Cohomological characterization of Universal bundles of the ... · Cohomological characterization of...

29
Cohomological characterization of Universal bundles of the Grassmannian of lines Cohomological characterization of Universal bundles of the Grassmannian of lines Alicia Tocino S´ anchez Departamento de ´ Algebra Facultad de Ciencias Matem´ aticas, UCM Defensa de tesis para optar al grado de doctor en Matem´ aticas bajo la direcci´ on de Enrique Arrondo Esteban Madrid 2015

Transcript of Cohomological characterization of Universal bundles of the ... · Cohomological characterization of...

Page 1: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Cohomological characterization of Universalbundles of the Grassmannian of lines

Alicia Tocino Sanchez

Departamento de AlgebraFacultad de Ciencias Matematicas, UCM

Defensa de tesis para optar al grado de doctor en Matematicasbajo la direccion de Enrique Arrondo Esteban

Madrid 2015

Page 2: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Motivation

Horrock’s criterion A vector bundle F over Pn splits if andonly if F does not have intermediate cohomology

Ottaviani splitting criterion for G(k , n) and quadrics

Arrondo and Grana characterized ⊕O(li0)⊕

⊕Q(li1) (G(1, 4))

Costa and Miro-Roig characterized SλQ (G(k , n))

Arrondo and Malaspina gave an improvement of thesplitting criterion for the Grassmannian of lines

Page 3: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

1 Notation Q, S, universal exact sequence, E-N complex

2 Splitting criterion for Grassmannian of linesIdeas (Serre duality, E-N complex)ResultComparison

3 Next Step O, QIdeas (Induction on cohomology)Sketch of the proofResultComparison for G(1, 4)

4 General Step O, Q, S2Q, . . ., SkQ with k ≤ n − 2 (Chapter 3)Ideas (Double induction)Sketch of the proofResult

5 Derived categories vs E-N complex + Serre Duality (Chapter 4)

Page 4: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Notation Q, S, universal exact sequence, E-N complex

Notation for G(1, n):

G(1, n) = {1−dimensional subspaces of Pn = P(V )}

Q∨ = {(v ,Λ) ∈ V ∗ ×G(1, n) | v ∈ Λ}

The universal exact sequence is:

0 −→ Q∨ −→ V ∗ ⊗Oρ

−→ S −→ 0

Q∨ is the universal bundle of rank 2

S is the universal bundle of rank n − 1

By making ∧jρ we get some Eagon-Northcott complexes

Page 5: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Splitting criterion for Grassmannian of lines

Ideas (Serre duality, E-N complex)

The following are equivalent:

O is a direct summand of F

there exist maps O −→ F and F −→ O whose composition isnon zero

We can relate the composition:

Hom(O,F ) × Hom(F ,O) −→ Hom(O,O)

(H0(F )× H0(F∨) −→ H0(O))

with the perfect pairing giving by Serre’s duality.

Page 6: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Splitting criterion for Grassmannian of lines

Ideas (Serre duality, E-N complex)

We can get the following commutative diagram:

Hn−1(F ⊗ Sn−1Q(−n))× Hn−1(F∨ ⊗ Sn−1Q∨(−1))φ

−→ H2n−2(O(−n − 1))

↑ id × ψ2 ψ4 ↑≃

Hn−1(F ⊗ Sn−1Q(−n))× H0(F∨) −→ Hn−1(Sn−1Q(−n))

↑ ψ1 × id ψ3 ↑≃

H0(F )× H0(F∨)φ′

−→ H0(O)

Page 7: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Splitting criterion for Grassmannian of lines

Ideas (Serre duality, E-N complex)

We use the following Eagon-Northcott complex to build theinjective map ψ1 : H

0(F ) −→ Hn−1(F ⊗ Sn−1Q(−n)):

0 → Sn−1Q(−n) → V ∗ ⊗ Sn−2Q(−n + 1) →∧2 V ∗ ⊗ Sn−3Q(−n + 2) → . . .

. . . →∧n−2 V ∗ ⊗Q(−2) →

∧n−1 V ∗ ⊗O(−1) → O → 0

And the following complex to build the surjective mapψ2 : H

0(F∨) −→ Hn−1(F∨ ⊗ Sn−1Q∨(−1)):

0 → Sn−1Q∨(−1) → V ∗ ⊗ Sn−2Q∨(−1) →∧2 V ∗ ⊗ Sn−3Q∨(−1) → . . .

. . . →∧n−2 V ∗ ⊗Q∨(−1) →

∧n−1 V ∗ ⊗O(−1) → O → 0

Page 8: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Splitting criterion for Grassmannian of lines

Result

Step 0

(Splitting Criterion) A vector bundle F over G(1, n) splits if andonly if H j

∗(F ⊗ S iQ) = 0 where (i , j) ∈ A0 ∪ B0.

00

1

2

3

4

...

n − 4

n − 3

n − 2

n − 1

n

n + 1

n + 2

...

2n − 6

2n − 5

2n − 4

2n − 3

2n − 2

j

A0

1 2 3 4 . . . n − 5 n − 4 n − 3 n − 2 n − 1 i

B0

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

Figure: AM’s splitting critetion

Page 9: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Splitting criterion for Grassmannian of lines

Comparison

First we compare with the splitting criterion made by Ottaviani.

00

1

2

3

4

...

k − 2

k − 1

k

k + 1

k + 2

...

n − 5

n − 4

n − 3

n − 2

n − 1

n

n + 1

n + 2

...

2n − k − 5

2n − k − 4

2n − k − 3

2n − k − 2

2n − k − 1

...

2n − 7

2n − 6

2n − 5

2n − 4

2n − 3

2n − 2

j

1 2 3 4 . . . k − 2 k − 1k k + 1 k + 2 . . . n − 5n − 4n − 3n − 2 i

R0

b

b

b

b

b

b

b

b

b

b

b

b

b

R1

b

b

b

b

b

b

b

b

b

b

b

R2

b

b

b

b

b

b

b

b

R3

b

b

b

b

b

L0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

L1

b

b

b

b

b

b

b

b

b

b

b

L2

b

b

b

b

b

b

b

b

L3

b

b

b

b

b

L4

b

b

bb

b

R0 =B0

L0 =A0

Figure: Ottaviani’s splitting criterion

Page 10: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Splitting criterion for Grassmannian of lines

Comparison

Now we compare with the splitting criterion obtained by usingderived categories.

00

1

2

3

4

5

6

...

n − 6

n − 5

n − 4

n − 3

n − 2

n − 1

n

n + 1

n + 2

...

2n − 10

2n − 9

2n − 8

2n − 7

2n − 6

2n − 5

2n − 4

2n − 3

2n − 2

j

1 2 3 4 5 6 . . . n − 5 n − 4 n − 3 n − 2 n − 1 i

M0 =A0

N0

M ′

B0

M1

M2M3

N1N2

N3

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure: Splitting critetion with derived categories

Page 11: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Next Step O, Q

Ideas (Induction on cohomology)

Goal: Characterize direct sums of twists of O and Q.

As before the following are equivalent:

Q is a direct summand of F

there exist maps Q −→ F and F −→ Q whose composition isnon zero

We can relate the composition:

Hom(Q,F ) × Hom(F ,Q) −→ Hom(Q,Q)

(H0(F ⊗Q∨)× H0(F∨ ⊗Q) −→ H0(Q∨ ⊗Q))

with the perfect pairing giving by Serre’s duality.

Page 12: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Next Step O, Q

Ideas (Induction on cohomology)

We can get the following commutative diagram:

Hn−1(F ⊗ Sn−2Q(−n))× Hn−1(F∨ ⊗ Sn−2Q∨(−1))φ

−→ H2n−2(O(−n − 1))

↑ ψ1 × id ψ3 ↑≃

H0(F ⊗Q∨)× Hn−1(F∨ ⊗ Sn−2Q∨(−1)) −→ Hn−1(Q∨ ⊗ Sn−2Q∨(−1))

↑ id × ψ2 ψ4 ↑≃

H0(F ⊗Q∨)× H0(F∨ ⊗Q)φ′

−→ H0(Q∨ ⊗Q)

Page 13: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Next Step O, Q

Ideas (Induction on cohomology)

We can build the natural surjective maps ψ1 and ψ2 by using someparticular Eagon-Northcott complexes.

For ψ1 : H0(F ⊗Q∨) −→ Hn−1(F ⊗ Sn−2Q(−n)) we use:

0 −→ Sn−2Q(−n) −→ V ∗ ⊗ Sn−3Q(−n + 1) −→∧2 V ∗ ⊗ Sn−4Q(−n + 2) −→ . . .

. . . −→∧n−3 V ∗ ⊗Q(−3) −→

∧n−2 V ∗ ⊗O(−2) −→ V ⊗O(−1) −→ Q∨ −→ 0

And for ψ2 : H0(F∨ ⊗Q) −→ Hn−1(F∨ ⊗ Sn−2Q∨(−1)) we use:

0 −→ Sn−2Q∨(−1) −→ V ∗ ⊗ Sn−3Q∨(−1) −→∧2 V ∗ ⊗ Sn−4Q∨(−1) −→ . . .

. . . −→∧n−3 V ∗ ⊗Q∨(−1) −→

∧n−2 V ∗ ⊗O(−1) −→ V ⊗O −→ Q −→ 0

Page 14: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Next Step O, Q

Ideas (Induction on cohomology)

If we only suppose the vanishing of cohomology that make ψ1 andψ2 surjective maps we are just characterizing direct sums of twistsof Q. The hypotheses are H j

∗(F ⊗ S iQ) = 0 with (i , j) in thefollowing figure.

00

1

2

3

4

...

n − 4

n − 3

n − 2

n − 1

n

n + 1

n + 2

...

2n − 6

2n − 5

2n − 4

2n − 3

2n − 2

j

1 2 3 4 . . . n − 5 n − 4 n − 3 n − 2 n − 1 i

C1

A1

D1

B1

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure: Characterize direct sums of twists of Q

Page 15: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Next Step O, Q

Sketch of the proof

Ideas to characterize direct sums of twists of O and Q:

Remove one hypothesis of Step 0 (Hn−1∗ (F ⊗ Sn−2Q) 6= 0)

Our conditions: the remaining hypotheses of Step 0 and thehypotheses that characterize direct sums of twists of Q

Induction on∑

l hn−1(F ⊗ Sn−2Q(l)) = m.

m = 0 ⇒ Step 0we suppose the result true for m − 1we prove the result for m 6= 0

Page 16: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Next Step O, Q

Sketch of the proof

Sketch of the proof:

There exists an l such that Hn−1(F ⊗ Sn−2Q(l)) 6= 0 (wechoose l = −n)

We obtain the commutative diagram ⇒ F has as a directsummand Q:

F = Q⊕ F ′

F ′ satisfies the same hypotheses of F and

m′ :=∑

l

hn−1(F ′ ⊗ Sn−2Q(l)) = m − 1

Applying induction hypothesis to F ′ ⇒ F can be expressed asdirect sums of twists of O and Q

Page 17: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Next Step O, Q

Result

Step 1

A vector bundle F over G(1, n) can be expressed as direct sums oftwists of O and Q if and only if H j

∗(F ⊗ S iQ) = 0 where (i , j) arethe points in the following figure.

00

1

2

3

4

...

n − 4

n − 3

n − 2

n − 1

n

n + 1

n + 2

...

2n − 6

2n − 5

2n − 4

2n − 3

2n − 2

j

1 2 3 4 . . . n − 5 n − 4 n − 3 n − 2 n − 1 i

C1

A1

D1

B1

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

A0

B0

Figure: Characterize direct sums of twists of O and Q

Page 18: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Next Step O, Q

Comparison for G(1, 4)

We can compare this result with the one given by E. Arrondo andB. Grana for the case G(1, 4). Observe that our characterizationhas one less condition.

A vector bundle F over G(1, 4) can be expressed as direct sums oftwists of O and Q if and only if H j

∗(F ⊗ S iQ) = 0 where thepoints (i , j) are in the following figure.

00

1

2

3

4

5

6

j

1 2 3 i

b

b

b

b

b

b

b

b

b

b

00

1

2

3

4

5

6

j

1 2 3 i

b

b

b

b

b

b

b

b

b

Figure: AG characterization vs Step 1

Page 19: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

General Step O, Q, S2Q, . . ., SkQ with k ≤ n − 2 (Chapter 3)

Ideas (Double induction)

Goal: Characterize direct sums of twists of O, Q, S2Q, . . ., SkQwith k ≤ n − 2.

The following are equivalent:

SkQ is a direct summand of F

there exist maps SkQ −→ F and F −→ SkQ whosecomposition is non zero

We can relate the composition:Hom(SkQ,F )× Hom(F ,SkQ) → Hom(SkQ,SkQ)

(H0(F ⊗ SkQ∨)× H0(F∨ ⊗ SkQ) → H0(SkQ∨ ⊗ SkQ))with the perfect pairing giving by Serre’s duality.

Page 20: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

General Step O, Q, S2Q, . . ., SkQ with k ≤ n − 2 (Chapter 3)

Ideas (Double induction)

We can get the following commutative diagram:

Hn−1(F ⊗ Sn−k−1Q(−n))× Hn−1(F∨ ⊗ Sn−k−1Q∨(−1))φ

−→ H2n−2(O(−n − 1))

↑ ψ1 × id ψ3 ↑≃

H0(F ⊗ SkQ∨)× Hn−1(F∨ ⊗ Sn−k−1Q∨(−1)) −→ Hn−1(SkQ∨ ⊗ Sn−k−1Q∨(−1))

↑ id × ψ2 ψ4 ↑≃

H0(F ⊗ SkQ∨)× H0(F∨ ⊗ SkQ)φ′

−→ H0(SkQ∨ ⊗ SkQ)

Page 21: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

General Step O, Q, S2Q, . . ., SkQ with k ≤ n − 2 (Chapter 3)

Ideas (Double induction)

We can build the natural surjective maps ψ1 and ψ2 by using someparticular Eagon-Northcott complexes.

For ψ1 : H0(F ⊗ SkQ∨) −→ Hn−1(F ⊗ Sn−k−1Q(−n)) we use:

0 → Sn−k−1Q(−n) → V ∗ ⊗ Sn−k−2Q(−n + 1) →∧2 V ∗ ⊗ Sn−k−3Q(−n + 2) → . . .

. . . →∧n−k−2 V ∗ ⊗Q(−k − 2) →

∧n−k−1 V ∗ ⊗O(−k − 1) →

→∧k V ⊗O(−k) →

∧k−1 V ⊗Q(−k) → . . .

. . . →∧2 V ⊗ Sk−2Q(−k) → V ⊗ Sk−1Q(−k) → SkQ(−k) → 0

Page 22: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

General Step O, Q, S2Q, . . ., SkQ with k ≤ n − 2 (Chapter 3)

Ideas (Double induction)

And for ψ2 : H0(F∨ ⊗ SkQ) −→ Hn−1(F∨ ⊗ Sn−k−1Q∨(−1)) we

use:

0 → Sn−k−1Q∨(−1) → V ∗ ⊗ Sn−k−2Q∨(−1) →∧2 V ∗ ⊗ Sn−k−3Q∨(−1) → . . .

. . . →∧n−k−2 V ∗ ⊗Q∨(−1) →

∧n−k−1 V ∗ ⊗O(−1) →

→∧k V ⊗O →

∧k−1 V ⊗Q → . . .

. . . →∧2 V ⊗ Sk−2Q → V ⊗ Sk−1Q → SkQ → 0

Page 23: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

General Step O, Q, S2Q, . . ., SkQ with k ≤ n − 2 (Chapter 3)

Ideas (Double induction)

If we only suppose the vanishing of cohomology that make ψ1 andψ2 surjective maps we are just characterizing direct sums of twistsof SkQ. The hypotheses are H j

∗(F ⊗ S iQ) = 0 with (i , j) in thefollowing figure.

00

1

2

3

...

k − 3

k − 2

k − 1

k

k + 1

k + 2

k + 3

k + 4

...

...

n − 4

n − 3

n − 2

n − 1

n

n + 1

n + 2

...

...

2n − k − 6

2n − k − 5

2n − k − 4

2n − k − 3

2n − k − 2

2n − k − 1

2n − k

2n − k + 1

...

2n − 5

2n − 4

2n − 3

2n − 2

j

Ck

Ak

Bk

Dk

(n − k − 2, n − 1)

1 2 3 . . . k − 3 k − 2 k − 1 . . . n − k − 5n − k − 4

n − k − 3n − k − 2

. . . . . . n − 3 n − 2 n − 1 i

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure: Characterize direct sums of twists of SkQ

Page 24: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

General Step O, Q, S2Q, . . ., SkQ with k ≤ n − 2 (Chapter 3)

Sketch of the proof

Ideas to characterize direct sums of O, Q, S2Q, . . ., SkQ:

Remove one hypothesis of Step k-1(Hn−1

∗ (F ⊗ Sn−k−1Q) 6= 0)

Our conditions: the remaining hypotheses of Step k − 1 andthe hypotheses that characterize direct sums of twists of SkQ

Induction on∑

l hn−1(F ⊗ Sn−k−1Q(l)) = m.

m = 0 ⇒ Step k − 1we suppose the result true for m − 1we prove the result for m 6= 0

Page 25: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

General Step O, Q, S2Q, . . ., SkQ with k ≤ n − 2 (Chapter 3)

Sketch of the proof

Sketch of the proof:

There exists an l such that Hn−1(F ⊗ Sn−k−1Q(l)) 6= 0 (wechoose l = −n)

We obtain the commutative diagram ⇒ F has as a directsummand SkQ:

F = SkQ⊕ F ′

F ′ satisfies the same hypotheses of F and

m′ :=∑

l

hn−1(F ′ ⊗ Sn−k−1Q(l)) = m − 1

Applying induction hypothesis to F ′ ⇒ F can be expressed asdirect sums of twists of O, Q, S2Q, . . ., Sk−1Q and SkQ

Page 26: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

General Step O, Q, S2Q, . . ., SkQ with k ≤ n − 2 (Chapter 3)

Result

Step k

A vector bundle F over G(1, n) can be expressed as direct sums oftwists of O, Q, S2Q, . . ., Sk−1Q and SkQ with k ≤ n − 2 if andonly if H j

∗(F ⊗ S iQ) = 0 where (i , j) are the points in the followingfigure.

00

1

2

3

...

...

k − 1

k

k + 1

k + 2

...

...

...

n − 4

n − 3

n − 2

n − 1

n

n + 1

...

...

...

2n − k − 4

2n − k − 3

2n − k − 2

2n − k − 1

...

...

2n − 5

2n − 4

2n − 3

2n − 2

j

i

C1 C2 Ck

A0

A1

Ak

B0

B1

Bk

D1 D2 Dk

b(n − k − 2, n − 1)

1 2 . . . k − 2 k − 1 . . .n − k − 4n − k − 3

n − k − 2 . . . . . . n − 4 n − 3 n − 2 n − 1

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure: Characterize direct sums of twists of O, Q, S2Q, . . ., SkQ

Page 27: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Derived categories vs E-N complex + Serre Duality (Chapter 4)

To use derived categories we consider the following resolution ofthe diagonal ∆ ⊆ X × X where X = G(k , n):

0 →∧(k+1)(n−k)(Q∨ ⊠ S∨) → . . .

∧2(Q∨ ⊠ S∨) → Q∨ ⊠ S∨ → OX×X → O∆ → 0

These elements decompose in the following way:

r∧(Q∨⊠ S∨) =

|λ|=r

SλQ∨⊠ Sλ′S∨

where the sum goes over all Young tableau with r cells, λ′ is theconjugate Young tableau and Sλ is the Schur functor associated tothe tableau λ

Page 28: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Derived categories vs E-N complex + Serre Duality (Chapter 4)

Observe that H2n−2(O(−n − 1)) = Ext2n−2(O,O(−n − 1)) andthe element that generates is precisely:

0 −→ O(−n− 1) −→∧n−1 V ⊗O(−n − 2) −→

∧n−2 V ⊗Q(−n) −→ . . .

. . . −→∧2 V ⊗ Sn−3Q(−n) −→ V ⊗ Sn−2Q(−n) −→ V ∗ ⊗ Sn−2Q(−n + 1) −→ . . .

. . . −→∧n−2 V ∗ ⊗Q(−2) −→

∧n−1 V ∗ ⊗O(−1) −→ O −→ 0

Conclusion:

The resolution of the diagonal has more pieces than the previouscomplex.

Page 29: Cohomological characterization of Universal bundles of the ... · Cohomological characterization of Universalbundles oftheGrassmannianof lines 1 Notation Q, S, universal exact sequence,

Cohomological characterization of Universal bundles of the Grassmannian of lines

Derived categories vs E-N complex + Serre Duality (Chapter 4)

Thank you!