CME4002L1

31
CME4002 Hydrogen Economy Professor K M Thomas Lecture 1

Transcript of CME4002L1

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 1/31

CME4002

Hydrogen EconomyProfessor K M Thomas

Lecture 1

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 2/31

Hydrogen

� Fossil fuels are a pre-existing sourceof energy.

Hydrogen does not come as a pre-existing source of energy

� It is a carrier. Hydrogen can be

made from both renewable and non-renewable energy sources.

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 3/31

Why are we considering the possibilityof the hydrogen economy?

� We are close to, or at, peak oilproduction

Future decline in petroleum reserves� Future high cost of petroleum

� Security of supply

Climate change� Environmental benefits

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 4/31

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 5/31

Drivers

The use of hydrogen energy fortransport applications will lead tolower«�

use of fossil fuels� CO2 emissions� Climate change� Pollution

and improved� Energy security / diversity / flexibility� New industries

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 6/31

Future Sustainable Hydrogen Energy ChainJ W Gosselink (2002). Int. J. Hydrogen Energy 27 1125-1129

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 7/31

Current Hydrogen Use

� Hydrogen is widely used in industrywhere safety issues and use can be

controlled. It is distributed inpipelines over a limited area todifferent chemical processes.

� The problems arise in the use ofhydrogen for transport applications

� Storage of hydrogen with a 300 milerefuelling range is an unsolved problem

� Why?

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 8/31

FuelMJ / kg

FuelCO2 / kg

FuelH2O / kg

FuelCO2 /

MJH2O /

MJ

(HHV) (kg) (kg) (kg) (kg)

Carbon (s) 8.94 3.67 0 0.4 0.00

Hydrogen (g) 42.92 0 9.00 0.00 0.06

Methane (g) 55.64 2.75 2.25 0.05 0.04

Octane (l) 48.35 3.09 .42 0.06 0.03

Cetane (l) 47.56 3. 2 .35 0.07 0.03

Methanol (l) 22.70 .38 . 3 0.06 0.05

Ethanol (l) 29.70 .9 . 7 0.06 0.04

fuel + [ O2(g) ] p [ CO2(g) ] + [ H2O(l) ] + energy

32.79

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 9/31

Calculation of Parameters in

Table

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 10/31

Thermodynamic data (298 K)

(HfH2O(l) = -285.8 kJ mol-1

(HfH2O(g) = -241.8 kJ mol-1

(HfCO2(g) = -393.5 kJ mol-1(HfCH4(g) = -74.6 kJ mol-1

(

HfO2(g) =(

HfH2(g) =(

HfC(s) = 0 kJ mol-1

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 11/31

Enthalpy calculationH2(g) + ½ O2(g) H2O(l)

(HrH2O(l) !

R(Hf

(products) ² R·(Hf

(reactants)

(HrH2O(l) = -285.8 ² (0 + ½*0) kJ mol-1

(HrH2O(l) = -285.8 kJ mol-1

Enthalpy for Reaction is negative(exothermic)

Similarly C + O2 CO2

(

HrCO2(g) = -393.5 kJ mol

-1

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 12/31

Calculation for Hydrogen

Combustion� Hydrogen

� 1 mole H2 = 2g gives 1 mole of H2O

1kg H2 = 500 moles� Heat released = 500 x 285.8 x 103 J

= 142.9 x 106 J

= 142.9MJ/kg Fuel

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 13/31

Methane� Reaction CH4 + 2O2 CO2 + 2H2O� Enthalpy of reaction(Hf -393.5 -2 x 285.8 ²(-74.6) = -890.5kJ exothermic ² heat given out

1 mol CH4 = 12 + 4 = 16 g� 1 kg = 1000/16 moles = 62.5 moles� Heat released from 1 kg = 62.5 x 890.5

kJ = 55656 kJ�

= 55.656 MJ/kg� 1 kg CH4 contains 750 g of carbon and 250

g of hydrogenCO2 = 0.75 x (44/12) = 2.75 kg/kg Fuel

H20 = 0.25 x (18/2) = 2.25 kg/kg Fuel

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 14/31

Thermodynamic Calculations

� Use (HfH2O (g) = -241.8 kJ mol-1

instead of(H

f

H2

O (l) = -285.8 kJ mol-1

� H2(g) + ½ O2(g) H2O(l)(HrH2O(l) = -241.8 kJ mol-1

� 1kg H2 = 500 moles� Heat released = 500 x 241.8 x 103 J

= 120.9 x 106 J= 120.9 MJ/kg Fuel

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 15/31

Lower heating values (LHVs) - per mass basis

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 16/31

LHVs ± per liquid volume basis

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 17/31

Calculations

� H2(g) + ½ O2(g) H2O(l)� Heat released = 142.9 MJ/kg Fuel� D

ensity H2(liquid) = 0.0708 kg L-3

� Heat released = 142.9 x 0.0708 =� =10.12 MJL-1

� H2(g) + ½ O

2(g) H

2O(l)

� Heat released = 120.9 x 0.0708=8.56 MJL-1

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 18/31

The Problems for Vehicles

� The low energy density of hydrogenon a volume basis.

� The very low critical temperature ofhydrogen (33 K).

� Large tanks required and possiblypressure control, cooling, insulation

etc� Hydrogen has 3 x the energy ofpetrol on a mass basis but only ¼ xthe energy on a volume basis

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 19/31

How can we overcome these

Problems?� Develop new storage methods. Theissues are size, weight, resistance toimpacts, safety, durability, materialsstrength (high pressure cylinders),insulation (for cryogenic temperatures)etc

� Use of the more efficient fuel celltechnology. The issues are purity ofgas, efficiency, reliability, etc.

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 20/31

Liquid H2 Storage volume

� Amount to be stored = 5-13 kg H2

Density = 0.0708 kg L-1

Volume storage =5/0.0708 = 64 L

13/0.0708 = 183.6 L

� If smaller cars are used for greaterefficiency these values are large evenwith liquid hydrogen

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 21/31

The grand H2 storage challengesustainable produ tion of H2 store / transport energy

5 kg H2 gas (ambient)

~ 5 m diameter vessel

5 kg H2 liquid (triple point)

~ 0.5 m diameter vessel

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 22/31

Co bu on 2H2(g) + O2(g) p 2H2O(l)

1H

0298

2kgMJ142

!(H   

Fu Cell (proton exchange membrane)

2H2(g) p 4H+ + 4e- anode

4H+ + 4e- + O2(g) p 2H2O(l) cathode

2H2(g) + O2(g) p 2H2O(l) cell

V23  

2¡ ¢  

.E  !  

£  

¤  

 ¥  

¦  

§  

 ̈ 

©  

  !(ST   

Fundamentals

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 23/31

Hydrogen Properties

� Hydrogen is a diatomic molecule (H2)

� Molecular weight = 2 g mol-1

Critical temperature = 33 K (-240oC)� Liquid density

0.0708 g cm-3 at 20 K

0.0708 kg L-1

70.8 kg m-3

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 24/31

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 25/31

Hydrogen Storage Technologies

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 26/31

Physical storageMolecular hydrogen (H2)

Chemical storage

 Atomic / ionic / covalent hydrogen

Storage at low

temperatures and/or 

high pressures

Fast and reversiblecharging and

delivery

Storage in close to

ambient conditions

Slow and

irreversible charging

and delivery

o ptimum ? 

Different materials storage types

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 27/31

Hydrogen Storage Problems� Cylinders: Materials problems are an issue above

500 bar, can the cylinder be filled easily, quicklyand safely

Liquid hydrogen: very low (< 240 K) temperature,fuel evaporation, safety, can the tank be filledsafely by a member of the public ² rocket fuel

� Materials Storage

Adsorption: Only works at cryogenic temperaturesHydrides: High desorption temperaturesChemical methods: regeneration of materials

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 28/31

Hydrogen storage where volume

is not an issue

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 29/31

The Ross Barlow Hydrogen Hybrid Canal BoatLaunched 21 September 2007

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 30/31

� Most people accept the argument for reducing CO2

emissions; but few think that their owncontribution can make a difference; they holdgovernment, business and even other end-

consumers primarily responsible� Regular motorists - especially those with families

² are reluctant to change behaviour than thosealready ¶converted· (to public transport, cycling,

etc)� Most people accept that hydrogen energy may

have a part in the sustainable energy future.

� Volume sustainable production and distribution ofhydrogen would enable current car use to continueif shift to public transport unachievable.

Public Perception of Hydrogen

8/6/2019 CME4002L1

http://slidepdf.com/reader/full/cme4002l1 31/31

� Slides will be put on Blackboard today