Clustering vs. supervised learning - Harvard...

12
1 RNA1: Structure & Quantitation (Last week) Integration with previous topics (HMM for RNA structure) Goals of molecular quantitation (maximal fold-changes, clustering & classification of genes & conditions/cell types, causality) Genomics-grade measures of RNA and protein and how we choose (SAGE, oligo-arrays, gene-arrays) Sources of random and systematic errors (reproducibility of RNA source(s), biases in labeling, non-polyA RNAs, effects of array geometry, cross-talk). Interpretation issues (splicing, 5' & 3' ends, editing, gene families, small RNAs, antisense, apparent absence of RNA). Time series data: causality, mRNA decay, time-warping 2 RNA2: Clusters & Motifs Clustering by gene and/or condition Distance and similarity measures Clustering & classification • Applications DNA & RNA motif discovery & search 3 Data - Ratios - Log Ratios - Absolute Measurement - Euclidean Dist. - Manhattan Dist. - Sup. Dist. - Correlation Coeff. - Single - Complete - Average - Centroid Unsupervised | Supervised - SVM - Relevance Networks Hierarchical | Non-hierarchical - Minimal Spanning Tree - K-means - SOM Data Normalization | Distance Metric | Linkage | Clustering Method Gene Expression Clustering Decision Tree How to normalize - Variance normalize - Mean center normalize - Median center normalize What to normaliz e - genes - conditions 4 (Whole genome) RNA quantitation objectives RNAs showing maximum change minimum change detectable/meaningful RNA absolute levels (compare protein levels) minimum amount detectable/meaningful Classification: drugs & cancers Network- - direct causality - - motifs 5 Clustering vs. supervised learning Discovery: K - means clustering SOM = Self Organizing Maps SVD = Singular Value Decomposition PCA = Principal Component Analysis Classification: SVM = Support Vector Machine classification & Relevance networks Brown et al. PNAS 97:262 Butte et al PNAS 97:12182 6 Non-linear SVM The Kernel trick =-1 =+1 Imagine a function φ that maps the data into another space: The function to optimize: Ld = ∑α i –½∑α i α j x i •x j , x i and x j as a dot product. We have φ(x i ) • φ(x j ) in the non-linear case. If there is a ”kernel function” K(xi,xj) = φ(xi) • φ(xj), we do not need to know φ explicitly. φ (Ref ) X i X j

Transcript of Clustering vs. supervised learning - Harvard...

Page 1: Clustering vs. supervised learning - Harvard Universitysites.fas.harvard.edu/~bphys101/lecturenotes/03f_oct21_r... · 2003-10-22 · Clustering hierarchical & non-•Hierarchical:

1

1

RNA1: Structure & Quantitation (Last week)

• Integration with previous topics (HMM for RNA structure)• Goals of molecular quantitation (maximal fold-changes, clustering &

classification of genes & conditions/cell types, causality)• Genomics-grade measures of RNA and protein and how we choose

(SAGE, oligo-arrays, gene-arrays)• Sources of random and systematic errors (reproducibility of RNA

source(s), biases in labeling, non-polyA RNAs, effects of array geometry, cross-talk).

• Interpretation issues (splicing, 5' & 3' ends, editing, gene families, small RNAs, antisense, apparent absence of RNA).

• Time series data: causality, mRNA decay, time-warping

2

RNA2: Clusters & Motifs

• Clustering by gene and/or condition • Distance and similarity measures• Clustering & classification• Applications• DNA & RNA motif discovery & search

3

Data- Ratios- Log Ratios- Absolute Measurement

- Euclidean Dist.- Manhattan Dist.- Sup. Dist.- Correlation Coeff.

- Single- Complete- Average- Centroid

Unsupervised | Supervised

- SVM- Relevance NetworksHierarchical | Non-hierarchical

- Minimal Spanning Tree - K-means- SOM

Data Normalization | Distance Metric | Linkage | Clustering Method

Gene Expression Clustering Decision Tree

How to normalize- Variance normalize- Mean center normalize- Median center normalize

What to normalize- genes- conditions 4

(Whole genome) RNA quantitation objectives

RNAs showing maximum changeminimum change detectable/meaningful

RNA absolute levels (compare protein levels)minimum amount detectable/meaningful

Classification: drugs & cancers

Network - - direct causality- - motifs

5

Clustering vs. supervised learning

Discovery:K- means clusteringSOM = Self Organizing MapsSVD = Singular Value DecompositionPCA = Principal Component Analysis

Classification:SVM = Support Vector Machine classification & Relevance networksBrown et al. PNAS 97:262 Butte et al PNAS 97:12182

6

Non-linear SVM The Kernel trick

=-1=+1

Imagine a function φ that maps the data into another space:

=-1=+1

The function to optimize: Ld = ∑αi – ½∑αiαjxi•xj,xi and xj as a dot product. We have φ(xi) • φ(xj) in the non-linear case.If there is a ”kernel function” K(xi,xj) = φ(xi) • φ(xj), wedo not need to know φ explicitly.

φ

(Ref)

Xi

Xj

Page 2: Clustering vs. supervised learning - Harvard Universitysites.fas.harvard.edu/~bphys101/lecturenotes/03f_oct21_r... · 2003-10-22 · Clustering hierarchical & non-•Hierarchical:

2

7

Cluster analysis of mRNA expression data

By gene (rat spinal cord development, yeast cell cycle): Wen et al., 1998; Tavazoie et al., 1999; Eisen et al., 1998; Tamayo et al., 1999

By condition or cell-type or by gene&cell-type (human cancer): Golub, et al. 1999; Alon, et al. 1999; Perou, et al. 1999; Weinstein, et al 1997Cheng, ISMB 2000..

Rana.lbl.gov/EisenSoftware.htm8

Cluster AnalysisGeneral Purpose: To divide samples intohomogeneous groups based on a set of features.

Gene Expression Analysis: To find co-regulatedgenes.

Protein/protein complex

Genes

DNA regulatory elements

9

Clustering hierarchical & non-

•Hierarchical: a series of successive fusions of data until a final number of clusters is obtained; e.g. Minimal Spanning Tree: each component of the population to be a cluster. Next, the two clusters with the minimum distance between them are fused to form a single cluster. Repeated until all components are grouped.• Non-: e.g. K-mean: K clusters chosen such that the points are mutually farthest apart. Each component in the population assigned to one cluster by minimum distance. The centroid's position is recalculated and repeat until all the components are grouped. The criterion minimized, is the within-clusters sum of the variance.

10

Clusters of Two-Dimensional Data

11

Key Terms in Cluster Analysis

• Distance measures• Similarity measures• Hierarchical and non-hierarchical• Single/complete/average linkage• Dendrogram

12

Distance Measures: Minkowski Metric

r rp

iii

p

p

yxyxd

yyyyxxxx

pyx

||),(

)()(

1

21

21

∑=

−=

==

by defined is metric Minkowski The

:features have both andobjectstwoSuppose

L

L

Page 3: Clustering vs. supervised learning - Harvard Universitysites.fas.harvard.edu/~bphys101/lecturenotes/03f_oct21_r... · 2003-10-22 · Clustering hierarchical & non-•Hierarchical:

3

13

Most Common Minkowski Metrics

||max),(

||),(

1

||),(

2

1

1

2 2

1

iipi

p

iii

p

iii

yxyxd r

yxyxd

r

yxyxd

r

−=+∞=

−=

=

−=

=

≤≤

=

=

) distance sup"(" 3,

distance) (Manhattan 2,

) distance (Euclidean 1,

14

An Example

.4}3,4{max.734

.5342 22

==+

=+

:distance sup"" 3, :distance Manhattan 2,

:distance Euclidean 1,

4

3

x

y

15

Manhattan distance is called Hamming distance when all features are binary.

1101111110000111010011100100100110

1716151413121110987654321

GeneBGeneA

Gene Expression Levels Under 17 Conditions (1-High,0-Low)

. :Distance Hamming 5141001 =+=+ )#()#(

16

Similarity Measures: Correlation Coefficient

.

)()(

))((),(

1

1

1

1

1 1

22

1

∑∑

∑ ∑

==

= =

=

==

−×−

−−=

p

iip

p

iip

p

i

p

iii

p

i ii

yyxx

yyxx

yyxxyxs

and where

1),( ≤yxs

17

(1) s(x,y)=1, (2) s(x,y)=-1, (3) s(x,y)=0

What kind of x and y givelinear CC

?

18

Similarity Measures: Correlation Coefficient

Time

Gene A

Gene B

Gene A

Time

Gene B

Expression LevelExpression Level

Expression Level

Time

Gene A

Gene B

Page 4: Clustering vs. supervised learning - Harvard Universitysites.fas.harvard.edu/~bphys101/lecturenotes/03f_oct21_r... · 2003-10-22 · Clustering hierarchical & non-•Hierarchical:

4

19

Hierarchical Clustering Dendrograms

Alon et al. 1999

Clustering tree for the tissue samplesTumors(T) and normal tissue(n).

20

Hierarchical Clustering Techniques

At the beginning, each object (gene) is a cluster. In each of the subsequent steps, two closest clusters will merge into one cluster until there is only one cluster left.

21

The distance between two clusters is defined as the distance between

• Single-Link Method / Nearest Neighbor: their closest members.

• Complete-Link Method / Furthest Neighbor: their furthest members.

• Centroid: their centroids.• Average: average of all cross-cluster pairs.

22

Single-Link Method

ba

453652

cba

dcb

Distance Matrix

Euclidean Distance

453,

cba

dc

453652

cba

dcb4,, cbad

(1) (2) (3)

a,b,ccc d

a,b

d da,b,c,d

23

Complete-Link Method

ba

453652

cba

dcb

Distance Matrix

Euclidean Distance

465,

cba

dc

453652

cba

dcb6,,

badc

(1) (2) (3)

a,b

cc d

a,b

d c,da,b,c,d

24

Dendrograms

a b c d a b c d

2

4

6

0

Single-Link Complete-Link

Page 5: Clustering vs. supervised learning - Harvard Universitysites.fas.harvard.edu/~bphys101/lecturenotes/03f_oct21_r... · 2003-10-22 · Clustering hierarchical & non-•Hierarchical:

5

25

Which clustering methods do you suggest for the following two-dimensional data?

26Nadler and Smith, Pattern Recognition Engineering, 1993

27

Data- Ratios- Log Ratios- Absolute Measurement

- Euclidean Dist.- Manhattan Dist.- Sup. Dist.- Correlation Coeff.

- Single- Complete- Average- Centroid

Unsupervised | Supervised

- SVM- Relevance NetworksHierarchical | Non-hierarchical

- Minimal Spanning Tree - K-means- SOM

Data Normalization | Distance Metric | Linkage | Clustering Method

Gene Expression Clustering Decision Tree

How to normalize- Variance normalize- Mean center normalize- Median center normalize

What to normalize- genes- conditions 28

Normalized Expression Data

Tavazoie et al. 1999 (http://arep.med.harvard.edu)

29

Time-point 1

Tim

e-po

int 3

Tim

e-po

int 2

Gene 1Gene 2

Normalized Expression Data from microarrays

T1 T2 T3Gene 1

Gene N.

Representation of expression data

dij

30

Identifying prevalent expression patterns (gene clusters)

Time-point 1

Tim

e-po

int 3

Tim

e-po

int 2

-1.8

-1.3

-0.8

-0.3

0.2

0.7

1.2

1 2 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3

Time -pointTime -point

Time -point

Nor

mal

ized

Exp

ress

ion

Nor

mal

ized

Exp

ress

ion

Nor

mal

ized

Exp

ress

ion

Page 6: Clustering vs. supervised learning - Harvard Universitysites.fas.harvard.edu/~bphys101/lecturenotes/03f_oct21_r... · 2003-10-22 · Clustering hierarchical & non-•Hierarchical:

6

31

gpm1HTB1RPL11ARPL12BRPL13ARPL14ARPL15ARPL17ARPL23ATEF2YDL228cYDR133CYDR134CYDR327WYDR417CYKL153WYPL142C

GlycolysisNuclear Organization

Ribosome

Translation

Unknown

Genes MIPS functional category

Cluster contents

32

Eisen et al. (1998):

FIG. 1. Cluster display of data from time course of serumstimulation of primary human fibroblasts.

Expemeriments:Foreskin fibroblasts were grown in culture and weredeprived of serum for 48 hr. Serum was added back andsamples taken at time 0, 15 min, 30 min, 1hr, 2 hr, 3 hr, 4hr, 8 hr, 12 hr, 16 hr, 20 hr, 24 hr.

Clustering:Correlation Coefficient + Centroid Hierarchical Clustering

Clusters:(A) cholesterol biosynthesis,(B) the cell cycle,(C) the immediate-early response,(D) signaling and angiogenesis,(E) wound healing and tissue remodeling.

33

Weinstein et al. (1997)

Figure 2. "Clusteredcorrelation" (ClusCor)map of the relationbetween compoundstested and moleculartargets in the cells.

34

RNA2: Clusters & Motifs

• Clustering by gene and/or condition • Distance and similarity measures• Clustering & classification• Applications• DNA & RNA motif discovery & search

35

Motif-finding algorithms

• oligonucleotide frequencies• Gibbs sampling (e.g. AlignACE)• MEME (Motif Expectation Maximum for motif Elicitation)

• ClustalW• MACAW

36

Transcription control sites(~7 bases of information)

Genome:(12 Mb)

• 7 bases of information (14 bits) ~ 1 match every 16000 sites.• 1500 such matches in a 12 Mb genome (24 * 106 sites).• The distribution of numbers of sites for different motifs is Poisson with mean 1500, which can be approximated as normal with a mean of 1500 and a standard deviation of ~40 sites.• Therefore, ~100 sites are needed to achieve a detectable signalabove background.

Feasibility of a wholeFeasibility of a whole--genome motif search?genome motif search?

Page 7: Clustering vs. supervised learning - Harvard Universitysites.fas.harvard.edu/~bphys101/lecturenotes/03f_oct21_r... · 2003-10-22 · Clustering hierarchical & non-•Hierarchical:

7

37

• Whole-genome mRNA expression data: two-way comparisons between different conditions or mutants, clustering/grouping over many conditions/timepoints.

• Shared phenotype (functional category).

• Conservation among different species.

• Details of the sequence selection: eliminate protein-coding regions, repetitive regions, and any other sequences not likely to contain control sites.

Sequence Search Space ReductionSequence Search Space Reduction

38

• Whole-genome mRNA expression data: two-way comparisons between different conditions or mutants, clustering/grouping over many conditions/timepoints.

• Shared phenotype (functional category).

• Conservation among different species.

• Details of the sequence selection: eliminate protein-coding regions, repetitive regions, and any other sequences not likely to contain control sites.

Sequence Search Space ReductionSequence Search Space Reduction

39

• Modification of Gibbs Motif Sampling (GMS), a routine for motif finding in protein sequences (Lawrence, et al. Science 262:208-214, 1993).

• Advantages of GMS/AlignACE: • stochastic sampling• variable number of sites per input sequence• distributed information content per motif• considers both strands of DNA simultaneously • efficiently returns multiple distinct motifs

Motif FindingMotif FindingAlignACE

(Aligns nucleic Acid Conserved Elements)

40

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

300- 600 bp of upstream sequence per gene are searched in

Saccharomyces cerevisiae.

AlignACE ExampleAlignACE ExampleInput Data SetInput Data Set

41

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

AAAAGAGTCA

AAATGACTCA

AAGTGAGTCA

AAAAGAGTCAGGATGAGTCA

AAATGAGTCA

GAATGAGTCA

AAAAGAGTCA

**********MAP score = 20.37 (maximum)

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

AlignACE ExampleAlignACE ExampleThe Target MotifThe Target Motif

42

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

**********

TGAAAAATTC

GACATCGAAA

GCACTTCGGC

GAGTCATTAC

GTAAATTGTC

CCACAGTCCG

TGTGAAGCAC

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

**********

TGAAAAATTC

GACATCGAAA

GCACTTCGGC

GAGTCATTAC

GTAAATTGTC

CCACAGTCCG

TGTGAAGCACMAP score = -10.0

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

AlignACE ExampleAlignACE ExampleInitial SeedingInitial Seeding

Page 8: Clustering vs. supervised learning - Harvard Universitysites.fas.harvard.edu/~bphys101/lecturenotes/03f_oct21_r... · 2003-10-22 · Clustering hierarchical & non-•Hierarchical:

8

43

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

**********

TGAAAAATTC

GACATCGAAA

GCACTTCGGC

GAGTCATTAC

GTAAATTGTC

CCACAGTCCG

TGTGAAGCAC

Add?

**********

TGAAAAATTC

GACATCGAAA

GCACTTCGGC

GAGTCATTAC

GTAAATTGTC

CCACAGTCCG

TGTGAAGCAC

TCTCTCTCCA

How much better is the alignment with this site as opposed to without?

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

AlignACE ExampleAlignACE ExampleSamplingSampling

44

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

**********

TGAAAAATTC

GACATCGAAA

GCACTTCGGC

GAGTCATTAC

GTAAATTGTC

CCACAGTCCG

TGTGAAGCAC

Add?

**********

TGAAAAATTC

GACATCGAAA

GCACTTCGGC

GAGTCATTAC

GTAAATTGTC

CCACAGTCCG

TGTGAAGCAC

How much better is the alignment with this site as opposed to without?

Remove.

ATGAAAAAAT

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

AlignACE ExampleAlignACE ExampleContinued SamplingContinued Sampling

45

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

**********

GACATCGAAA

GCACTTCGGC

GAGTCATTAC

GTAAATTGTC

CCACAGTCCG

TGTGAAGCAC

********* *

GACATCGAAAC

GCACTTCGGCG

GAGTCATTACA

GTAAATTGTCA

CCACAGTCCGC

TGTGAAGCACA

How much better is the alignment with this new

column structure?

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

AlignACE ExampleAlignACE ExampleColumn SamplingColumn Sampling

46

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

AAAAGAGTCA

AAATGACTCA

AAGTGAGTCA

AAAAGAGTCAGGATGAGTCA

AAATGAGTCA

GAATGAGTCA

AAAAGAGTCA

**********MAP score = 20.37

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

AlignACE ExampleAlignACE ExampleThe Best MotifThe Best Motif

47

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAXAGTCAGACATCGAAACATACAT5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATXACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTXACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT5’- TGCGAACAAAAXAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTXATCCCGAACATGAAA

5’- ATTGATTGACTXATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTXATTCTGACTXTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

AAAAGAGTCA

AAATGACTCA

AAGTGAGTCA

AAAAGAGTCAGGATGAGTCA

AAATGAGTCA

GAATGAGTCA

AAAAGAGTCA

**********

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

• Take the best motif found after a prescribed number of random seedings.• Select the strongest position of the motif.• Mark these sites in the input sequence, and do not allow future motifs to sample those sites.• Continue sampling.

AlignACE ExampleAlignACE ExampleMasking (old way)Masking (old way)

48

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

AAAAGAGTCA

AAATGACTCA

AAGTGAGTCA

AAAAGAGTCAGGATGAGTCA

AAATGAGTCA

GAATGAGTCA

AAAAGAGTCA

**********

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

• Maintain a list of all distinct motifs found.• Use CompareACE to compare subsequent motifs to those already found.• Quickly reject weaker, but similar motifs.

AlignACE ExampleAlignACE ExampleMasking (new way)Masking (new way)

Page 9: Clustering vs. supervised learning - Harvard Universitysites.fas.harvard.edu/~bphys101/lecturenotes/03f_oct21_r... · 2003-10-22 · Clustering hierarchical & non-•Hierarchical:

9

49

Β,Γ = standard Beta & Gamma functionsN = number of aligned sites; T = number of total possible sitesFjb = number of occurrences of base b at position j (F = sum)Gb = background genomic frequency for base bβb = n x Gb for n pseudocounts (β = sum)W = width of motif; C = number of columns in motif (W>=C)

MAP ScoreMAP Score

50

N = number of aligned sitesR = overrepresentation of those sites.

MAP ~= N log R

MAP ScoreMAP Score

51

188.3

78.1

20.6

28.1

117.5

31.1

73.4

8.2

19.3

55.0

89.4

2.7

MAP score Motif

AlignACE Example: Final Results

(alignment of upstream regions from 116 amino acid biosynthetic

genes in S. cerevisiae)

GCN4

52

Indices used to evaluate motif significance

• Group specificity • Functional enrichment • Positional bias• Palindromicity• Known motifs (CompareACE)

53

Searching for additional motif instances in the entire genome sequence

Searches over the entire genome for additional high-scoring instances of the motif are done using the ScanACE program, which uses the Berg & von Hippel weight matrix (1987).

∑=

++

=C

l l

lB

nnE

0 0 5.05.0ln

C = length of binding site motif (# Columns)B = base at position l within the motifnlB= number of occurrences of base B at position l in the input alignmentnlO= number of occurrences of the most common base at position l in the

input alignment54

-1.5-1

-0.50

0.51

1.52

2.53

Replication & DNA synthesis (2)

s.d.

from

mea

n

MCB SCB

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3005

101520253035

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

CLUSTERCLUSTER

Num

ber o

f OR

Fs

05

101520253035

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100 0

Distance from ATG (b.p.)

Num

ber o

f site

s

02468

1012141618

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100 0

Distance from ATG (b.p.)

Num

ber o

f site

sN

umbe

r of O

RFs

-1.5-1

-0.50

0.51

1.52

2.53

-2-1.5

-1-0.5

00.5

11.5

22.5

-2-1 .5

-1-0 .5

00 .5

11 .5

22 .5

MIPS Functional category (total ORFs) ORFs withinfunctional category

(k)

P-value-Log10

DNA synthesis and replication (82)Cell cycle control and mitosis (312)Recombination and DNA repair (84)Nuclear organization (720)

23301140

16854

N = 186

Page 10: Clustering vs. supervised learning - Harvard Universitysites.fas.harvard.edu/~bphys101/lecturenotes/03f_oct21_r... · 2003-10-22 · Clustering hierarchical & non-•Hierarchical:

10

55

-1.5

-0.5

0.5

1.5

2.5

3.5

Ribosome (1)

s.d.

from

mea

n

Rap1

CLUSTER

Num

ber o

f OR

Fs

0102030405060

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3005

1015202530

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1a

CLUSTER

02468

10121416

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100 0

Distance from ATG (b.p.)

Num

ber o

f site

s

02468

101214

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100 0

Distance from ATG (b.p.)N

umbe

r of s

ites

Num

ber o

f OR

Fs

MIPS Functional category (total ORFs) ORFs withinfunctional category

(k)

P-value-Log10

Ribosomal proteins (206)Organization of cytoplasm (555)Organization of chromosome structure (41)

64797

54394

N = 164

56

Separate, Tag, Quantitate RNAs or interactions

Clustering Previous Functional

Assignments

Periodicity

InteractionMotifs

Interactionpartners

•Group specificity•Positional bias•Palindromicity•CompareACE

Metrics of motif significance

57

N genes total; s1 = # genes in a cluster; s2= # genes in a particular functional category (“success”); p = s2/N; N=s1+s2-xWhich odds of exactly x in that category in s1 trials?Binomial: sampling with replacement.

or Hypergeometric: sampling without replacement:Odds of getting exactly x = intersection of sets s1 & s2:

Functional category enrichment odds

−−

=

2

211

sN

xssN

xs

H

ref

)1()1(1 xsx ppxs

B −−

=

(Wrong!)

58

∑==

)2,1min(

2

211

ss

xisN

issN

is

functionS

N = Total # of genes (or ORFs) in the genomes1 = # genes in the clusters2 = # genes found in a functional categoryx = # ORFs in the intersection of these groups(hypergeometric probability distribution)

x s2s1N = 6226

(S. cerevisiae)

Functional category enrichment

59

∑==

)2,1min(

2

211

ss

xisN

issN

is

groupS

N = Total # of genes (ORFs) in the genomes1 = # genes whose upstream sequences were used to align the motif (cluster)s2 = # genes in the target list (~ 100 genes in the genome with the best sites for

the motif near their translational starts)x = # genes in the intersection of these groups

x s2s1N = 6226

(S. cerevisiae)

Group Specificity Score (Sgroup)

60

∑==

t

mi

it

swi

sw

itP 1

t = number of sites within 600 bp of translational start from among the best 200 being considered

m = number of sites in the most enriched 50-bp windows = 600 bpw = 50 bp

Start -600 bp

50 bp

Positional Bias(Binomial)

Page 11: Clustering vs. supervised learning - Harvard Universitysites.fas.harvard.edu/~bphys101/lecturenotes/03f_oct21_r... · 2003-10-22 · Clustering hierarchical & non-•Hierarchical:

11

61

Comparisons of motifs• The CompareACE program finds best

alignment between two motifs and calculates the correlation between the two position-specific scoring matrices

• Similar motifs: CompareACE score > 0.7

62

Clustering motifs by similarity

motif Amotif Bmotif Cmotif D

A B C DA 1.0 0.9 0.1 0.0 B 1.0 0.2 0.1C 1.0 0.4D 1.0

Cluster motifs using a similarity matrix consisting of all pairwise CompareACE scores

cluster 1: A, Bcluster 2: C, D

CompareACE

HierarchicalClustering

63

Palindromicity

0.97

0.92

0.92

0.39

• CompareACE score of a motif versus its reverse complement• Palindromes: CompareACE > 0.7• Selected palindromicity values:

Crp

PurR ArgR

CpxR

64

S. cerevisiae AlignACE Test Set • Functional categories (248 groups 3313 motifs)

• MIPS (135 goups) • YPD (17 groups) • names (96 groups)

• Negative controls (250 groups 3692 motifs)

• 50 each of randomly selected sets of 20, 40, 60, 80, or 100 genes

• Positive controls (29 groups)

• Cold Spring Harbor website -- SCPD • 29 sets of genes controlled by a TF with 5 or

more known binding sites

S. cerevisiae AlignACE test set

65

Most specific motifs(ranked by Sgroup)

66

Most positionally biased motifs

Page 12: Clustering vs. supervised learning - Harvard Universitysites.fas.harvard.edu/~bphys101/lecturenotes/03f_oct21_r... · 2003-10-22 · Clustering hierarchical & non-•Hierarchical:

12

67

• 250 AlignACE runs on 50 groups each of 20, 40, 60, 80,and 100 orfs, resulting in 3692 motifs.• Allows calibration of an expected false positive rate for a set of hypotheses resulting from any chosen cutoffs.

MAP > 10.0Spec. < 1e-5

Example:Functional Categories

Random Runs82 motifs (24 known)41 motifs

Negative Controls

Computational identification of cis-regulatory elements associated with groups of functionally related genes in S. cerevisiae Hughes, et al JMB, 1999.

68

Positive Controls• 29 transcription factors listed on the CSH web

site have five or more known binding sites. AlignACE was run on the upstream regions of the corresponding genes.

• An appropriate motif was found in 21/29 cases.• 5/8 false negatives were found in appropriate

functional category AlignACE runs.• False negative rate = ~ 10-30 %

69

Establishing regulatory connections

• Generalizing & reducing assumptions:• Motif Interactions: (Pilpel et al 2001 Nat Gen )

• Which protein(s): in vivo crosslinking • Interdependence of column in weight

matrices: array binding (Bulyk et al 2001PNAS98: 7158)

70

RNA2: Clusters & Motifs

• Clustering by gene and/or condition • Distance and similarity measures• Clustering & classification• Applications• DNA & RNA motif discovery & search