Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected...

44
Cold Molecules: Why? How? And Next? Modeling routes for their formation Olivier Dulieu Laboratoire Aimé Cotton, CNRS/ Université ParisSud/ ENS Cachan Orsay, France Thé m l

Transcript of Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected...

Page 1: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Cold Molecules: Why? How? And Next?Modeling routes for their formation

Olivier Dulieu

Laboratoire Aimé Cotton, CNRS/ Université Paris‐Sud/ ENS Cachan Orsay, France

Thé m l

Page 2: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Laboratoire Aimé Cotton in Orsay

Thé m l

Page 3: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Staff:Nadia Bouloufa, Olivier Dulieu, Maxence Lepers , Goulven Quéméner, Maurice Raoult, Jacques RobertPhD:Dimitri Borsalino, Humberto daSilva JrPostdocs:Maykel Gonzalez-Martinez, Andrea Orban, Romain VexiauEmeritus:Anne Crubellier , Eliane Luc, Jean-François WyartThey left the group in 2013-2014:Mireille Aymar, Jesus Perez-Rios, GaorenWang

€€€

Thé m l

Page 4: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

ONGOING [email protected]

Structure of lanthanides (Er, Dy,…)and of small molecules

(A‐Sr), (A‐Sr) +, Rb‐(Ca+, Ba+, Yb+)…

Structure and dynamics of cold atoms

and molecules

Formation/ production of cold molecules

Long‐range interactions between atoms and 

molecules

Dynamics of ultracold gases in external fieldsDynamics of cold 

molecular ions

Collisional processes in the interstellar medium

Page 5: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

WHY?

Thé m l

http

://m

onas

h.ed

u/sc

ienc

e/ab

out/s

choo

ls/p

hysi

cs/re

sear

ch/

http

://w

ww

.mpq

.mpg

.de/

Theo

rygr

oup/

CIR

AC

/

Page 6: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Adapted from Ye’s group; http://jila.colorado.edu/yelabs/research/ultracold‐molecules

Cold molecules

Translational kinetic energy

with high internal energy

BUT

Ultracold Chemistry?

How cold …?Looking at collision processes over 

of kinetic energy/temperature

Ultracold molecules

Thé m l

Page 7: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Cold Matter: Atoms, Ions, Molecules, Plasmas…almost 0 <T<<1K

• One of the main research topic in AMO physics for many years: full control of aquantum system at the single quantum level

• Connected to many areas: statistical physics, condensedmatter, optics, metrology,…• Boosted by the amazing success of laser cooling and evaporative cooling

Nowadays applied to many atomic species: Alkalis, alkaline‐earth, rare gas, lanthanides,…

Molecules are attractive for cold matter:•Additional degrees of freedom, offering new opportunities for manipulation and control• Pair of weakly interacting atoms for unprecedented precisionmeasurements•Reactivity and chemical reactions dominated by quantum effects (resonances, tunneling,...)•Ongoing efforts to create dense ensembles of cold molecules•Strong interplay between experiment and theory

•But direct laser cooling almost impossible!

Thé m l

Page 8: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

A brief guide to cold molecule formation methods…

• Assemble ultracold atoms: > >Ions welcome!

– Photoassociation > >Radiative association– Magnetoassociation > >

• Create stable molecules in (a single) excited level• Transfer to the absolute ground state: adiabatic transfer (STIRAP), shaped laser pulses,…

OR• Slow down preformedmolecules with external time varying electric or magnetic fields

through their intrinsic dipole moments, or via collisions with a buffer gasOR

• Let atoms stick together on/in helium nanodropletsOR

• Laser‐cool species with suitable properties (SrF, YO,…) >CaH+…OR…

T<<1mK

T>1mK

T~1K

T~1mK

Thé m l

(mostly diatomics…)

Page 9: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

9

Cold Molecules: a hot topic indeed!

Thé m l

Vol. 31, 2004Vol 392006

495 références!

Vol 11, 2009

Vol. 65, 2011

Vol. 13, 2011 Vol 1122011

Upcoming NJP issue in 2015…

Page 10: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

• J. Weiner, Experiments in cold and ultracold collisions, J. Opt. Soc. Am. B 6, 2270 (1989)• P. S. Julienne and F. H. Mies, Collisions of ultracold trapped atoms, J. Opt. Soc. Am. B 6, 2257 (1989)• P. D. Lett; P. S. Julienne, and W. D. Phillips, Photoassociative spectroscopy of laser cooled atoms, Ann. Rev. Phys. Chem., 46, 423 (1995).• P. S. Julienne, Cold Binary Atomic Collisions in a Light Field, J. Res. Natl. Inst. Stand. Technol. 101, 487 (1996)• J. Weiner, V. S. Bagnato, S. Zilio and P. S. Julienne, Experiments and theory in cold and ultracold collisions, Rev. Mod. Phys. 71, 1 (1999)• E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman, Feshbach resonances in atomic Bose‐Einstein condensates, Phys. Reports 315, 199 (1999)• W. C. Stwalley and H. Wang, Photoassociation of ultracold atoms: a new spectroscopic technique, J. Molec. Spectrosc. 195, 194 (1999)• F. Masnou‐Seeuws and P. Pillet, Formation of ultracold molecules (T ≤ 200 μK) via photoassociation in a gas of laser‐cooled atoms, Adv. At. Mol. Opt. 

Phys., 47, 53 (2001).• K. Burnett, P. S. Julienne, P. D. Lett, E. Tiesinga, and C. J. Williams, Quantum encounters of the cold kind, Nature, 416, 225 (2002)• O. Dulieu and F. Masnou‐Seeuws, Formation of ultracold molecules by photoassociation: theoretical developments, J. Opt. Soc. Am. B 20, 1083 (2003)• H. Bethlem and G. Meijer, Production and applications of translationally cold molecules, Int. J. Phys. Chem. 22, 73 (2003)• C. Chin, The Birth of Ultracold Molecules into the World of Quantum Gases, AAPS Bulletin 14, 14 (2004)• R. Krems, Molecules near absolute zero and external field control of atomic and molecular dynamics, Int. J. Phys. Chem. 24, 99 (2005)• M. Leduc and J. Vigué, Interplay between theoretical quantum chemistry and cold atom experiments, Theor, Chem, Acc. 116, 598 (2006) • B. Friedrich and G. Meijer, Molecules riding waves, Nature Phys. 2, 437 (2006)• K. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Ultracold photoassociation spectroscopy: Long‐range molecules and atomic scattering, Rev. Mod. Phys. 

78, 483 (2006)• T. Köhler, K. Goral, and P. S. Julienne, Production of cold molecules via magnetically tunable Feshbach resonances, Rev. Mod. Phys. 78, 1311  (2006)• J. M. Hutson and P. Soldan, Molecule formation in ultracold atomic gases, Int. J. Phys. Chem. 25, 497 (2006)• E. Bodo and F. Gianturco, , Int. J. Phys. Chem. Collisional quenching of molecular ro‐vibrational energy by He buffer loading at ultralow energies, Int. J. 

Phys. Chem. 25, 313 (2006)• P. F. Weck and N. Balakrishnan, Importance of long‐range interactions in chemical reactions at cold and ultracold temperatures, Int. J. Phys. Chem. 25, 283 

(2006)• J. M. Hutson and P. Soldan, Molecular collisions in ultracold atomic gases, Int. J. Phys. Chem. 26, 1 (2007)• R. Krems,Cold controlled chemistry, Phys. Chem. Chem. Phys. 10, 4079 (2008)• I. Bloch, J. Dalibard, W. Zwerger, Many‐body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008)• M. Bell and T. Softley, Ultracold molecules and ultracold chemistry, Mol. Phys. 107, 99 (2009)• O. Dulieu and C. Gabbanini, The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics, Rep. Prog. Phys. 

72, 086401 (2009)• D. Chandler, Spotlight on orbiting resonances, J. Chem. Phys. 132, 110901 (2010)• C. Chin, R. Grimm, E. Tiesinga, and P. S. Julienne, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2012)• D. Blume, Few‐body physics with ultracold atomic and molecular systems in traps, Rep. Prog. Phys. 75, 046401 (2012)• S. Willitsch, Coulomb‐crystallised molecular ions in traps: methods, applications, prospects, Int. J. Phys. Chem. (2012)• B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014)• …

Page 11: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Outline

• (brief) Overview of methods and tools to describe an ultracold molecule

• Formation of ultracold ground state molecules via STIRAP

• Formation of ultracold molecular ions in merged atom/ion traps

Thé m l

Page 12: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

HOW…to describe a molecule

?

Thé m l

Page 13: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

10 20 30interatomic distance (a

0)

-6000

-4000

-2000

0

ener

gy (c

m-1

) RbCs

KCs

NaCs

LiCs

ns+n’s

1Σ+

3Σ+

10 20 30interatomic distance (a

0)

-8000

-6000

-4000

-2000

0

ener

gy (c

m-1

)

RbCs (5s+6p)

KCs (4s+6p)

LiCs (2s+6p)

NaCs (3s+6p)

ns+6p

1Σ+

66

RC

33R

C

Ground state

Excited state

)(RDge

E

)(RD

Chemical bond

A diatomic molecule is…

or

66

RC

Thé m l

Page 14: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

The Born‐Oppenheimer approximation

Vm

Hn

iiR

1

22

22

22

Relative motion of the nuclei

Electronic Hamiltonian 

2

22

2

22

2

222 RO

RR

RRR

2

2

2

2

22

2 RJLL

RJ

HeHv

Coriolis Rotation 

);()();( RrRURrH iie

Total wave function

);()()()(iBO rRR

Adiabatic Potential Energy Curves:R: Separated atoms

Molecular symmetriesHund’s cases

,,,,,:12 SpS

,: p

,...,,,,,,, 53311312 gugugugg

,...1,1,0,0,0,0 uguugg

Thé m l

Page 15: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Calculation of potential energy curves in the « chemical range »A tough many‐body problem! A scientific area in itself: Quantum Chemistry

Ex: Cs2: 2 nuclei and 110 electrons!

In the case of alkali atoms and alkaline‐earth atomic ions, a great simplification can be made: Atom/Ion treated asan effective one‐electron system: Use of ECP’s (Effective core potentials or pseudopotentials) with ℓ–dependentCPP’s (core‐polarization potentials) fitted on atomic energy spectra of the one‐electron system

[ECP+CPP+1e‐]+[ECP’+CPP’+1e‐]: exact energy at R=∞

Typical steps are (in an oversimplified way):

Choose a set of basis functions appropriate for numerical calculations: Gaussian orbitals

Determine one‐electron molecular orbitals through a self‐consistent field approach (Hartree‐Fock): describes themotion of one electron in the field of the cores and of the other electrons

Set up a configuration space with antisymmetrized spin‐orbital wave functions built on the HF orbitals

Diagonalize the Hamiltonian (Full Configuration Interaction (FCI)) to determine the structure of the dimer,considered as an effective two/three‐electron polarizable system

Convergence and accuracy checked against size of basis sets, and through detailed comparison with othermethods

Potential energy curves, permanent and transition dipole moments, static and dynamic dipole polarizabilities,…

Thé m l

Page 16: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Calculation of potential energy curves in the « asymptotic range »

A well‐known “electrostatic” problem! 

In a cold atom gas, the kinetic energy of the atoms is much smaller than any other characteristic energy(electronic, vibrational, rotational…), thus they feel each other at very large distances, well beyond the range ofchemical interaction (exchange forces)

Vo overlap between the electronic wave functions of each atom

Potential energy determined by atomic properties

Multipolar expansion of the electrostatic interaction: 

Interaction of two charge distributions at large distances

Calculation of potential energy curves in the  asymptotic range

Thé m l

0,1

041

BABA

BA

LLLL

LLel R

VV

Page 17: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

1. Electrostatic potential generated by A in a remote point O’

2. Potential energy felt by B due to the slowly‐varying field created by A

3. Potential energy between A and BO

qi

R

ir

A O’

qj

jrB

Z

Rrr ji ,

(LA,LB) : rank of multipolar moments of A et B• (0,0) : charge‐charge interaction  1/R• (1,0) : dipole‐charge interaction  1/R²• (1,1) : dipole‐dipole interaction  1/R3

• (0,2) : charge‐quadrupole interaction  1/R3 … 

MULTIPOLAR EXPANSION

Thé m l

BALL

ML

ML

L

LMLL

MLLel LLL

Rf

VBA

BABA

BA ;min with QQ4

10,

10

Page 18: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

• 1st order : permanent multipoles

Ex : 2 neutral non‐S atoms => dominant term = Vqq ~ 1/R5

Ex : 2 neutral S atoms => p1 = 0

• 2nd order : induced multipoles

Ex : dipolar interaction = Vdd ~ 1/R6 (van der Waals)(2)

0,1

0

001 Q̂Q̂4

1ˆBA

BABA

BA

LLB

MLBA

MLA

L

LMLL

MLLpelpp R

fV

BbAa

baelBA

BAbap EEEE

V

2

),(),(

0,

10

Q̂Q̂4

1ˆBA

BABA

BA

LL

ML

ML

L

LMLL

MLLel R

fV

MULTIPOLAR EXPANSION 

Thé m l

Page 19: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Example: structure of alkali dimers

Na2

Adapted from Jones et al,RMP 2006, Weiner et al, RMP 1999

Observation of Pure Long‐Range MoleculesPredicted by Uang et al, PRL 1978

Hyperfine structure

Fine structure

Aldegunde et al PRA 79, 013401 (2009)

Rb2, v=0

Page 20: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Features of the radial motion

From J. M. Hutson, Theory of atomic and molecular collisions, in Cold Molecules: Theory, Experiment, Applications, CRC Press, 2009

Thé m l

Scattering length

Page 21: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

HOW…to create a cold molecule

?

Thé m l

Page 22: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Laser Cooling of Molecules…not so cool!

« ground‐breaking » idea: photoassociation of cold atoms…

F=3

F=4

23

45

Cs Cs2

v

v’

A novel scheme is proposed for sequential cooling of rotation, translation, andvibration of molecules. More generally, this scheme manipulates and controls thestates and energies of molecules. The scheme, while somewhat complex, is simplerand more feasible than simply providing a large number of synchronously butindependently tunable lasers. The key component is a multiple single frequency laserin which a single narrow band pump laser generates an ensemble of resonant‘‘stimulated Raman’’ sidebands subsequently amplified and selected in a sample ofthe molecules to be cooled….Only this specific order of rotation–translation–vibration appears feasible (using molecules produced by photoassociation of ultracoldatoms avoids the requirement for translational cooling). Each step employs truedissipative cooling … by spontaneous emission and should yield a largetranslationally cold sample of molecules in the lowest v=0, J=0 level of the groundelectronic state…

Thé m l

Page 23: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Photoassociation of cold atoms+radiative stabilization

0 50 100 150 200R (a.u.)

−5000

0

5000

10000

15000

Ener

gy

s+s

s+p

0 50 100 150 200R (a.u.)

−5000

0

5000

10000

15000

Ener

gy

s+s

s+p

0 50 100 150 200R (a.u.)

−5000

0

5000

10000

15000

En

erg

y

s+s

s+p

First obersvations of ultracold moleculesCs2: Orsay, PRL, 80, 4402 (1998);Rb2: Pisa, PRL, 84, 2814 (2000)…

to produce (deeply‐bound) ultracold molecules

Collision froide

Photo-association

Formation d’une molécule Froide et stable

Désexcitation

Dissociation

Photon 1

Photon 2

Photon 2’

Seminal papers on cold atom PA:Thorsheim, H.R., Weiner, J., and Julienne, P.S., Laser‐induced photoassociation of ultracold sodium atoms, Phys. Rev. Lett., 58, 2420, 1987.Lett, P.D., Helmerson, K., Phillips, W.D., Ratliff, L.P., Rolston, S.L., and Wagshul, M.E., Spectroscopy of Na2 by photo‐association of laser‐cooled Na, Phys. Rev. Lett., 71, 2200, 1993.Miller, J.D., Cline, R.A., and Heinzen, D.J., Photoassociation spectrum of ultracold Rb atoms, Phys. Rev. Lett., 71, 2204, 1993.

Thé m l

transfer density of probability inwards…

But not selective in the final states…

Page 24: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Cold molecule formation: Feshbach resonances, Magnetoassociation

•Atoms with electronic AND nuclear magnetic moments (alkalis, lanthanides,…)•First pointed out by Stwalley (PRL 37, 1628, 1976) and Tiesinga et al (PRA 47, 4147, 1993)•The magnetic moment of a molecular complex and of an atom pair are different, so that their energy vary differently with magnetic field•= Change of the dissociation energy of a high‐lying molecular bound state• Very powerful method for creating (weakly‐bound) ultracold molecules! 

From www.uibk.ac.at Chin et al, RMP 2012

Thé m l

Page 25: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Cold molecule formation: energy relaxation toward the absolute ground level

STIRAP : STImulated Raman Adiabatic Passage (Bergman 1990)

Determine the most efficient STIRAP scheme in order to create ultracold molecules in their absolute ground state

Efficiency: strongly depends on the detailed characteristics of the system AND of the lasers available in the lab

Achieved in a optical lattice to avoid atomic and molecular collisions

Thé m l

Page 26: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Full modeling of STIRAP in KRb

Thé m l

PRA 90, 033413 (2014)

See experiments by J. Ye and D. Jin at JILA

Page 27: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Full modeling of STIRAP in KRb

Thé m l

PRA 90, 033413 (2014)

Assuming pump = dump

Ipump = Idump

Page 28: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Full modeling of STIRAP in KRb

Thé m l

PRA 90, 033413 (2014)

Assuming pump = dump

Ipump = Idump

Page 29: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Full modeling of STIRAP in KCs

Thé m l

New J. Phys 2015 (in press)

Assuming pump = dump

Ipump = Idump

Page 30: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Full modeling of STIRAP in KCs

Thé m l

New J. Phys 2015 (in press)

Page 31: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

R. Vexiau, N. Bouloufa, M.Aymar, J. G. Danzl, M. J. Mark, H.‐C. Nägerl, and O. Dulieu ,  Eur. Phys. J. D, special issue on Cold Molecules, 65, 243 (2011)

Off‐resonant regime: smooth variation

Resonant regime 

Suppression of resonantregime due to unfavorable FC 

Cs2 v=0 of the ground stateKnowledge of molecular data

Strongly resonant patterns

isotropic dynamical polarizabilities in real frequency

Optical trapping of ultracold molecules

Page 32: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Magic wavelengths for atom and molecule trapping

ULM & LAC, NJP, special issue on Cold Molecules,(2015)

Rb2 v=0 of the lowest triplet state

Cs2 v=0 of the ground stateR. Vexiau, et al , Eur. Phys. J. D, 65, 243 (2011)

Identical trapping conditions (same polarizability) for initial and final statesGood matching of the motional states in the lattice

Page 33: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

And NEXT…?

Thé m l

Page 34: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Merging laser‐cooled atoms and ions: hybrid traps

Cold Rb trap

Ion cristal

Resonant‐excitation mass spectrometryDrewsen et al PRL 93, 240201 (2014)

Ca+

fluor

esce

nce

The hybrid trap at University of Basel (Willlitsch’ group)

Page 35: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Cold molecular ion formation by radiative association

H. Da Silva Jr, M. Aymar, M. Raoult, O. Dulieu, New J. Phys., in press (2015)

Page 36: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Cold molecular ion formation by radiative association

H. Da Silva Jr, M. Aymar, M. Raoult, O. Dulieu, New J. Phys., in press (2015)

Page 37: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Cold molecular ion formation by radiative association

H. Da Silva Jr, M. Aymar, M. Raoult, O. Dulieu, New J. Phys., in press (2015)

Page 38: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Strongly (polar) magnetic molecules made of Erbium

arXiv:1504.04578

Page 39: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Merci, Thank you 

COLUM2012 Nov. 18-23

Page 40: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Anistropic effect in collisions of ultracold polar molecules

Page 41: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Full quantum treatment of atom‐molecule collisions…

Page 42: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Laser‐cooling of molecules…finally!

YO molecule

SrF molecule

Page 43: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Molecules and ultracold matter« The field of cold and ultracold molecules has recently witnessed a number of spectacular advancesreliant upon the high quality of our knowledge of molecular structure at a very fundamental level.This lecture will illustrate this premise, highlighting the characteristics of molecules that we all careabout. »

Phase space density

binding energy (Hz)

10-6

106

109

1012

X(0,0) molecules

QUANT.

DEGEN.

Atomic properties

Molecular dynamics

Cold Chemistry

Thé m l

Page 44: Cold Molecules: Why? How? And Next?...•B. K. Stuhl, M. T. Hummon and J. Ye, Cold State‐Selected Molecular Collisions and Reactions, Ann. Rev. Phys. Chem. 65, 501 (2014) Outline

Scattering length: a crucial parameter for cold collisions

Scattering amplitude in elastic collisions

Asymptotic wave function: 

Elastic cross section

Scattering length Cold collisions

The dynamics is fully determined by a global parameter for the interaction: a

This has important consequences for achievement of quantum degeneracy of ultracold gases