mechanical

    Engineering

    12.ExpandtheFieldOutputRequestsnodeinthemodeltree,andthendoubleclickonFOutput1(FOutput1was

    automaticallygeneratedwhencreatingthestep)

    a. UncheckthevariablesStrainsandContact

    13.ExpandtheHistoryOutputRequestsnodeinthemodeltree,andthenrightclickonHOutput1(HOutput1was

    automaticallygeneratedwhencreatingthestep)andselectDelete

  • 8/10/2019 Collection_Abaqus.pdf

    111/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEAxisymmetrictutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    7

    Portland

    State

    University,

    Mechanical

    Engineering

    14.DoubleclickontheBCsnodeinthemodeltree

    a. NametheboundaryconditionedFixedandselectSymmetry/Antisymmetry/Encastreforthetype

    b. InthepromptareaclickontheSetsbutton

    c. SelectthesetnamedFixed

    d. SelectENCASTREfortheboundarycondition

  • 8/10/2019 Collection_Abaqus.pdf

    112/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEAxisymmetrictutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    8

    Portland

    State

    University,

    Mechanical

    Engineering

    e. RepeattheprocedureforthesymmetryrestraintusingthesetnamedSymmetry,selectXSYMMfor

    theboundarycondition

    15.DoubleclickontheLoadsnodeinthemodeltree

    a. NametheloadPressureandselectPressureasthetype

    b. SelectsurfacenamedPressure

    c. Forthemagnitudeenter

  • 8/10/2019 Collection_Abaqus.pdf

    113/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEAxisymmetrictutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    9

    Portland

    State

    University,

    Mechanical

    Engineering

    16. InthemodeltreedoubleclickonMeshfortheBarpart,andinthetoolboxareaclickontheAssignElement

    Typeicon

    a.

    SelectStandardforelementtype

    b. SelectLinearforgeometricorder

    c. SelectAxisymmetricStressforfamily

    d.

    Notethat

    the

    name

    of

    the

    element

    (CAX4R)

    and

    its

    description

    are

    given

    below

    the

    element

    controls

    17.

    InthetoolboxareaclickontheAssignMeshControlsicon

    a. ChangetheelementshapetoQuad

    b. ChangetheAlgorithmtoMedialaxisforamorestructuredmesh

  • 8/10/2019 Collection_Abaqus.pdf

    114/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEAxisymmetrictutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    10

    Portland

    State

    University,

    Mechanical

    Engineering

    18. InthetoolboxareaclickontheSeedParticon

    a. Settheapproximateglobalsizeto0.005

    19. InthetoolboxareaclickontheMeshParticon

    20. InthemodeltreedoubleclickontheJobnode

    a. NamethejobBar

    b. Givethejobadescription

  • 8/10/2019 Collection_Abaqus.pdf

    115/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEAxisymmetrictutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    11

    Portland

    State

    University,

    Mechanical

    Engineering

    21. Inthemodeltreerightclickonthejobjustcreated(Bar)andselectSubmit

    a. WhileAbaqusissolvingtheproblemrightclickonthejobsubmitted(Bar),andselectMonitor

    b.

    Inthe

    Monitor

    window

    check

    that

    there

    are

    no

    errors

    or

    warnings

    i.

    Ifthereareerrors,investigatethecause(s)beforeresolving

    ii. Iftherearewarnings,determineifthewarningsarerelevant,somewarningscanbesafely

    ignored

    22. Inthemodeltreerightclickonthesubmittedandsuccessfullycompletedjob(Bar),andselectResults

    23. InthemenubarclickonViewportViewportAnnotationsOptions

    a.

    UnchecktheShowcompassoption

    b. ThelocationsofviewportitemscanbespecifiedonthecorrespondingtabintheViewportAnnotations

    Options

  • 8/10/2019 Collection_Abaqus.pdf

    116/176

  • 8/10/2019 Collection_Abaqus.pdf

    117/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEAxisymmetrictutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    13

    Portland

    State

    University,

    Mechanical

    Engineering

    a. ChecktheboxeslabeledNodesandS,Mises

    b. Intheviewportmouseovertheelementofinterest

    c.

    NotethatAbaqusreportsstressvaluesfromtheintegrationpoints,whichmaydifferslightlyfromthe

    valuesdeterminedbyprojectingvaluesfromsurroundingintegrationpointstothenodes

    i. Theminimumandmaximumstressvaluescontainedinthelegendarefromthestresses

    projectedto

    the

    nodes

    d. ClickonanelementtostoreitintheSelectedProbeValuesportionofthedialoguebox

    26.Tochangetheoutputbeingdisplayed,inthemenubarclickonResultsFieldOutput

    a. SelectSpatialdisplacementatnodes

    i.

    Invariant=Magnitude

    27.Tocreateatextfilecontainingthestressesandreactionforces(includingtotal),inthemenubarclickon

    ReportFieldOutput

    a. Fortheoutputvariableselect(Von)Mises

  • 8/10/2019 Collection_Abaqus.pdf

    118/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEAxisymmetrictutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    14

    Portland

    State

    University,

    Mechanical

    Engineering

    b. OntheSetuptabspecifythenameandthelocationforthetextfile

    c. UnchecktheColumntotalsoption

    d.

    ClickApply

    a. BackontheVariabletabchangethepositiontoUniqueNodal

    b. Uncheckthestressvariable,andselecttheRF1reactionforce

    c. OntheSetuptab,checktheColumntotalsoption

    d. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    119/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEAxisymmetrictutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    15

    Portland

    State

    University,

    Mechanical

    Engineering

    28.Openthe.rptfilewithanytexteditor

    a. Onethingtocheckisthatthetotalreactionforceisequaltotheappliedload.

  • 8/10/2019 Collection_Abaqus.pdf

    120/1762011 Hormoz Zareh & Jenna Bell 1 Portland State University, Mechanical Engineering

    Abaqus/CAE (ver. 6.11)Nonlinear Buckling Tutorial

    Problem Description

    This is the NAFEMS1proposed benchmark (Lees frame buckling) problem. The applied load is based on

    the normalized (EI/L

    2

    ) value of F = 996.389N. The analysis will investigate post-buckling nonlinearbehavior of the frame at the applied load location.

    This tutorial will also describe x-y plotting capability in Abaqus/CAE, including combining variables to

    generate load-displacement plots.

    E = 71.74109N/m

    2

    = 0.0

    L = 1.2 m

    1National Agency for Finite Element Methods and Standards, NAFEMS Non-Linear Benchmarks(Glasgow:

    NAFEMS, Oct., 1989, Rev. 1.) Test No. NL7.

    0.2 L 0.8 L

    L

    0.03

    0.02

    F

  • 8/10/2019 Collection_Abaqus.pdf

    121/1762011 Hormoz Zareh & Jenna Bell 2 Portland State University, Mechanical Engineering

    Analysis Steps

    1. Start Abaqus and choose to create a new model database

    2. In the model tree double click on the Parts node (or right click on

    parts and select Create)

    3. In the Create Part dialog box (shown above) name the part and

    a. Select 2D Planarb. Select Deformable

    c. Select Wire

    d. Set approximate size = 10

    e. Click Continue

    4. Create the geometry shown below (not discussed here)

  • 8/10/2019 Collection_Abaqus.pdf

    122/1762011 Hormoz Zareh & Jenna Bell 3 Portland State University, Mechanical Engineering

    5.Double click on the Materials node in the model tree

    a. Name the new material and give it a description

    b. Click on the Mechanical tabElasticityElastic

    i. Enter a Youngs modulus of 71740000000, and

    Poissons ratio of 0

    c.

    Click OK

    6. Double click on the Profiles node in the model tree

    a. Name the profile and select Rectangular

    b. Click Continue

    c. Enter 0.03 for a and 0.02 for b

    d. Click OK

  • 8/10/2019 Collection_Abaqus.pdf

    123/1762011 Hormoz Zareh & Jenna Bell 4 Portland State University, Mechanical Engineering

    7. Double click on the Sections node in the model tree

    a. Name the section beam and select Beam for

    the category and Beam for the type

    b. Click Continue

    c. Select the profile created above (rect_beam) and

    the material created above (Material-1)

    d. Click OK

    8. Expand the Parts node in the model tree, expand the

    node of the part just created, and double click on Section Assignments

    a. Select the entire geometry in the viewport and press Done in the prompt area

    b. Select the section created above (beam)

    c. Click OK

    9. In the toolbox area click on the Assign Beam Orientation button

    a. Select all the geometry

    b. Click Done

  • 8/10/2019 Collection_Abaqus.pdf

    124/1762

    011 Hormoz Zare

    c.

    d.

    e.

    f.

    10.Create

    a.

    b.

    c.

    h & Jenna Bell

    Leave the de

    Press the E

    The beam n

    Click OK to

    set for the

    Expand the

    Name the se

    Select the ve

    fault values

    ter key

    rmals should

    confirm

    pper-center

    ssembly nod

    t and select

    rtex where t

    5

    f 0.0,0.0,-1.

    be oriented

    vertex

    e in the mod

    eometry for

    e load is ap

    0

    as shown be

    el tree, and t

    the type, Cli

    lied, Click D

    low.

    hen double

    k Continue

    one

    Portland State Un

    lick on sets

    iversity, Mechani

    al Engineering

  • 8/10/2019 Collection_Abaqus.pdf

    125/1762

    011 Hormoz Zare

    11.Expand

    a.

    b.

    12.Double

    a.

    b.

    h & Jenna Bell

    the Assemb

    Select Depe

    Click OK

    click on the

    Name the st

    On the Basic

    i.

    Give

    ii. Set

    iii. Und

    ly node in t

    ndent for th

    Steps node

    p, set the pr

    tab

    the step a d

    eometric no

    r Stopping

    6

    e model tre

    e instance t

    in the model

    ocedure to

    scription an

    linearities o

    criteria chec

    and then d

    pe

    tree

    eneral, an

    n (Nlgeom =

    k Maximum

    uble click on

    select Stat

    ON)

    load propor

    Portland State Un

    Instances

    ic, Riks, Clic

    tionality fact

    iversity, Mechani

    Continue

    or and set t

    al Engineering

    30

  • 8/10/2019 Collection_Abaqus.pdf

    126/1762011 Hormoz Zareh & Jenna Bell 7 Portland State University, Mechanical Engineering

    c. On the Incrementation tab,

    i. Set the initial arc length increment size to 0.1

    ii. Set the maximum arc length increment size to 2

    iii. Set the maximum number of increments to 200

    d. Click OK

    13.Double click on the BCs node in the model tree

    d. Name the boundary conditioned Pinned and select Displacement/Rotation for the typee. Click Continue

    f. Select the two free ends of the frame and click Done

    i. Note: to select multiple items, hold the shift key

    g. Select U1 and U2 and set to zero, click OK

  • 8/10/2019 Collection_Abaqus.pdf

    127/1762011 Hormoz Zareh & Jenna Bell 8 Portland State University, Mechanical Engineering

    14.Double click on the Loads node in the model tree

    a. Name the load and select Concentrated force as the type

    b. Click Continue

    c. Select the point along the top beam near the corner, Click Done

    d. Set CF1 to 0 and CF2 to -996.389

    e. Click OK

  • 8/10/2019 Collection_Abaqus.pdf

    128/1762

    011 Hormoz Zare

    15.

    In the mElemen

    a.

    b.

    c.

    d.

    e.

    f.

    h & Jenna Bell

    odel tree doType icon

    Select the en

    Select Stan

    Select Linea

    Select Bea

    Note that th

    Click OK

    uble click on

    tire geometr

    ard for ele

    r for geome

    for family

    name of th

    9

    Mesh for t

    y

    ent type

    tric order

    element (B

    e frame par

    1) and its de

    t, and in the

    scription are

    Portland State Un

    toolbox area

    given below

    iversity, Mechani

    click on the

    the element

    al Engineering

    Assign

    controls

  • 8/10/2019 Collection_Abaqus.pdf

    129/1762011 Hormoz Zareh & Jenna Bell 10 Portland State University, Mechanical Engineering

    16. In the toolbox area click on the Seed Part icon

    h. Enter 0.08 for Approximate global size , click OK

    17. In the toolbox area click on the Mesh Part icon, Click Yes

    18.Expand the History Output Requests node in the model tree, and then

    right click on H-Output-1 (H-Output-1 was automatically generated

    when creating the step) and select Delete

    19.Double click on the History Output Requests node

    i. Name the history and select Continue

    j. Set the domain to Sets and select the set created above

    k. Leave the frequency set to every increment (n=1)

    l. For the output variables select the U2 displacement

  • 8/10/2019 Collection_Abaqus.pdf

    130/1762011 Hormoz Zareh & Jenna Bell 11 Portland State University, Mechanical Engineering

    20. In the model tree double click on the Job node

    a. Name the job frame_buckle

    b. Give the job a description

  • 8/10/2019 Collection_Abaqus.pdf

    131/176

  • 8/10/2019 Collection_Abaqus.pdf

    132/176

  • 8/10/2019 Collection_Abaqus.pdf

    133/1762011 Hormoz Zareh & Jenna Bell 14 Portland State University, Mechanical Engineering

    25.On the results tree, expand the History Output node and double

    click on the displacement history created

    a. Notice that displacement it plotted against Arc Length,

    not Load or Load Proportionality Factor.

    b. To plot load against displacement, we will need to

    extract the values for Load and displacement from theField Outputs.

    26. In the Toolbox area click on the Create XY Data icon

    a. Choose ODB field output for Source and click Continue

    b. On the Variables tab

    i. Select Unique Nodal for Position

    ii. Expand CF: Point loads and select CF2

    iii. Expand U: Spatial displacement and select U2

  • 8/10/2019 Collection_Abaqus.pdf

    134/1762011 Hormoz Zareh & Jenna Bell 15 Portland State University, Mechanical Engineering

    c. Select the Elements/Nodes tab

    iv. Select Node Sets for Methodv. Select the set created earlier Top

  • 8/10/2019 Collection_Abaqus.pdf

    135/176

  • 8/10/2019 Collection_Abaqus.pdf

    136/1762011 Hormoz Zareh & Jenna Bell 17 Portland State University, Mechanical Engineering

    e. Select U:U2 P1: PART. From the XY Data section and click Add to Expression

    f. Select CF:CF2 PI: PART. From the XY Data section and click Add to Expression

    g. Since the load and displacement both increase in the negative direction, they need to be multiplied

    by -1 to make load and displacement increase in the positive direction.

    h. The final expression should look like:

    i. Click Save As, name it load-displacement, click OK

    j. Close the Operate on XY Data window

    28.Right click on load-displacement under the XY Data node and

    select Plot

    k. The buckling behavior can be seen in the plot.

  • 8/10/2019 Collection_Abaqus.pdf

    137/1762011 Hormoz Zareh & Jenna Bell 18 Portland State University, Mechanical Engineering

    29.This data can also be copied into Excel or other programs.

    l. Right click on load-displacement under the XY Data node and select Edit

    m. Select all the data in the edit window, right click and choose Copy

    n. Open Excel, right click in an empty cell and choose Paste

  • 8/10/2019 Collection_Abaqus.pdf

    138/1762010 Hormoz Zareh 1 Portland State University, Mechanical Engineering

    AbaqusCAE(ver.6.9)ContactTutorial

    ProblemDescription

    Note: You do not need to extrude the right vertical edge of the sensor.

  • 8/10/2019 Collection_Abaqus.pdf

    139/1762010 Hormoz Zareh 2 Portland State University, Mechanical Engineering

    AnalysisSteps1. StartAbaqusandchoosetocreateanewmodeldatabase

    2. InthemodeltreedoubleclickonthePartsnode(orrightclickonpartsandselectCreate)

    3. IntheCreatePartdialogbox(shownabove)namethepartand

    a.

    Select3D

    b. SelectDeformable

    c. SelectShell

    d. SelectExtrusion

    e. Setapproximatesize=50

    f.

    ClickContinue

    4. Createthegeometryshownbelow(notdiscussedhere)

  • 8/10/2019 Collection_Abaqus.pdf

    140/176

  • 8/10/2019 Collection_Abaqus.pdf

    141/1762010 Hormoz Zareh 4 Portland State University, Mechanical Engineering

    a.NamethesectionShellPropertiesandselectShellforthecategoryandHomogeneousforthe

    type

    b.

    ClickContinue

    c. Selectthematerialcreatedabove(Steel)andsetthethicknessto0.15

    d. ClickOK

    7. ExpandthePartsnodeinthemodeltree,expandthenodeofthepartjustcreated,anddoubleclickon

    SectionAssignments

    a. Selecttheentiregeometry,exceptfortheverticalface,intheviewportandpressDoneinthe

    promptarea

    b. Selectthesectioncreatedabove(ShellProperties)

    c. Specifyshelloffsetifnecessary

    d. ClickOK

    8.

    Expand

    the

    Assembly

    node

    in

    the

    model

    tree

    and

    then

    double

    click

    on

    Instances

    a. SelectDependentfortheinstancetype

    b.

    ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    142/1762010 Hormoz Zareh 5 Portland State University, Mechanical Engineering

    9. DoubleclickontheStepsnodeinthemodeltree

    a. Namethestep,settheproceduretoGeneral,selectStatic,General,andclickContinue

    b. Acceptthedefaultsettings

    10.DoubleclickontheBCsnodeinthemodeltree

    a.

    Namethe

    boundary

    conditioned

    Fixed

    and

    select

    Symmetry/Antisymmetry/Encastre

    for

    the

    type

    b. SelectthehorizontaledgesontheverticalsurfaceandclickDone

    c.

    SelectENCASTREfortheboundaryconditionandclickOK

  • 8/10/2019 Collection_Abaqus.pdf

    143/1762010 Hormoz Zareh 6 Portland State University, Mechanical Engineering

    11.DoubleclickontheBCsnodeinthemodeltree

    a. NametheboundaryconditionedDispandselectDisplacement/Rotationforthetype

    b. Selectthetopedgeofthetriangularportionofthegeometry

    c. Settheydisplacementto3

  • 8/10/2019 Collection_Abaqus.pdf

    144/1762010 Hormoz Zareh 7 Portland State University, Mechanical Engineering

    12.DoubleclickontheInteractionPropertiesnodeinthemodeltree

    a.

    NametheinteractionpropertiesandselectContactforthetype

    b. OntheMechanicaltabSelectTangentialBehavior

    i. SetthefrictionformulationtoFrictionless

    c. OntheMechanicaltabSelectNormalBehavior

    i.

    Becausethesurfacesdonotstartincontact,changetheconstraintenforcementmethodto

    Penalty

    13.

    DoubleclickontheInteractionsnodeinthemodeltree

    a. Nametheinteraction,selectSurfacetosurfacecontact,andclickcontinue

    b. Forthemastersurfaceselectthelowerportionofthegeometryandclickdone

    i. Whileapplyingthefixeddisplacement,thenodesatthetipoftheupperportionofthe

    geometry

    will

    make

    contact

    at

    an

    unknown

    location

    on

    the

    lower

    surface

    ii.

    Nodesontheslavesurfacecannotpenetratethesurfaceformedbytheelementfacesonthe

    mastersurface

    c. Selectthecolorofthesurfacecorrespondingtothetopsurface

    d. Fortheslavesurface,settheslavetypetoSurface

    e. Selecttheupperportionofthegeometryatthefreeendandclickdone

    f. Selectthecolorofthesurfacecorrespondingtothebottomsurface

    g. Changethecontactinteractionpropertiestotheonecreatedabove(ifnotalreadydone)

  • 8/10/2019 Collection_Abaqus.pdf

    145/1762010 Hormoz Zareh 8 Portland State University, Mechanical Engineering

  • 8/10/2019 Collection_Abaqus.pdf

    146/176

  • 8/10/2019 Collection_Abaqus.pdf

    147/176

  • 8/10/2019 Collection_Abaqus.pdf

    148/1762010 Hormoz Zareh 11 Portland State University, Mechanical Engineering

    19. InthemodeltreerightclickonthejobjustcreatedandselectSubmit

    d.

    Ignorethe

    message

    about

    unmeshed

    portions

    of

    the

    geometry

    e. WhileAbaqusissolvingtheproblemrightclickonthejobsubmitted,andselectMonitor

    f. IntheMonitorwindowcheckthattherearenoerrorsorwarnings

    i. Ifthereareerrors,investigatethecause(s)beforeresolving

    ii. Iftherearewarnings,determineifthewarningsarerelevant,somewarningscanbesafely

    ignored

    20. Inthemodeltreerightclickonthesubmittedandsuccessfullycompletedjob,andselectResults

  • 8/10/2019 Collection_Abaqus.pdf

    149/1762010 Hormoz Zareh 12 Portland State University, Mechanical Engineering

    21.Displaythedeformedcontourofthe(Von)Misesstressoverlaidwiththeundeformedgeometry

    a. Inthetoolboxareaclickonthefollowingicons

    i. PlotContoursonDeformedShape

    ii. AllowMultiplePlotStates

    iii. PlotUndeformedShape

    22. InthetoolboxareaclickontheCommonPlotOptionsicon

    a.

    Setthe

    Deformation

    Scale

    Factor

    to

    1

    b. ClickOK

    23.Tochangetheoutputbeingdisplayed,inthemenubarclickonResultsFieldOutput

    a.

    Selectthecontactpressureatsurfacenodes(CPRESS)

    b. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    150/176

  • 8/10/2019 Collection_Abaqus.pdf

    151/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEHeatTransferTutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    1

    Portland

    State

    University,

    Mechanical

    Engineering

    Abaqus/CAE(ver.6.9)HeatTransferTutorial

    ProblemDescription

    ThethinLshapedpartshownaboveisexposedtoatemperatureof20oConthetwosurfacesoftheinnercorner,and

    120oConthetwosurfacesoftheoutercorner. Aheatfluxof10W/m2isappliedtothetopsurface. Treatthe

    remainingsurfacesasinsulated.

  • 8/10/2019 Collection_Abaqus.pdf

    152/176

  • 8/10/2019 Collection_Abaqus.pdf

    153/176

  • 8/10/2019 Collection_Abaqus.pdf

    154/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEHeatTransferTutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    4

    Portland

    State

    University,

    Mechanical

    Engineering

    6. DoubleclickontheSectionsnodeinthemodeltree

    a. NamethesectionShellPropertiesandselectShellforthecategoryandHomogeneousforthetype

    b. ClickContinue

    c. Selectthematerialcreatedabove(Steel)andsetthethicknessto1

    d.

    ClickOK

    7. ExpandthePartsnodeinthemodeltree,expandthenodeofthepartjustcreated,anddoubleclickon

    SectionAssignments

    a.

    SelectthesurfacegeometryintheviewportandpressDoneinthepromptarea

  • 8/10/2019 Collection_Abaqus.pdf

    155/176

  • 8/10/2019 Collection_Abaqus.pdf

    156/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEHeatTransferTutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    6

    Portland

    State

    University,

    Mechanical

    Engineering

    e. CreateanothersetnamedInsideTemp

    f. SelectthetwosurfacesontheinsideofthecornerintheviewportandpressDoneinthepromptarea

    10. Inthemodeltree,undertheexpandedAssemblynode,doubleclickonSurfaces

    a. NamethesurfaceHeatFlux

    b.

    ClickContinue

    c. SelectthesurfaceintheviewportandpressDoneinthepromptarea

    d. ChoosetheBrownside

    11.DoubleclickontheStepsnodeinthemodeltree

    a. Namethestep,settheproceduretoGeneral,andselectHeatTransfer

    b. ClickContinue

    c. Givethestepadescription

    d.

    SetthereponsetoSteadystate

    e.

    ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    157/176

  • 8/10/2019 Collection_Abaqus.pdf

    158/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEHeatTransferTutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    8

    Portland

    State

    University,

    Mechanical

    Engineering

    f. Setthemagnitudeto293

    g. ClickOK

    h. RepeattheprocedurefortheinsidetemperatureusingthesetnamedInsideTemp,setthemagnitude

    to393

    13.DoubleclickontheLoadsnodeinthemodeltree

    a. NametheloadHeatFluxandselectSurfaceheatfluxasthetype

    b. ClickOK

    c.

    SelectsurfacenamedHeatFlux

  • 8/10/2019 Collection_Abaqus.pdf

    159/176

  • 8/10/2019 Collection_Abaqus.pdf

    160/176

    ME455/555IntrotoFiniteElementAnalysis Winter10 Abaqus/CAEHeatTransferTutorial

    2010

    Hormoz

    Zareh

    &

    Jayson

    Martinez

    10

    Portland

    State

    University,

    Mechanical

    Engineering

    16. InthetoolboxareaclickontheAssignMeshControlsicon

    a. ChangetheelementshapetoQuad

    b.

    ChangethealgorithmtoMedialaxistoproduceamoreuniformmeshforthisgeometry

    17.

    Inthe

    toolbox

    area

    click

    on

    the

    Seed

    Part

    icon

    a. Settheapproximateglobalsizeto5

    b. ClickOK

    18. InthetoolboxareaclickontheMeshParticon

    19. InthemodeltreedoubleclickontheJobnode

    a. NamethejobHeatFlux

    b.

    ClickContinue

    c. Givethejobadescriptionandacceptalldefaultparameters

    d. ClickOK

  • 8/10/2019 Collection_Abaqus.pdf

    161/176

  • 8/10/2019 Collection_Abaqus.pdf

    162/176

  • 8/10/2019 Collection_Abaqus.pdf

    163/176

  • 8/10/2019 Collection_Abaqus.pdf

    164/176

  • 8/10