Cognitronics - UMA

43
Cognitronics: Ulrich Rückert Cognitronics and Sensor Systems 14th IWANN, 2017 Cadiz, 14. June 2017 [email protected] www.ks.cit-ec.uni-bielefeld.de Resource-efficient Architectures for Cognitive Systems

Transcript of Cognitronics - UMA

Page 1: Cognitronics - UMA

Cognitronics:

Ulrich Rückert

Cognitronics and Sensor Systems

14th IWANN, 2017

Cadiz, 14. June 2017

[email protected]

Resource-efficient Architectures for Cognitive Systems

Page 2: Cognitronics - UMA

Cognitronics

Slide 2

Is there a Silicon Wayto Neural Networks ?

R. Caianiello, WOPPLOT 1986, MunichK. Goser / U. Rückert, IEEE Micro Vol.9, No.6 1989

(1921-1993)

Page 3: Cognitronics - UMA

Overwiew

Introduction Background

Technology Femtoelectronics for ANN

Architectures Design Alternatives

Applications Cognitive Robotics

Discussion QuestionsSlide 3

Page 4: Cognitronics - UMA

Nanoelectronic Systems Engineering

Slide 4

Architecture

FunctionTechnology

ResourceEfficiency

Energy – Mass (Volume) – Time

How to use 1010 (unreliable) devices/cm2 efficiently?

Page 5: Cognitronics - UMA

Design Space Exploration

Slide 5

pareto-optimal

not pareto-optimal

time

[µs]

pareto-optimal design in respect to area, energy, and time

Page 6: Cognitronics - UMA

Cognitronics and Sensor Systems

Slide 6

Resource Efficiency

CognitiveSystems

Bio-inspiredIT

Nano-inspiredIT

Bio-inspired Nano-Architectures for Cognitive Interaction Technology

How to generate complex behaviourin the limits of restricted resources?

Page 7: Cognitronics - UMA

Overwiew

Introduction Background

Technology Femtoelectronics for ANN

Architectures Design Alternatives

Applications Cognitive Robotics

Discussion QuestionsSlide 7

Page 8: Cognitronics - UMA

Slide 8

Nanotechnologie

10 nm

J. Bordogna, NSF, USA, 2001: https://www.nsf.gov/news/speeches/bordogna/rochester/sld006.htm

Page 9: Cognitronics - UMA

Evolution of Computations per KWh

Slide 9J.G. Koomey et al. 2009, IEEE Annals of the History of Computing

MemristorGrapheneSETQuantum Comp.

(Silicon on Thin-buried-Oxide)

Page 10: Cognitronics - UMA

Slide 10

B. Höfflinger: CHIPS 2020Springer 2012

Nanoelectronics(structure)

Femtoelectronics(energy)

Page 11: Cognitronics - UMA

Nanotechnology ‐ Challenges

Slide 11

How to use 1010 (unreliable) devices/cm2

efficiently?

Need for novel architectures:regular & modular structure reduced design complexityfault-tolerance, redundancy higher yieldparallelism reduced power consumption!scalability faster and simpler mapping to

next generation technologies

Neural architectures are very good candidates!Technology Push! (1990)

Page 12: Cognitronics - UMA

Overwiew

Introduction Background

Technology Femtoelectronics for ANN

Architectures Design Alternatives

Applications Cognitive Robotics

Discussion QuestionsSlide 12

Page 13: Cognitronics - UMA

Slide 13

Brain Architecture ?

~ dm³~ 1,5 kg~ 1011 neurons~ 30 Watt

Brain Facts, Society For Neuroscience, 2008, www.sfn.org

Page 14: Cognitronics - UMA

Slide 14

Brain Architecture ?

Cortical column~ 1 mm³~ 100.000 neurons Neuron

< 100.000 µm³~ 10 Hz (1-100 ms)~ pJ

Synapse~ 0,01 µm³~ 1ms~ fJ

http://faculty.washington.edu/chudler/synapse.html

https://en.wikipedia.org/wiki/File:PLoSBiol4.e126.Fig6fNeuron.jpg

János Szentágothai, Proc. Roy. Soc. London Ser. B 201: 219-248)

Page 15: Cognitronics - UMA

Slide 15

Modular System Design

Architecture Behaviour

Technology

System

Subsystems

Modules

Devices

Logic Abstraction Levels

Gajski & Kuhn

KTSDESIGN Science Photo Library Getty Images

Page 16: Cognitronics - UMA

Analysing ASICs

Slide 16

Could a Neuroscientist Understand a Microprocessor?E. Jonas, K.P. Kording, PLOS May, 2016

http://dx.doi.org/10.1101/055624

Page 17: Cognitronics - UMA

Slide 17

ANN Hardware

Neuro-ASICs

FPGAsMulti-Core Systems Digital Analog

Standard ICs

Rückert: Brain-Inspired Architectures for Nanoelectronics, Chap. 18 in Chips 2020, Vol. 2, Springer 2015

ANN Hardware Approaches

NeuromorphGPUs

Page 18: Cognitronics - UMA

Flexibility / Performance Trade‐Off

Slide 18

Page 19: Cognitronics - UMA

Architectures

Slide 19

log Performance

log

Flex

ibili

ty

log

Pow

er

ASIPDSP

GeneralPurposeProzessor

FPGA

Semi Custom ASIC

Full CustomASICs

h-1

10-3 h-1

102 W

10-3 W

106 MOPS102 MOPS

Software

Hardware

[Source: EECS, RWTH Aachen]

DSP Digital Signal ProcessorASIP Application Specific Instruction Set Processor

FPGA Field Programmable Gate ArrayASIC Application Specific Integrated Circuit

Page 20: Cognitronics - UMA

Digital Silicon Neuron

Slide 20

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Purkinje cell of cerebellar cortex (nW)

32 nm CMOS

[mm]

[mm]

400

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

1.0

[mm]

[mm]

Digital-Neuron (µW)

100,000 Synapses, 32 Bit SRAM

0.8

32Bit RISC-Core

RISC-Core

SRAM cell area ~ 0,1µm²

Page 21: Cognitronics - UMA

Ultra‐Low‐Power Processor

Slide 21

Ener

gy/ I

nstr

uctio

n[p

J]

Supply Voltage [V]

10

50

0.4 0.60.2 0.8 1.0 1.2

90

Sub-threshold CMOS0.36 mm² area, 65 nm

Power consumption1.35 µW – 133 kHz – 0.325 V10,4 mW – 95 MHz – 1.2 V

ISSCC2012

Adaptable supply voltage & operating frequency

Page 22: Cognitronics - UMA

From RISC to MPSoC

Slide 22

Processor ClusterScalable Network on Chip Architecture• First Chip Realization

• 2 Cluster / 8 Cores

• 65 nm CMOS Technology• 16 Cluster / 64 Cores

• 32 nm CMOS Technology• 64 Cluster / 256 Cores

• 16 nm CMOS Technology• 256 Cluster / 1024 Cores

1 cm²

Power Challenge:

1000W versus 1W!

Page 23: Cognitronics - UMA

Amdahl´s Law

Slide 23

It roughly estimates the attainable speedup of a parallel algorithm.

Each algorithm has a parallel and a sequential portion.

•par+ser=1

•Runtime with p processors:

•Speedup

Page 24: Cognitronics - UMA

Analog Design Studies

Slide 24

weighted sum

decision

Page 25: Cognitronics - UMA

Calculation Precision

Slide 25

x1

x2α(a) = 1

α(a) = 0Δmax

m

i

tiij

m

i

tiij

Thxw

Thxw

1

1max min

ll 41

5.025.0

max

Binary Threshold Neuron:

weights w binaryInput vector x binary

m = length of xl = number of active inputs in x

Sparse Coding !

Page 26: Cognitronics - UMA

Integrate‐and Fire‐Neuron

Slide 26

Spiking Neurons

Asynchronous Behaviour Spike Jitter

(Optimization Problem)

Page 27: Cognitronics - UMA

Human Brain Project

Page 28: Cognitronics - UMA

Human Brain Project

Three (neuromorphic) computing platforms:

High Performance Computers (HPC)

Wafer‐Scale‐System (Heidelberg)

Multi‐Core‐System (Manchester)

analog Neurons

digitally emulatedNeurons

Page 29: Cognitronics - UMA

Slide 29

Page 30: Cognitronics - UMA

Slide 30

Benchmarking of Neuro‐ASICs

Neuro‐ASICS Feature Size

Die Size Neurons Synapses Bit/Syn. ESE

SpiNNaker 130nm 1,02cm² 1,600 *128x106 8 10‐8J

TrueNorth 28nm 4,30cm² 106 256x106 1 10‐11J

HICANN  180nm 0,50cm² 8‐512 114,688 4‐8 10‐10J

Neurogrid 180nm 1,68cm² 65,536 *16x106 #13 10‐10J

numbers per chip *off-chip #shared ESE: Energy/synaptic

event

Human Brain: about 1011 Neurons, 1015 Synapses, 30W average power

Page 31: Cognitronics - UMA

Neurocomputer Projects

‐ CNAPS, Adaptive Solutions, USA, 1990 (Digital, ASIC)‐ Synapse, Siemens, Germany, 1990 (Digital, ASIC)‐ ETANN, INTEL, USA, 1990 (EEPROM, Analog, ASIC)‐ MoNA, (mixed signal), Porrmann/Rückert‐ ….‐ SpiNNaker, Univ. of Manchester, U.K., 2007 (Digital, ASIC)‐ HICANN, Universität Heidelberg, 2010 (Analog/Digital, ASIC)‐ Neurogrid, Standford University, 2007 (Analog/Digital, ASIC)‐ Neurosynaptic Core TrueNorth, IBM, USA, 2010 (Digital, ASIC)‐ BlueHive, Cambridge, U.K., 2012 (FPGA) ‐ Cadence, Tensilica, Google, ARM,  ….‐ …

Page 32: Cognitronics - UMA

Overwiew

Introduction Background

Technology Femtoelectronics for ANN

Architectures Design Alternatives

Applications Cognitive Robotics

Discussion QuestionsSlide 32

Page 33: Cognitronics - UMA

Slide 33

Basic Cognitive Functions

Page 34: Cognitronics - UMA

CITEC Research Topics

Slide 34

Motion Intelligence Attentive Systems

Memory and learning

Ressource-efficientarchitectures for

cognitive systeme:Cognitronics

Situated Communication

Page 35: Cognitronics - UMA

Slide 35

The CITEC Hardware in the loop

Axel SchneiderMartin EgelhaafVolker DürrMarc ErnstUlrich RückertElisabetta Chicca

How to generate complex behaviour in the limits of

restricted energy resources?

HECTOR - The six-legged walking robotsee YouTube

Page 36: Cognitronics - UMA

Cognitive Interaction Technology

Slide 36

• 1000 Processors• TeraByte Memory• Embedded Sensors

~1dm³

< 10W

Long-term experiments in real world scenarios

Art Exhibition Hall, Bielefeld

www.cit-ec.de

Page 37: Cognitronics - UMA

Embedded Cognitronics

Slide 37

CITEC Smart Home Apartment

Page 38: Cognitronics - UMA

Overwiew

Introduction Background

Technology Femtoelectronics for ANN

Architectures Design Alternatives

Applications Cognitive Robotics

Discussion QuestionsSlide 38

Page 39: Cognitronics - UMA

39

Bio-inspired Principles

Sparse codes and acticity (Cell Assemblies)reduced power consumption - simple communication

Asynchronous information processingreduced power consumption - higher robustness

Massiv Parallelism and Redundancyreduced power consumption - higher robustness

Continuous Self-organizationfault-tolerance - optimal use of resources

Stability in large, dynamic networkslocal rules for stable and robust global behaviour

Page 40: Cognitronics - UMA

40

System Integration Roadmap

1cm³ ; 1WSystem in a Dice1.000 Cores

(Giga Byte)

1m³10KW

1 Billion Cores (Peta Byte)

System in a Rack

1dm³100W

1 Mill. Cores(Tera Byte)

System in a Box

Page 41: Cognitronics - UMA

41

System Integration Roadmap

1cm³ ; 1WSystem in a Dice

1m³10KW

System in a Rack

1dm³100W

System in a Box

Page 42: Cognitronics - UMA

Conclusion

Slide 42

At least in the next decade neural networkimplementations are dominated bynanoelectronics.

Until fundamental concepts become betterunderstood, the main advantages of siliconshould not blind us to alternative neuralnetwork design.

E. R. Caianiello

Page 43: Cognitronics - UMA

Thank your for your attention!

The Cognitronics and Sensor Systems Research Group

Ulrich Rückert