CMS FPIX Mechanical Design - CERN Documents... · TC‐5022 Dow Corning silicone grease zinc oxide...

29
Update on CMS FPIX Mechanical Design Simon W Kwan For CMS FPIX Mechanical Design Group (C.M. Lei, K. Arndt, J. Howell) 1 CMS Phase 1 Plenary Feb 16, 2011

Transcript of CMS FPIX Mechanical Design - CERN Documents... · TC‐5022 Dow Corning silicone grease zinc oxide...

Update on CMS FPIX Mechanical Design

Simon W Kwan

For CMS FPIX Mechanical Design Group

(C.M. Lei, K. Arndt, J. Howell)

1CMS Phase 1 Plenary   Feb 16, 2011

FPixFPix Phase 1 Upgrade Phase 1 Upgrade Main FeaturesMain Features

Technical Proposal:• Baseline: 3 disks in each endcap

U l ONE ki d f d l 2 8 d ONE id ti l bl dUse only ONE kind of module 2x8, and ONE identical blade.•All modules are arranged radially and placed between r=44.7mm to 161mm (total 56 modules per half disk or 896 ROCs)•Modules divided into an outer ring of 34 modules and inner ring of 22 g gmodules (easily disassemble the inner ring without affecting the outer)•Keep the same 20 degree rotation but for the inner assembly, add a 12 degree tilt to the IP (inverted cone geometry)

• Use C0 cooling:• Use C022 cooling:Use thin‐walled SS tubing based on getting a continuous loop providing enough cooling power for each blade assembly. Will use edge cooling.

• Use ultra light weight materials for mechanical support and cooling (estimated weight of each half disk is 416g) • Substrates are permanently glued to half rings and a “turbine‐like” structural support including cooling line is formed. Allows us to complete and thoroughly test all half disks structure without waiting for the availability of the pixel modules

Simon Kwan     CMS Tracker Week May  26, 2010 22

test all half disks structure without waiting for the availability of the pixel modules• Modules are fastened on blades and can be easily removed

TPG substrateModule Placement on substrateGlue module holders at ends with precision fixtureGlue module holders at ends with precision fixture

3CMS Pixel Mechanical Update May 2010

The Complete Half Disk 3‐Point Half Disk Supports

4CMS  Tracker Week,  May 26, 2010

Inner  Assembly are supported by 3 cf spokes

Cooling PerformanceCooling Performance

• Agreed in a cooling g gmeeting last July that for cooling performance calculation assume thatcalculation, assume that the power/pixel module is 3W (after irradiation and with large safety margin)T t diff• Temperature difference from coolant to sensor has to be less than 10oC

CMS Pixel Status Feb 2011 5

Mechanical Support Status as of Feb. 2011

• Half disk conceptual design completed• 2 segments of CC outer outer ring were made (1 by vendor, 1 by Fermilab

Machine shop). p)• Module holder design was revised so that one identical design would be 

used for all modules.• The support design for the inner assembly was revised to be directly from 

the service cylinder using 3 carbon fiber spokesthe service cylinder using 3 carbon‐fiber spokes.• The CO2 cooling tubing layout for all 3 half disks was designed• Coupling for cooling tube design was initiated.• A tooling for gluing the outer ring segments was machined.A tooling for gluing the outer ring segments was machined.• Drawings for machining CC outer inner ring completed and fabrication of 

prototype  started• Drawing for the prototype TPG substrate also completed and fabrication of 

t t b t t t t dprototype substrate started• Market search and study for thermal interface materials (TIM) completed.• Testing of TIM candidates initiated.• Indium interface between TPG substrate and CC ring initiated• Indium interface between TPG substrate and CC ring initiated.

6CMS Pixel Status Feb 2011

CC Segment of Outer Outer Ring

Tooling for gluing the Outer Outer Ringg g g gGluing carbon carbon segments, tubing & cf facing

Slots allowed CMM touch probe to access substrate tabs

8CMS Pixel Status Feb 2011

Module holder design was revised so that one identical design would be used for all modules. 

‐ extra hole was added; ‐ 1 hole for Inner Ring and the other hole for Outer Ring;‐ all screws can be accessed with tool without interference.all screws can be accessed with tool without interference.

1/16” through holes X2 for #00 90 screwsfor #00‐90 screws

9CMS Pixel Status Feb 2011

With the aid of a precision fixture, glue the #00‐90 threaded inserts on the substrate.Substrate is then glued to half rings (not shown) and ready to accept module.

#00‐90, 1 mm thick

#00‐90 screw

threaded insert

Supports for Inner AssemblySupports for Inner Assembly• The Inner Assembly is now supported directly from 

the service cylinder using 3 carbon‐fiber spokes for ease of accessease of access.

• One end of the spoke will be glued to the Inner Assembly while the other end has the precision fitting for fastening the whole assembly from g g youtside of the service cylinder.

• To warrant the mounting precision and repeatability of the Inner Assembly, the Inner assembly is pre‐i ll d i hi h i li d f llinstalled within the service cylinder as follows: 

– fasten all 3 spokes to the service cylinder

– hold the Inner Assembly with stages and          position and orient the Inner Assembly correctlyposition and orient the Inner Assembly correctly to the Service Cylinder with the aid of CMM 

– glue the spokes with the Inner Assembly when done

l l d f b l h

11CMS Pixel Status Feb 2011

Slots on service cylinder for tube coupling not shown

Cooling Tube Layout for all 3 identical Half Disks18 coupling joints total

12 f bli d ll d f i id h i li d‐ 12 from outer assemblies and all accessed from inside the service cylinder.‐ 6 from inner assemblies and all accessed from outside the service cylinder.

Cooling Tube Coupling

CMS Pixel Status Feb 2011 12

TIM Vendor Type Fillers min t, in filler size, mm SG Cure, C thermal k, W/mK t/k ratio thermal R, C*cm2/W

TIMs being considered

Module‐TPGCGL7019‐LB AiT gel‐like epoxy diamond 0.001 2.6 80 20.0 0.00005 0.03 @ 50 psiCGR7019 AiT dimer acid diamond 0.001 20 10.0 0.00010TC5600 Dow Corning silicone grease zinc oxide 0.001 2.74 20 7.1 0.00014 .04 @ 36 psi

X‐23‐7868‐2D ShinEtsu silcone grease 0.001 2.5 20 6.2 0.00016 0.049Duralco 135 Cotronics silicone grease aluminum 0.005 0.044 ‐ 20 5.8 0.00087tpcm583 laird silicone phase change boron nitrile 0 003 0 020 ‐ 52 4 0 0 00075 012@ 50 psitpcm583 laird silicone, phase change boron nitrile 0.003 0.020 ‐ 52 4.0 0.00075 .012 @ 50 psiTG100 Loctite/Henkel silicone grease alumina 1.94 3.4 0.00000 .017 @ 80 psi

Master Sil 705TC MasterBond silicone boron nitrile 1.46 20 2.1 0.00000EPO‐TEK T905BN‐3 Epoxy Tech silicone grease boron nitrile 0.3 80 2.0 0.00000Thermflow T725 Chomerics silicone, phase change 0.005 1.1 55 0.7 0.00714 .04 @ 50 psi

TPG‐CC est. final t btw C‐CC 0.005indium Indium 0.005 7.31 160 86.0 0.00006

EG7659‐LB AiT epoxy, 2 parts diamond 0.0005 0.003 2.5 80 20.0 0.00025EG7659 AiT epoxy, 2 parts diamond 0.001 0.017 2.3 80 11.4 0.00044

Duralco 132 Cotronics epoxy, 2 parts aluminum 0.005”‐0.020” 0.044 ‐ 20 5.8 0.00087Duralco 128 Cotronics epoxy, 2 parts alumina 0.005”‐0.020” ‐ 20 4.3 0.00116EP21AN MasterBond epoxy, 2 parts alumina ‐ 20 3.2 0.00158

EPO TEK T905BNEPO‐TEK T905BN‐4 Epoxy Tech epoxy, 2 parts boron nitrile 0.3 20 1.8 0.00281

Eccobond 285 Loctite/Henkel epoxy, 2 parts alumina 2.4 80/20 1.4 0.00357EPO‐TEK T7110 Epoxy Tech epoxy, 2 parts 0.05 80/20 1.0 0.00500EPO‐TEK T905‐1 Epoxy Tech epoxy, 2 parts 0.05 80/60/20 0.6 0.00847

Tubing‐GroovegCGL7019‐LB AiT gel‐like epoxy diamond 0.001 2.6 80 20.0 0.00005 0.03 @ 50 psiCGR7019 AiT dimer acid diamond 0.001 20 10.0 0.00010TC5600 Dow Corning silicone grease zinc oxide 0.001 2.74 20 7.1 0.00014 .04 @ 36 psi

X‐23‐7868‐2D ShinEtsu silcone grease 0.001 2.5 20 6.2 0.00016 0.049Duralco 135 Cotronics silicone grease aluminum 0.005 ‐ 20 5.8 0.00087TC‐5022 Dow Corning silicone grease zinc oxide 0.001 3.23 20 4.9 0.00020 0.167

13CMS Pixel Status Feb 2011

tputty506 laird silicone alumina 0.008 1.71 3.5 0.00229 .06 @ 40 psiTgrease 1500 laird silicone grease alumina 1.2 0.00000 .021 @ 50 psi

TIMs high‐lighted will be tested for thermal properties by sub‐contractor lab.

Material Budget (revised in Feb. 2011)Material Budget according to conceptual design Feb 2011 (module removable) 1792.73 vol, .8mm t blade

All masses are distribued evenly over an effective overlapped substrate area = 5229 mm^2 (15o coverage) (15o coverage) (15o coverage)

(15o

coverage)( g ) ( g ) ( g ) g )

material t or L, mm area, mm^2 vol, mm^3 half disk q'tyhalf disk vol,

mm^3

half disk mass, g 15-deg vol, mm^3 density, g/cc Mass, g X0, g/cm^2

Eff. % RadL

ROC silicon 0.15 80 12 896 10701 24.9 892 2.33 2.078 21.9 0.18%Sensor silicon 0.25 1245 311 56 17432 40.6 1453 2.33 3.385 21.9 0.29%Sub‐Total % RL 0.47%

TPG 2241 28 42667 96 4 3556 0 36%TPG TPG 0.680 2241 1524 28 42667 96.4 3556 2.26 8.036 42.7 0.36%CF facing CF 0.120 2241 269 28 7529 13.3 627 1.76 1.104 42.8 0.05%module end holder G9 46 112 5097 9.2 425 1.8 0.765 34.9 0.04%screws titanium 6 112 624 2.8 52 4.54 0.236 16.2 0.03%Thermflow btw ROC & substrate, 80% silicone 0.05 1394 56 56 3123 3.4 260 1.1 0.286 25.1 0.02%Thermflow btw ROC & substrate, 20% boron nitrile 0.05 1394 14 56 781 2.7 65 3.5 0.228 43.4 0.01%Sub total % RL for substrate 0.51%

HDI, kapton, 100% kapton 0.1 1141 114 56 6392 8.9 533 1.4 0.746 38.4 0.04%HDI, adhesive, 100% silicone 0.05 1141 57 56 3196 4.0 266 1.25 0.333 25.1 0.03%HDI, copper, 28% copper 0.057 1141 18 56 1020 9.5 85 9.3 0.791 12.9 0.12%Sub total % RL for HDI 0.18%

2nd HD

1 659 5 2 55 0 06%Outer outer tubing ss 316L 1348 0.49 659 1 659 5.2 55 7.82 0.429 14.1 0.06%Outer inner tubing ss 316L 690 0.49 337 1 337 2.6 28 7.82 0.220 14.1 0.03%Inner outer tubing ss 316L 832 0.49 406 1 406 3.2 34 7.82 0.265 14.1 0.04%Inner inner tubing ss 316L 512 0.49 250 1 250 2.0 21 7.82 0.163 14.1 0.02%Coolant for 4 tubings CO2 liq. 3382 1.62 3382 1 3382 3.5 282 1.03 0.290 36.2 0.02%Sub total % RL for tubing and coolant 0.16%

Outer outer ring CC 2 30476 1 30476 54.9 2540 1.80 4.571 42.7 0.20%Outer outer skin CF 0.50 8377 1 8377 14.7 698 1.76 1.229 42.8 0.05%Outer inner ring CC 2 8700 1 8700 15.7 725 1.80 1.305 42.7 0.06%Outer inner skin CF 0.50 2308 1 2308 4.1 192 1.76 0.339 42.8 0.02%Inner outer ring CC 2 17220 1 17220 31.0 1435 1.80 2.583 42.7 0.11%Inner outer skin CF 0.50 4523 1 4523 8.0 377 1.76 0.663 42.8 0.03%Inner inner ring CC 2 4985 1 4985 9.0 415 1.80 0.748 42.7 0.03%

2 3 0 01%Inner inner skin CF 0.50 1322 1 1322 2.3 110 1.76 0.194 42.8 0.01%Spokes + inserts G10 1056 3 3167 5.6 264 1.76 0.464 42.8 0.02%Sub total % RL for rings 0.54%

Total 377.4 1.86%14CMS Pixel Status Feb 2011

Revised values are shown in red.  

Things to Do Next

• Produce drawings  and fabricate outer inner tubing.

• Produce drawings  and fabricate outer inner facing.

M hi t i CC i t• Machine outer inner CC ring segments .

• Fabricate outer outer tubing.

• Fabricate outer outer cf facing.

• Fabricate TPG substrate.

• Fabricate simplified segment‐to‐segment outer ring prototype.

• Develop gluing fixture for substrates and half rings.p g g g

• Select TIM when testing results are known.

• Continue R&D on indium bond with TPG substrate and CC base.

• Prepare thermal testing on simplified segment to segment outer ring• Prepare thermal testing on simplified segment‐to‐segment outer ring prototype with the new CO2 cooling plant which will be ready for commissioning in early March. 

15CMS Pixel Status Feb 2011

Service Cylinder conceptual designEmphasis on keeping the inner pixel layers separate from the outer pixel layersEmphasis on keeping the inner pixel layers separate from the outer pixel layers, from sensor/readout modules out to the external services.

The benchmark for Phase 1 design is:“The ability to change out the inner layers very quickly once the detector isThe ability to change out the inner layers very quickly once the detector is removed is a requirement for ALARA and the ability to achieve replacement in a short shutdown.”

This design goal is met by routing all cables and pipes for the inner blade p passemblies (3 half‐disks) on the OUTSIDE of the service cylinder, and for the outer blade assemblies on the INSIDEthe INSIDE

Outer cables routed along inside of service cylinder

Inner cables pass between outer cables and routed along outside of service cylinder to port cards

Model of service cylinder with 3 rows of 4 port cardsport cards are shown in large openings in the service cylinder for clarity

Cooling tubes for CO2 supply and return to 

outer assemblies routed INSIDE service cylinder

Not shown: another set of tubes here for the outer assemblies (same as 

h 2 ’ l k b )the set at 12 o’clock above)

Sl d h iSlots and troughs in service cylinder for routing 

inner assemblies cables

Cooling tubes for CO2 supply and return to 

inner assemblies routedinner assemblies routed OUTSIDE service cylinder

Views of readout cables routed from modules on the front and back sides of neighboring inner and outer blades in the 1st disk to connectors on the 1st row port card

Note: port cards are shown in large openings in the service cylinder for clarity…in practice, smaller openings would be used to allow cables routed outside and inside the service

18

cables routed outside and inside the service cylinder to connect to the same port cards.

Cooling tube routing to allow installation/removal of the inner assemblies between previously installed outer assemblies

Tubes from the inner blade assemblies are routed through slots to the outside of the service cylinder

Trough to route inner blade assembly cooling tubes outside service cylinder

Installation sequence of outer and inner blade assemblies into the service cylinder 

1) 1st Outer

2) 2nd Outer

3) 3rd Outer

4) 3rd Inner

5) 2nd Inner

6) 3rd Inner

CMS Pixel Status Feb 2011 21

Overview of new service cylinder – remaining conceptual design work

Cooling lines at 12 and 6 Slots for readout cables o’clock to be routed to cool power distribution boards

fpass‐through

Area for power distribution boards

Routing of cooling tubes to manifold at end flangeto manifold at end flange

Routing of optical fibers and power cables toward end 

flLocation and design of 

insertion rail supports for service cylinder 

flange

BACKUPBACKUP

CMS Pixel Status Feb 2011 23

Cooling Coupling Joint DesignCooling Coupling Joint Design

4mm hex Female 4mm hex Femalehousing welded to tubing permanently

Ferrule

4 mm hex Male pusher  with M3.5 threads

Potential Vendor: Valco Instruments (http://wwwvici com/index php)Potential Vendor:  Valco Instruments (http://www.vici.com/index.php)

24CMS Pixel Status Feb 2011

CF‐Encapsulated TPG Substrate Machining Drawing

25CMS Pixel Status Feb 2011

A single readout cable is gshown routed from the forward side of an inner 

blade in the 1st disk through a slot in the service cylindera slot in the service cylinder, 

then along the outside of the service cylinder in a 

cable “trough”

26

More views of readout cables routed from 1st disk modules to connectors on the 1st row port card

Cables from the front of the blades are routed to the connectors on the top of the port cards, and cables from the back of the blades are routed to the 

27

f fconnectors on the bottom of the port cards.

28

Cooling tubes and cables fit inside the outer envelop boundary for Phase 1 FPIX

R = 175mm

CMS Pixel Status Feb 2011 29