CM3110 Transport Processes and Unit Operations Ifmorriso/cm310/lectures/2019 fluids lecture… ·...

13
Lecture 9 F. Morrison CM3110 10/3/2019 1 CM3110 Transport Processes and Unit Operations I © Faith A. Morrison, Michigan Tech U. 1 The Weissenberg effect is when a viscoelastic, non‐ Newtonian fluid will climb a rotating shaft. Fluid Mechanics Non‐Newtonian fluids – An Introduction Photo by Carlos Arango Sabogal, U. Wisconsin, Madison https://www.youtube.com/watch?v=npZzlgKjs0I © Faith A. Morrison, Michigan Tech U. Continuum Modeling—Newtonian 2 Intro to Non‐Newtonian Fluid Mechanics (viscosity) constant (density) constant often a good assumption ̃ഭ ൌ —Viscosity differs for different materials —Is a function of T, perhaps P The form of the function is known This is MAJOR. Predictions seem to be right in a wide variety of situations (water, oil, air)

Transcript of CM3110 Transport Processes and Unit Operations Ifmorriso/cm310/lectures/2019 fluids lecture… ·...

  • Lecture 9 F. Morrison CM3110 10/3/2019

    1

    CM3110 Transport Processes and Unit Operations I

    © Faith A. Morrison, Michigan Tech U.

    1

    The Weissenberg effect is when a viscoelastic, non‐Newtonian fluid will climb a rotating shaft.

    Fluid MechanicsNon‐Newtonian fluids –An Introduction

    Photo by

     Carlos A

    rang

    oSabo

    gal, U. 

    Wisc

    onsin

    , Mad

    ison

    https://www.youtube.com/watch?v=npZzlgKjs0I

    © Faith A. Morrison, Michigan Tech U.

    Continuum Modeling—Newtonian 

    2

    Intro to Non‐Newtonian Fluid Mechanics

    • 𝜇 (viscosity) constant• 𝜌 (density) constant  often a good assumption• �̃� 𝜇 𝛻𝑣 𝛻𝑣

    —Viscosity differs for different materials—Is a function of T, perhaps P

    The form of the function 𝝉 𝒗 is known

    This is MAJOR.  Predictions seem to be right in a wide 

    variety of situations (water, oil, air)

  • Lecture 9 F. Morrison CM3110 10/3/2019

    2

    © Faith A. Morrison, Michigan Tech U.

    Continuum Modeling—Non‐Newtonian 

    3

    • 𝜇 (viscosity) NOT constant• 𝜌 (density) constant is often a good assumption• �̃� ⋯ ? The form of the function 

    𝝉 𝒗 is NOT known

    For non‐Newtonian Fluids, we need a new form of �̃� 𝑣  that matches material observations.

    Intro to Non‐Newtonian Fluid Mechanics

    © Faith A. Morrison, Michigan Tech U.4

    Momentum Flux

    Momentum (𝔭) = mass * velocity

    vectors

    top plate has momentum, and it transfers this momentum to the top layer of fluid

    V

    momentum fluxy

    z

    0zv

    Vvz

    H )(yvz

    Viscosity determines the magnitude of

    momentum flux

    𝔭 𝑚𝑣

    How do Fluids Behave?

    Each fluid layer transfers the momentum downward

    Intro to Non‐Newtonian Fluid Mechanics

    When did we separate out non-Newtonian fluids?

    Lecture 2:

  • Lecture 9 F. Morrison CM3110 10/3/2019

    3

    Newtonian

    Newtonian Fluids

    2

    1

    xv

    slope = viscosity

    21

    Newton’s Law of Viscosity 

    (unidirectional flow)

    © Faith A. Morrison, Michigan Tech U.5

    �̃� 𝜇 𝜕𝑣𝜕𝑥 �̃�

    Intro to Non‐Newtonian Fluid Mechanics

    2

    1

    xv

    slope = o21

    shear‐thinning or pseudoplastic

    shear‐thickening or dilatant

    Bingham plastic

    Newtonian

    © Faith A. Morrison, Michigan Tech U.6

    Non‐Newtonian Fluids

    �̃�

    �̃�

    Non‐Newtonian behavior (unidirectional flow)

    �̃� function of 𝜕𝑣𝜕𝑥

    Many different

    behaviors are observed.

  • Lecture 9 F. Morrison CM3110 10/3/2019

    4

    How can we define viscosity for Non‐Newtonian Fluids?

    2

    1

    xv

    © Faith A. Morrison, Michigan Tech U.

    1x

    2x

    )( 21 xv

    (NOTE on coordinate system:  Viscosity definition is written for shear flow in x1direction and gradient in x2 direction)

    7

    𝜂 ≡ �̃�𝛾Non‐Newtonian viscosity (unidirectional flow)

    • Perform this:

    • Measure 𝝉𝟐𝟏

    • Calculate this:

    log

    log

    o

    log

    log

    o

    Typical polymeric behavior

    © Faith A. Morrison, Michigan Tech U.

    Viscosity  (Greek letter eta)

    zero‐shear viscosity (Newtonian plateau)

    shear rate    (“gamma dot”)

    shear thinning

    The changes in viscosity with shear rate are so large they must be plotted log‐log

    2

    1

    xv

    8

    Non‐Newtonian behavior (unidirectional flow)

  • Lecture 9 F. Morrison CM3110 10/3/2019

    5

    x1

    x2)( 21 xv

    In addition, for many polymers there are shear‐induced 

    NORMAL (perpendicular) forces.

    force on 2‐surface in1‐direction

    force on 2‐surface in2‐direction

    9

    © Fa

    ith A. M

    orrison

    , Mich

    igan

     Tech U.

    H

    22S

    p dS�̃� 21

    S

    dS�̃�

    © Faith A. Morrison, Michigan Tech U.10

    Newtonian Constitutive Equation

    �̃� 𝜇𝛾 𝜇 𝛻𝑣 𝛻𝑣 )

    Newton’s law of viscosity is a special case of the Newtonian Constitutive equation.

    (Unidirectional flow)

    How to deal with this?Recall, for Newtonian fluids:

  • Lecture 9 F. Morrison CM3110 10/3/2019

    6

    Newtonian Constitutive Equation

    © Faith A. Morrison, Michigan Tech U.11

    �̃� �̃� �̃��̃� �̃� �̃��̃� �̃� �̃�

    𝜇

    2 𝜕𝑣𝜕𝑥𝜕𝑣𝜕𝑦

    𝜕𝑣𝜕𝑥

    𝜕𝑣𝜕𝑧

    𝜕𝑣𝜕𝑥

    𝜕𝑣𝜕𝑦

    𝜕𝑣𝜕𝑥 2

    𝜕𝑣𝜕𝑦

    𝜕𝑣𝜕𝑦

    𝜕𝑣𝜕𝑧

    𝜕𝑣𝜕𝑧

    𝜕𝑣𝜕𝑥

    𝜕𝑣𝜕𝑦

    𝜕𝑣𝜕𝑧 2

    𝜕𝑣𝜕𝑧

    �̃� 𝜇𝛾 𝜇 𝛻𝑣 𝛻𝑣 )Non‐Newtonian𝜂 𝛾

    𝜂 𝛾

    Generalized Newtonian Fluid

    (non‐Newtonian)𝜂 𝛾 We pick the form of this function that works best 

    with our data.

    Power‐Law Model

    1

    1 121

    2 2

    ndv dvmdx dx

    m or K = consistency index (m = for Newtonian)n = power‐law index (n = 1 for Newtonian)

    rateshearxv

    2

    1

    © Faith A. Morrison, Michigan Tech U.

    (does notmodel normal stresses)

    12

    �̃� =

    Non‐Newtonian behavior (unidirectional flow)

    �̃� function of 𝜕𝑣𝜕𝑥

    𝜂 𝛾 𝑚𝛾

  • Lecture 9 F. Morrison CM3110 10/3/2019

    7

    © Faith A. Morrison, Michigan Tech U.

    What does the power‐law model predict for viscosity?

    1

    21 21 1

    21

    2

    ndvmdxdv

    dx

    1

    1 121

    2 2

    ndv dvmdx dx

    On a log‐log plot, this would give a straight line:

    2

    1log1loglogdxdvnm

    Y B M X13

    �̃� �̃� �̃�

    Power‐Law Fluid

    2

    1

    xv

    © Faith A. Morrison, Michigan Tech U.

    21

    log

    Newtonian

    shear thickening

    shear thinning

    Non‐Newtonian viscosity

    1,1 nm n

    1,1 nm n

    1,1 nm n

    log14

    �̃�

  • Lecture 9 F. Morrison CM3110 10/3/2019

    8

    © Faith A. Morrison, Michigan 15

    www.chem.mtu.edu/~fmorriso/cm310/Navier.pdf

    vvt

    The one with “𝝉” is for non‐

    Newtonian fluids

    Where do we use the power‐law expression?

    16© Faith A. Morrison, Michigan Tech U.

    http://www.chem.mtu.edu/~fmorriso/cm310/stpl.pdf

    We have a handout for that:

  • Lecture 9 F. Morrison CM3110 10/3/2019

    9

    Where do we use the power‐law expression?

    rL

    PPgL Lorz

    2

    e.g., Poiseuille flow in a tube:

    zrz

    dvdr

    Newtonian

    1nz z

    rzdv dvmdr dr

    non‐Newtonian, power‐law

    solve for 𝒗𝒛 𝒓

    © Faith A. Morrison, Michigan Tech U.

    1‐direction = r2‐direction = z 17

    �̃�

    �̃�

    �̃�

    EXAMPLE III: Pressure‐driven flow of a Power‐law fluid in a tube

    •steady state•incompressible•well developed•long tube

    g

    z cross-section A:

    A

    r

    r

    z

    L vz(r)

    R fluid

    Calculate velocity and stress profiles

    © Faith A. Morrison, Michigan Tech U.18

  • Lecture 9 F. Morrison CM3110 10/3/2019

    10

    Calculate the velocity field forPressure‐driven flow of a power‐law (PL) fluid:

    © Faith A. Morrison, Michigan Tech U.

    12

    no Lz z

    rz

    L g P Pdv dvm rdr dr L

    rrvz

    1n nz z zdv dv dvm m r

    dr dr dr

    Solve for vz(r)19

    �̃�

    Non‐Newtonian behavior (unidirectional flow)

    �̃� PL function of 𝜕𝑣𝜕𝑥

    Boundary Conditions:

    © Faith A. Morrison, Michigan Tech U.

    ?

    20

    (same as before in the Newtonian case)

  • Lecture 9 F. Morrison CM3110 10/3/2019

    11

    Velocity fieldPoiseuille flow of a power‐law fluid:

    1 1 1

    12

    20 0

    112 1

    ( )1 ( )1 3 2

    n no Lz

    R no L

    z

    R L g P P R rv rLm R

    n

    R P Pnv v r rdrd RR n mL

    © Faith A. Morrison, Michigan Tech U.21

    Non‐Newtonian behavior (unidirectional flow)

    �̃� PL function of 𝜕𝑣𝜕𝑥

    Solution to Poiseuille flow in a tubeincompressible, power‐law fluid

    0.0

    0.5

    1.0

    1.5

    2.0

    0 0.2 0.4 0.6 0.8 1 1.2r / R

    vz/v

    z,av

    0.0

    0.2

    0.4

    0.6

    n=1.0

    0.8

    © Faith A. Morrison, Michigan Tech U.22

    Non‐Newtonian behavior (unidirectional flow)

    �̃� PL function of 𝜕𝑣𝜕𝑥

  • Lecture 9 F. Morrison CM3110 10/3/2019

    12

    © Faith A. Morrison, Michigan Tech U.

    •Processing (design, costs, production rates)

    Rheology affects:

    •End use (food texture, product pour, motor-oil function)

    •Product quality (surface distortions, anisotropy, strength, structure development)

    www.math.utwente.nl/ mpcm/aamp/examples.html

    www.corrugatorman.com/ pic/akron%20extruder.JPG

    Pomar et al. JNNFM 54 143 1994

    Rheology (Non-Newtonian Fluid Mechanics)

    Non‐Newtonian behavior (all flows)�̃� nonlinear function of 𝛻𝑣

    © Faith A. Morrison, Michigan Tech U.24

    At Michigan Tech:CM4650 Polymer Rheology (Even years spring)www.chem.mtu.edu/~fmorriso/cm4650/cm4650.html

    Rheology (Non-Newtonian Fluid Mechanics)

  • Lecture 9 F. Morrison CM3110 10/3/2019

    13

    Next:

    © Faith A. Morrison, Michigan Tech U.