Classification of high resolution sar images using textural features

download Classification of high resolution sar images using textural features

of 24

Transcript of Classification of high resolution sar images using textural features

  • 8/6/2019 Classification of high resolution sar images using textural features

    1/24

    Aurlie Voisin, Vladimir A. Krylov, and Josiane Zerubia

  • 8/6/2019 Classification of high resolution sar images using textural features

    2/24

    Synthetic Aperture Radar (SAR): active sensor used fordifferent kinds of applications: Security, Epidemiology, Environment, Risk management

    Very high resolution (VHR) SAR data (up to 1 meter) Speckle [Oliver 04]

    Heterogeneity [Cheney 09]

    Supervised classification of VHR single-channel SARamplitude images Methods : neural networks [Jacob 02], bags-of-features [Yang 09], etc.

    Proposed method: statistical modeling + Markov random fields (MRFs)

    2

  • 8/6/2019 Classification of high resolution sar images using textural features

    3/24

    3

    Supervised classification

    1 learning image

    1 test image

    M classes (e.g.: water, vegetation, urban)

    Original SAR

    amplitude image

  • 8/6/2019 Classification of high resolution sar images using textural features

    4/24

    4

    Learning

    Test

    PDF SAR amplitude of

    each class

    MRF parameter

    estimation

    Energy minimization to

    find the class of the test-image pixels

  • 8/6/2019 Classification of high resolution sar images using textural features

    5/24

    5

    Learning

    Test

    PDF SAR amplitude of

    each class

    MRF parameter

    estimation

    Energy minimization to

    find the class of the test-image pixels

  • 8/6/2019 Classification of high resolution sar images using textural features

    6/24

    Dictionary-based Stochastic Expectation Maximization

    Heterogeneity of SAR images

    Single probability density function (PDF) doesnt accurately model

    SAR amplitude statistics

    Model the SAR amplitude PDF by a FMM (Finite Mixture Model)

    6

    K

    k

    kkk rpPrp1

    )(.)(

    [Moser 10]

  • 8/6/2019 Classification of high resolution sar images using textural features

    7/24

    Estimation of:

    K: number of components

    pk(r| k): kth PDF family component

    Parameters of the kth component (k and Pk)

    with

    Data incompleteness

    belongs to which statistical population?

    Unsupervised context

    7

    K

    k

    kP

    1

    1 10 kP

    Nrrr ,...,1

    K

    k

    kkk rpPrp1

    )(.)(

  • 8/6/2019 Classification of high resolution sar images using textural features

    8/248

    Log Normal

    Weibull

    Fisher

    Generalized Gamma

    Nakagami

    K-Root

    Generalised Gaussian Rayleigh

    Heuristic

    Theoretical

    2

    ))(ln(

    12

    1

    ),(

    mr

    ermrf

    r

    errf1

    2 ),(

    ML

    L

    MLr

    M

    Lr

    M

    L

    ML

    MLMLrf

    )1(

    )(

    )()(

    )(),,(

    1

    3

    r

    er

    rf

    1

    4)(.

    ),,(

    12

    5)(

    2),(

    Lr

    L

    L

    erL

    LLrf

    2/1

    12

    6 2)()(

    4),,(

    LMrKr

    LM

    MLMLrf LM

    ML

    ML

    der

    rfr

    2/

    0

    )sin()cos(

    7

    /1/1/1

    )(

    ),(

    09/21/2010 SPIE Remote Sensing Toulouse 2010 - A. Voisin et al.

    [Moser 06]

    [Krylov 09]

  • 8/6/2019 Classification of high resolution sar images using textural features

    9/24

    E step:

    S step: stochastic labeling step leading to

    M step:

    9

    K

    l

    t

    lil

    t

    l

    t

    kik

    t

    kt

    ik

    rpP

    rpP

    1

    ),(.

    ),(.

    t

    ikw

    N

    i

    kik

    t

    ik

    t

    krpw

    k 1

    1),(lnmaxarg

    imagesize

    kpixelsnbP

    t

    k_

    _1

    [Celeux 95]

  • 8/6/2019 Classification of high resolution sar images using textural features

    10/24

    ML not feasible for some PDF distributions

    Method ofLog-Cumulants [Moser 06, Tison 04]:

    Mellin transform of the PDF [Sneddon 72]

    th order second kind cumulant

    10

    01).())(()( duuupspMs suuu

    )1())(ln()(v

    uv Family MoLC equations

    Log-Normal 1=m, 2=

    Weibull 1=ln()+(1)/, 2=(1,1)/

    Nakagami 21=(L)-ln(L/), 42=(1,L)

    Generalized Gamma 1=(k)/+ln(), 2=(1, k)/

    3=(2, k)/3

  • 8/6/2019 Classification of high resolution sar images using textural features

    11/24

    E - step: (posterior proba)

    S step: sample the label for each greylevel according to

    MoLC step:

    K step: for k=1,,Kt, if Pk

    t+1 < threshold, eliminate the kth

    component. Kt+1 = Kt-1

    Model Selection step: for each k, compute the log-likelihood,

    and define pkt+1(.) as the PDF yielding the highest value

    11

    tK

    l

    t

    l

    t

    l

    t

    l

    t

    k

    t

    k

    t

    kt

    k

    zpP

    zpP

    1

    ),(.

    ),(.

    )(zst

    ktQz

    t

    kjj

    t

    kj zfzhL )(ln).(

    t

    k

    1,...,0 Zz

    1

    0

    1

    )(

    )(

    Z

    z

    Qzt

    k

    zh

    zh

    P kt

    kt

    kt

    Qz

    Qzt

    kzh

    zzh

    )(

    )ln().(1

    1

    kt

    kt

    Qz

    Qz

    bt

    k

    t

    bkzh

    zzh

    )(

    ))).(ln(( 1

    kzszQt

    kt )(:

    [Moser 06]

    [Krylov 09]

    3,2b

  • 8/6/2019 Classification of high resolution sar images using textural features

    12/24

    Initialization Kmax = 6 chosen by trial and error

    Randomly chosen labels

    For each iteration t, the global log-likelihood is

    computed, if it is > (max log-likelihood), the parameters

    are saved

    Stopping criterion

    Maximum number of iterations reached

    Number of components = 1

    12

  • 8/6/2019 Classification of high resolution sar images using textural features

    13/2413

    Model KS distance

    GGamma 0.022

    DSEM 4: GGamma,

    Naka, LogN, Weib.

    0.007

    TerraSAR-XimageofRoshe

    nheim

    (Germany)(Infoterra,2008)

    COSMO-Skymedimageof

    Cavallermaggiore(It

    aly)

    (ISA,2008)

    Model KS distance

    Weibull 0.053

    DSEM 4: LogN,

    Naka (2), Weib.

    0.011

    Statistics of the

    whole imageStatistics of the

    vegetation class

  • 8/6/2019 Classification of high resolution sar images using textural features

    14/2414

    Learning

    Test

    PDF SAR amplitude of

    each class

    MRF parameter

    estimation

    Energy minimization to

    find the class of the test-image pixels

  • 8/6/2019 Classification of high resolution sar images using textural features

    15/2415

    MRF: robustness against speckle and contextualinformation [Besag 86, Dubes 89, Fjortoft 03]

    Anisotropic second-order neighborhood system

    Gibbs distribution[Besag 74, Geman 84]

    : Localcharacteristic (conditional proba) for each class m

    Potts model:

    Pseudo-logLikelihood

    M;1

    M

    j

    xxH

    xxH

    s

    s

    mss

    ms

    s

    mss

    js

    sms

    e

    e

    xP

    xxPxxPxp

    1

    ),(

    ),(

    )(

    )(

    )()(

    )(

    )(

    ,)()(

    Ss Csss

    xxs

    s ssPDFxxH

    ',:'

    )(

    '.)ln(),,(

    scliques

    s

    ms xpxPL_

    )()(ln))(ln(

  • 8/6/2019 Classification of high resolution sar images using textural features

    16/2416

    Problematic: Single pol. CSK images

    Find a 2nd channel to improve the accuracy

    Textural features

    COSMO-Skymedimageof

    Cavallermaggiore(Ita

    ly)(ISA,2008)

    Semi-Variogram [Chen 04]

    Grey-Level Co-occurrence

    Matrix (GLCM) variance

    [Haralick 73]

  • 8/6/2019 Classification of high resolution sar images using textural features

    17/2417

    PDF SAR amplitude ofeach class and each

    channel

    Copulas

    MRF parameter

    estimation

    Energy minimization to

    find the class of the test-

    image pixels

    Learning

    Test

    [Moser 10]

  • 8/6/2019 Classification of high resolution sar images using textural features

    18/2418

    PDF SAR amplitude ofeach class and each

    channel

    Copulas

    MRF parameter

    estimation

    Energy minimization to

    find the class of the test-

    image pixels

    Learning

    Test

    [Moser 10]

    21

    2211

    *

    2211

    )(),(

    )().()( yy

    yFyFC

    ypypypmmmmm

    mmmmmm

  • 8/6/2019 Classification of high resolution sar images using textural features

    19/24

    19

    Water Urban Vegetation Overall

    DSEM-MRF 99.14 % 98.88 % 84.65 % 94.22 %

    K-NN-MRF 96.72 % 96.09 % 99.92 % 97.58 %

    CoDSEM (Semivar.) 98.37 % 98.91 % 100 % 99.09 %

    CoDSEM (GLCM) 98.62 % 98.42 % 100 % 99.01 %

    DSEM-MRFCoDSEM (GLCM)

    COSMO-SkymedimageofCavallermaggiore

    (Italy)

    (ISA,2008)

  • 8/6/2019 Classification of high resolution sar images using textural features

    20/24

    20

    Water Urban Vegetation Overall

    DSEM-MRF 92.95 % 98.32 % 81.33 % 90.87 %

    K-NN-MRF 90.56 % 98.49 % 94.99 % 94.68 %

    CoDSEM (GLCM) 91.28 % 98.82 % 93.53 % 94.54 %

    CoDSEM (GLCM) K-NN-MRF

    TerraSAR-X image of Rosenheim

    (Germany) (Infoterra, 2008)

  • 8/6/2019 Classification of high resolution sar images using textural features

    21/24

    21

    Water Urban Vegetation Overall

    DSEM-MRF 99.81 % 99.03 % 99.99 % 99.61 %

    CoDSEM (GLCM) 98.66 % 99.56 % 99.27 % 99.16 %

    CoDSEM (GLCM)

    COSMO-Skymedimage of Port-au-Prince

    (Haiti) (ISA, 2009)

    DSEM-MRF

  • 8/6/2019 Classification of high resolution sar images using textural features

    22/24

    22

    Algorithm validated in the application:

    urban/land/water separation on several single-pol. SAR

    images

    Smoothing effects at spatial borders

    Possible improvements:

    More sophisticated texture-extraction techniques

    Taking into account urban geometry via hierarchical/multiscaleMRFs

  • 8/6/2019 Classification of high resolution sar images using textural features

    23/24

    23

    French defense agency (DGA)

    Italian Space Agency (ISA)

    Infoterra (Astrium Services)

    Dr. G. Moser and Prof. S. Serpico from Univ. of Genoa

    for their helpful comments and fruitful collaboration

  • 8/6/2019 Classification of high resolution sar images using textural features

    24/24

    24

    [Oliver 04] Oliver, C. and Quegan, S., [Understanding Synthetic Aperture Radar images], SciTech Publishing (2004).

    [Jacob 02] Jacob, A. M., Hemmerly, E. M., and Fernandes, D., SAR image classification using a neural classifier based on Fisher criterion, in

    [Medical Imaging: Image Processing], Proc. of the VII Brasilian Symposium on Neural Networks (SBRN), 168172 (2002).

    [Yang 09] Yang, W., Dai, D., Triggs, B., and Xia, G.-S., Semantic labeling of SAR images with hierarchical Markov aspect models, HAL Research

    Report , hal00433600 (2009).

    [Cheney 09] Cheney, M. and Borden, B., [Fundamentals of radar imaging], Phladelphia: Society for industrial and applied mathematics (2009).

    [Moser 10] Moser, G., Krylov, V., Serpico, S. B., and Zerubia, J., High resolution SAR image classification by Markov random fields and finite

    mixtures, Proc. of SPIE7533, 753308 (2010).

    [Moser 06] Moser, G., Serpico, S. B., and Zerubia, J., Dictionary-based Stochastic Expectation Maximization for SAR amplitude probability

    density function estimation, IEEE Trans. Geosci. Remote Sens. 44(1), 188199 (2006).

    [Krylov 09] Krylov, V., Moser, G., Serpico, S. B., and Zerubia, J., Dictionary-based probability density function estimation for high-resolutionSAR data, Proc. of SPIE7246, 72460S (2009).

    [Celeux 95] Celeux, G., Cheveau, D., and Diebolt, J., On stochastic versions of the EM algorithm, INRIA Research Report2514 (1995).

    [Tison 04] Tison, C., Nicolas, J.-M., Tupin, F., and Maitre, H., A new statistical model for Markovian classification of urban areas in high-

    resolution SAR images, IEEE Trans. Geosci. Remote Sens. 42(10), 20462057 (2004).

    [Sneddon 72] Sneddon, I., [The use of integral transforms], McGraw-Hill, New York (1972).

    [Fjortoft 03] Fjortoft, R., Delignon, Y., Pieczynski, W., Sigelle, M., and Tupin, F., Unsupervised classification of radar images using hidden

    Markov chains and hidden Markov random fields, IEEE Trans. Geosci. Remote Sens. 41(3), 675686 (2003).

    [Besag 86] Besag, J., On the statistical analysis of dirty pictures,Journal of the Royal Statistical Society48, 259

    302 (1986).[Dubes 89] Dubes, R. C. and Jain, A. K., Random field models in image analysis,Journal of Applied Statistics 16(2), 131164 (1989).

    [Besag 74] Besag, J., Spatial interaction and the statistical analysis of lattice systems,Journal of the Royal Stat. Soc. 36(2), 192236 (1974).

    [Geman 84] Geman, S. and Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Patt. Anal.

    Mach. Intell. 6(6), 721741 (1984).

    *Chen 04+ Chen, Q. and Gong, P., Automatic variogram parameter extraction for textural classification of the panchromatic IKONOS imagery,

    IEEE Trans. Geosci. Remote Sens. 42(5), 11061115 (2004).

    [Haralick 73] Haralick, R. M., Shanmugam, K., and Dinstein, I., Textural features for image classification, IEEE Trans. on Systems, Mans and

    Cybern. 3(6), 610

    621 (1973).