CO2 Capture using Nanoparticle-based Ionic Materials...

28
Ah-Hyung Alissa Park Earth and Environmental Engineering & Chemical Engineering Lenfest Center for Sustainable Energy Columbia University Sustainable Fuels from CO 2 , H 2 O and Carbon-Free Energy May 4 th , 2010 CO 2 Capture using Nanoparticle-based Ionic Materials (NIMs)

Transcript of CO2 Capture using Nanoparticle-based Ionic Materials...

Page 1: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Ah-Hyung Alissa ParkEarth and Environmental Engineering & Chemical Engineering

Lenfest Center for Sustainable EnergyColumbia University

Sustainable Fuels from CO2, H2O and Carbon-Free EnergyMay 4th, 2010

CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)

Page 2: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Projected Global Energy Demand & Supply

The world energy demand is projected to increase by over 40% in the next two decades

Fossil Fuels will remain the dominant source

Page 3: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Coal-fired Power Plants

Page 4: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Our Research Goals

Use domestic energy sources to achieve energy independence with environmental sustainability

Use carbon neutral energy sources such as biomass & MSW

Integrate carbon capture and storage (CCS) technologies into the energy conversion systems CCS

Gasoline

Diesel

Fossil

Nuclear

Solar

Biomass

Wind ,Hydro

Jet Fuel

Heat

Electricity

Ethanol

Methanol

DME

Hydrogen

Chemicals

Geo Municipal Solid

Wastes

Gasoline

Diesel

Jet Fuel

Heat

Electricity

Ethanol

DME

Hydrogen

Chemicals

Municipal Solid

Wastes

Wind ,Hydro

Geo

Biomass

Nuclear

Solar

Fossil

Carbon

Gas

Refining

Synthesis

CO2

Page 5: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Gasification-Based Energy Production System Concepts

Sulfur By-Product

Fly Ash By-Product

Slag By-Product

Steigel and Ramezan, 2006

Page 6: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Petroleum-based vs. Synthetic Liquid Fuels

0

10

20

30

40

50

60

70

80

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

Cru

de O

il Pr

ice

($/B

arre

l)

US$ of the day (Nominal) 2003 US$ (Real)

Crude oil prices once again at 1973 levels

Steynberg, (2006)

$81.81 (04/28/10)

Page 7: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Carbon Dioxide Sequestration Options

• Necessary Characteristics- Capacity and price

- Environmentally benign fate

- Stability

Separation Transportation Sequestration

CO2 Removal

Page 8: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Carbon Capture Schemes

Source: NETL, 2008

• From concentrated sources vs. diffuse sources

• Integrated Carbon Capture Technologies

Page 9: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

• Most widely employed CO2 capture method isusing

(Goff et al., Ind. Eng. Chem. Res. 2004)

• Concerns with Amine Scrubbing Technology

1.High parasitic energy penalty

2.High cost - capital and operating

3.Corrosion & degradation (due to SO2, O2, particulate, etc)

4.High vapor pressure leads to fugitive emissions

Typical Amine Scrubbing Process

Carbon Capture

10

Page 10: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Carbon Capture Schemes

Source: NETL, 2008

• From concentrated sources vs. diffuse sources

• Integrated Carbon Capture Technologies

Page 11: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

What is NIMS?Nanoparticle Ionic Materials

A Nanoscale Analogue to Ionic Liquids

Nanoparticle Ionic Corona

+ =

NIMS advantages

• Zero Vapor Pressure

• >600 counter ions affiliated with a single nanoparticle(unlike ionic liquids where each ion is the source of a single bearing CO2 capture site)

• Ionic coronas forming the Canopy are forced to distort their natural conformations to fill in the space between the cores.

• Such Entropic Frustration can be relieved by addition of solute (e.g. CO2), enhancing the overall solvation.

Page 12: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Synthesis of NIMs

CH3O

OO

CH3

NH2

CH3

xy:

Molecular Weight (Mw): 600 ~ 2000

OHOH

OH

OH

OHOH

OH

OH

Average 5-12 chains/nm2

Polymer Silica NIMS+ →

Page 13: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

=

7 nm(dia.) Silica average surface area: 345 m2/g12nm(dia.) Silica average surface area: 220 m2/g22 nm(dia.) Silica average surface area: 140 m2/g (Ref.:Sigma-aldrich)

Estimation of Corona Density

Average diameter 7 nm

Average 7.8 chains/nm2

Average diameter 12 nm Average diameter 22 nm

Average 5 chains/nm2Average 12 chains/nm2

Corona Density = f [Hydroxyl ions of Silica]

Corona fraction

Page 14: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

HSQC Spectra (Polyetheramine)

1 2 3 4 5

6

78

9

H9

H6

H8H7

H1

C6C9

C8

C1

C7

Jeffamine M-600 (Mw. 600)

*Up (Red): CH or CH3*Down (Blue): CH2

Jeffamine M-600 in DMSO-d6

H8‒C8

H7‒C7

H7‒C7

H9‒C9

Page 15: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

NIMS (7 nm SiO2 with Jeffamine M-600) in DMSO-d6

C1

1 2 3 4 5

6

78

9

NIMS (Mw. 600, 7 nm)Ionic Bond

H6, H9

H1

C6, C9

SO3O3S

SO3

SO3SO3

SO3O3S

O3S

HSQC Spectra (NIMS)

H6‒C6/H9‒C9

H7‒C7

H8‒C8

The peaks were deshielded (1H shifted to higher ppm region) due to the approach of oxygen atoms in sulfonate group by the formation of Ionic Bonds

*Up (Red): CH or CH3*Down (Blue): CH2

** ElectronegativityO: 3.44N: 3.04

Page 16: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

TGA: Improved Thermal Stability

TEM: Mono-dispersed, Non-agglomerated nanoparticles

ATR-IR: Counter Ions Grafted on Surface of Nanoparticles

7 nm core 12 nm core 22 nm core

CO2 capture by NIMS:Characterization of Different Core Size NIMs

Page 17: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Water bath

Scheme of experimental setup

19

P

T

Holder for thin layer samples

(at equilibrium and low pressure)

sample

Page 18: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Effects of T and P on CO2 Capture by NIMs

• >95% of capacity in 20 min• Equilibrium in 50 min

(35℃, PCO2=0.31 MPa)

• Negligible effect of core Size• Pressure ↑CO2 absorption ↑• Temperature↑ CO2 absorption↓

(35℃, PCO2 = 0.07-0.34 MPa)

(25℃-65 ℃, PCO2=0.31 MPa)

(35℃, PCO2=0.31MPa)

Page 19: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Regeneration of NIMs

• Regenerated under vacuum for 20 min• A multi-cycle test:

Regenerated NIMS shows SAME CO2 capacity as a fresh sample

Vacuum

(25℃, PCO2=0.31MPa)

Page 20: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

CO2 Capture Mechanism of NIMs

1. Molecular Interaction btw. functional groups and CO2

e.g., Lewis interaction btw. anion and CO2, other chemisorption (i.e. ‒NH2)

2. Molecular Structuree.g., Free volume for physisorption of CO2

Attenuated Total Refraction (ATR) FTIR and NMR Experiment

Atomic Force Microscopy (AFM) and 2D NMR Experiment Volume vs Temperature measurement, ATR IR

Page 21: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

NMR and ATR FTIR Spectra of NIMS with CO2

200 180 160 140 120 100 80 60 40 20 0

Chemically absorbed CO2

ppm

Physically absorbed CO2

13C NMR result of NIMS with CO2(@ 25 ℃ and 5 bar)

CO2

3000 2500 2000 1500 1000 500Wavenumber (cm-1)

Attenuated Total Reflection (ATR) IR results of NIMS with CO2(@ 25 ℃ and 10 bar)

Page 22: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

ATR FTIR Measurement

3000 2500 2000 1500 1000 500Wavenumber (cm-1)

2400 2380 2360 2340 2320 2300 2280

0.00

0.05

0.10

0.15

0.20

0.25

Abso

rban

ce

Wavenumber (cm-1)

1300 1200 1100 1000 9000.0

0.2

0.4

0.6

0.8

1.0

Abso

rban

ce

Wavenumber (cm-1)

680 670 660 650 640 630

0.04

0.06

0.08

0.10

0.12

Abso

rban

ce

Wavenumber (cm-1)

Page 23: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Lewis Acid-Base Interaction

SiO2

Vapor CO2

NIMS + CO2

<ν2 Bending Mode Region>

<Curve Fit Spectrum of ν2 Bending Mode Region>

NIMS + CO2: Eliminating Degeneracy of CO2 Bending Mode

Page 24: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Time (Minute)

0 200 400 600 800 1000

P/P

o, %

70

80

90

100 #1 (16 hr,0.05g)#2 (16 hr,0.05g)#3 (16 hr,0.05g)#4 (16 hr,0.05g)#5 (16 hr,0.05g)#6 (16 hr,0.05g)#7 (16 hr,0.05g)#8 (16 hr,0.05g) #2 (8 hr,0.1g)[BMIM]PF6 (12 hr,0.1g)[BMIM]BF4 (8 hr,0.1g)TSIL (16 hr,0.05g)30% MEA (16 hr,0.05g)

30 % MEA (0.05g)

NIMS #2 (0.1g)

NIMS #2 (0.05g)

TSIL (0.05g)

[BMIM]PF6 (0.05g)

[BMIM]BF4 (0.05g)

Comparison of CO2 Capture by NIMS & other media

• NIMS#2 made with Diamine polymer

• 0.05 g of NIMS at 300K and 2 atm

• TSIL: [HNH2MPL] NTF

NIMS#2 is a NIMS made with diamine polymer

Viscosicty = f [size of core, MW of polymer, ratio of core to polymer]

Page 25: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

CO2 Capture by NIMS#2: Effect of Temperature

(NIMS #2, 0.05 g of NIMS, 2 atm)

Time (Minute)

0 200 400 600 800 1000 1200 1400 1600

P/P

o %

80

85

90

95

100

300K305K310K315K320K 330K340K350K360K

Temperature Absorption

27oC

87oC

• Higher temperature reduces viscosity while physisorptiondecreases.

• Up to 57oC, initial reaction rates remain similar.

• Potential to operate at high temperature.

57oC

Page 26: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Future directions

• Development of Multifunctional smart particles (e.g. capture carbon and sulfur at the same time)

• Integrated systems (e.g. chemical looping technologies, ZECA, and enhanced WGS using mineral carbonation)

• Process intensification and flexibility (production of heat, electricity, chemicals and fuels (e.g. hydrogen and liquid fuels) in any combination

Page 27: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Acknowledgement

The NIMs part of this project is supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST) as a part of the Global Research Partnership Center led by Cornell University.

Page 28: CO2 Capture using Nanoparticle-based Ionic Materials (NIMs)energy.columbia.edu/files/2012/11/2_-Park_LCSE_050410.pdfCO2 =0.31 MPa) (35℃, P. CO2 =0.31MPa) Regeneration of NIMs •

Thank you