Class Notes Topic 31

download Class Notes Topic 31

of 31

Transcript of Class Notes Topic 31

  • 8/2/2019 Class Notes Topic 31

    1/31

    Topic3:

    TransportPhenomena2nd

    EditionR.ByronBird,WarrenE.Stewart,EdwinN.

    Lightfoot;Chapter2pg.4074

    Chapter2:

    ShellMomentumBalancesandVelocityDistributionsinLaminarFlow

    Introduction:

    In this chapter showhow toobtain the viscosityprofiles for laminar flows in simple

    systems.Weusethedefinitionofviscosity,theexpressions for themolecularandconvective

    momentum fluxes,andtheconceptofamomentumbalance.Toobtain interestasquantities

    suchasthemaximumvelocity,theaveragevelocity,ortheshearstressatasurface.Themethods

    andproblems in thischapterapplyonly tosteady flowwithLaminar flow.Bysteadywemean

    thatthepressure,density,andvelocitycomponentsateachpointinthestreamdonotchangewith

    time. Laminar flow is the orderly flow that is observed, for example, in tube flow at velocities

    sufficiently lowthattinyparticles injected intothetubemovealong inathin line.This is insharp

    contrastwiththewildlychaotic"turbulentflow"atsufficientlyhighvelocitiesthattheparticlesare

    flungapartanddispersedthroughouttheentirecrosssectionofthetube.

    A) Laminar flow, the fluid layers movesmoothlyoveroneanotherinthedirectionof

    flow.

    B) Turbulent Flow, the flow pattern iscomplex and timedependent, with

    considerable motion perpendicular to the

    principalflowdirection.

  • 8/2/2019 Class Notes Topic 31

    2/31

    2.1 SHELLMOMENTUMBALANCESANDBOUNDARYCONDITIONS

    Momentumbalanceforsteadyflow:

    0

    Thisstatementhasarelationwiththelawofconservationofmomentum. InthemomentumbalanceweneedtheexpressionsfortheconvectivemomentumfluxesgiveninTable1.71and

    themolecularmomentumfluxesgiveninTable1.21. Isimportantthatthemolecular

    momentumfluxincludesboththepressureandtheviscouscontributions.

    Themomentumbalanceisappliedonlytosystemsinwhichthereisjustonevelocitycomponentinthischapter,butitcanbeappliedtosysteminwhichhasmorethanonevelocity

    component,whichdependsononlyonespatialvariable,alsotheflowmustberectilinear.

    Thestepsforsettingupandsolvingviscousproblemsare:

    1. Identifythenonvanishingvelocitycomponentandthespatialvariableonwhichitdepends.2. Applythemomentumbalanceoverathinshellperpendiculartotherelevantspatial

    variable.

    3. Findthelimitwhenthethicknessoftheshellapproachzeroandmakeuseofthedefinitionofthefirstderivativetoobtainthecorrespondingdifferentialequationforthemomentum

    flux.

    4. Thenintegratethisequationtogetthemomentumfluxdistribution.5. InsertNewton'slawofviscosityandobtainadifferentialequationforthevelocity.6. Integratethisequationtogetthevelocitydistribution.7. Usethevelocitydistributiontogetotherquantities,suchasthemaximumvelocity,average

    velocity,orforceonsolidsurfaces.

  • 8/2/2019 Class Notes Topic 31

    3/31

    Thesestepsmentionedsomeintegration,severalconstantsofintegrationappear,andtheseareevaluatedbyusingboundaryconditionsthatisstatementsaboutthevelocityorstress

    attheboundariesofthesystem.Themostcommonlyusedboundaryconditionsareas

    follows:

    A. Atsolidfluidinterfacesthefluidvelocityequalsthevelocitywithwhichthesolidsurfaceismoving. Thisstatementisappliedtoboththetangentialandthenormal

    componentofthevelocityvector.Theequalityofthetangentialcomponentsisreferred

    toasthe"noslipcondition.

    B. Atliquidliquidinterfacialplaneofconstantx,thetangentialvelocitycomponentsVyandVzarecontinuousthroughtheinterface(the"noslipcondition")asarealsothe

    molecularstresstensorcomponentsp+ xx, xyand xz.

    C. Ataliquidgasinterfacialplaneofconstantx,thestresstensorcomponents xyand xzaretakentobezero,providedthatthegassidevelocitygradientisnottoolarge.Thisis

    logical,sincetheviscositiesofgasesaremuchlessthanthoseofliquids.

    Inalloftheseboundaryconditionsitissupposedthatthereisnomaterialpassingthroughtheinterfacethatis,thereisnoadsorption,absorption,dissolution,evaporation,melting,or

    chemicalreactionatthesurfacebetweenthetwophases.

  • 8/2/2019 Class Notes Topic 31

    4/31

    2.2FLOWOFAFALLINGFILM

    ThisexampleshowaflowofaliquidaninclinedflatplateoflengthLandwidthW,asshownintheFigure.Weconsidertheviscosityanddensityofthefluidtobeconstant.Acomplete

    descriptionoftheliquidflowisdifficultbecauseofthedisturbancesattheedgesofthe

    system(z=0,z=L,y=0,y=W).

    Adescriptioncanoftenbeobtainedbyneglectingsuchdisturbances,particularlyifWandLarelargecomparedtothefilmthickness .

    Forsmallflowratesweexpectthattheviscousforceswillpreventcontinuedaccelerationoftheliquiddownthewall,sothatV,willbecomeindependentofzinashortdistancedown

    theplate.

    AsaresultitseemsreasonabletopostulatethatVz=Vz(x),Vx,=0andVy=0andfurtherthatp=p(x).Thenonvanishingcomponentsof arethen xz= zx,= (dVz/dx).

    Selectas the "system"a thin shellperpendicular to thexdirection.Thenwe setup a zmomentumbalanceoverthisshell,whichisaregionofthicknessx,boundedbytheplanes

    z=0andz=L,andextendingadistanceWintheydirection.

    Usingthecomponentsofthe"combinedmomentumfluxtensor"definedintables1.71to3,wecanincorporateallthepotentialmechanismsformomentumtransportatonce:

  • 8/2/2019 Class Notes Topic 31

    5/31

    Usingthequantitiesxzandzzweaccountforthezmomentumtransportbyallmechanisms,convectiveandmolecular.

    The"in"and"out"directionsinthedirectionofthepositivex andzaxes(inthisproblemthesehappentocoincidewiththedirectionsofzmomentumtransport).

    Whenthesetermsaresubstitutedintothezmomentumbalance,weget:

    LW(xz x xz x+x)+Wx(zz z=0 zz z=L)+(LWX)(gcos)=0

    Inthisfigure x isthethicknessoverwhichazmomentumbalance ismade.Arrowsshowthemomentumfluxesrelatedwiththesurfacesoftheshell.SinceVxandVyarebothzero,

    VyVzand VyVzarezero.Vydoesnotdependonyandz, yz=0and zz=0.Alsothedashed

    underlinedfluxesdonotneedtobeconsidered.BothpandVzVzarethesameatz=0andz

    =L,andasaresultdonotappearinthebalanceofzmomentum.

    Rateofzmomentuminacrosssurfaceatz=0 (Wx)zz/z=0

    Rateofzmomentumoutacrosssurfaceatz=L (Wx)zz/z=L

    Rateofzmomentuminacrosssurfaceatx (LW)(xz)/x

    Rateofzmomentumoutacrosssurfacex+ x (LW)(xz)/x+x

    Gravityforceactingonfluidinthezdirection (LWx)(gcos)

  • 8/2/2019 Class Notes Topic 31

    6/31

    Shellmomentumbalanceofafluidinafallingfilm:

    I. Assumption1. L>>>W2. L>>>3. Length=z

    Width=y

    Thickness=x

    4. Flowindirectionz

    II. Momentumfluxtensor,

    ij= ij+ vivj

    zz= zz+ vzvz= zz+p+ vzvz =1 ,i=j

    xz= xz+ vxvz =0 ,i j

    yz= yz+ vyvz =0 ,i j

    III. Velocityandcomponents(Note:Vzdoesnotcancel)

    Vz=directionofflux Vz(z)=0Vx=0 Vz(x) 0dependenceofVzinx

    Vy=0 Vz(y)=0

    p=p(x)

    IV. MomentumBalance

    ij=ij + vivj

    i = coordinate

    j = flux direction

  • 8/2/2019 Class Notes Topic 31

    7/31

    In Out

    Z Z=0

    Wxzz|z=0

    Z=L

    Wxzz|z=L

    X X=x

    LWxz|x=x

    X=x+ x

    LWxz|x=x+ x

    Y Y=0

    Lx yz|y=0

    Y=W

    Lx yz|y=W

    Forceofgravity:(LWx) gcos

    V. BalanceSubstitutionWx[zz|z=0 zz|z=L]+LW[xz|x=x xz|x=x+ x]+Lx[yz|y=0 yz|y=W]+(LWx) gcos =

    0

    in= out

    Velocitydoesnotdependofy

    zz= zz+p+ vzvz

    xz= xz+ vxvz

    yz= yz+ vyvz

    W

    [zz|z=0 zz|z=L]+

    LW

    [xz|x=x xz|x=x+ x]+

    L

    [yz|y=0 yz|y=W]+

    LW

    gcos

    =0

    | |L

    +

    | |

    + gcos =0

    zdoesnotvary

  • 8/2/2019 Class Notes Topic 31

    8/31

    lim | |

    = gcos

    gcos

    DifferentialEquationofMomentum

    xz=

    xz= xz+ vxvz = xz

    gcos

    SeparableIntegration:

    xz=( gcos )x+C1

    Boundaryconditions:xz(x=0)=0

    xz=0=(gcos)*0+C1

    xz=( gcos )x

    xz=

    (gcos)x

    Vz=

    BoundaryConditions:Vz(x=)=0

    Vz=0=

    (

    2)+C2

  • 8/2/2019 Class Notes Topic 31

    9/31

    C2=

    (

    2)

    Vz=

    (x

    2

    2)

    =

    (

    2 x

    2)(

    Vz=

    (1

    )

    VI. VelocityandStressProfile

    WithVzcanbecalculated:

    Velocityaverage:

    Force:

  • 8/2/2019 Class Notes Topic 31

    10/31

    Thickness:

    Massrate:

    MaximumVelocity:

  • 8/2/2019 Class Notes Topic 31

    11/31

    2.3FLOWTHROUGHACIRCULARTUBEWhenanalyzinglaminarflowthroughacircularpipe,cylindricalcoordinatesareused.Lets

    considerthisexample.Aliquidflowingdownwardundertheinfluenceofapressuredifference

    andgravitythroughaverticaltubeoflengthLandradiusR.So,youmusttakeinto

    considerationthefollowingassumptions:

    SteadyState

    LaminarFlow

    constantdensity,

    constantviscosity,

    NoEndEffects(tubelengthisverylargewithrespecttothetuberadius,sothattheseend

    effectswillbeunimportantL>>R)

  • 8/2/2019 Class Notes Topic 31

    12/31

    Postulates:(Lookatthecoordinatesysteminthediagram) Vz=Vz(r) Vr=0 V=0 Vz(z)=0 Vz()=0 Vz(r)0 p=p(z)

    FromthesetermswhenyougotoTableB.1/AppendixBonyourBSLbook(pg. 844)the

    nonvanishingcomponentsofare rzand zr,becauseofthepostulatesshownabove.Whenmakingamomentumbalance,youfirstneedtolookatwherethemomentumis

    generatedwhenthefluidisflowingdownward.Momentumisgeneratedinzandrdirections

    asseeninthecoordinatesystembelowandwecanputthiscoordinatesysteminhalfofour

    cylindertoanalyzeit.

    Thequantitiesof

    and

    accountforthe

    momentumtransportbyallpossiblemechanisms,convectiveandmolecular.Asforthevalues

    ofthose momentums,andyourenotsurehowtoevaluatethem,Table1.21(pg.17),Table1.71(pg.35)andequation1.72(pg.36)canhelp.Rememberyouwilleventuallyneedthese

    valueswhenmakingshellbalances.Thereforeifwehave,

  • 8/2/2019 Class Notes Topic 31

    13/31

    Then,

    Ok,sobacktoourmomentumbalance.Weselectoursystemasacylindrialshellofthickness

    andlengthL.Weevaluatethemomentuminandoutofthisshellandwecanthenlistthecontributions:

    Directions In Out

    R r=r 2| 2|

    Z z=02| z=L2|

    Norateofmomentuminthis

    direction

    Norateofmomentuminthis

    direction

    Gravityforceactinginzdirectiononcylindricalshell2* Notethatthoseinandoutareinthepositivedirectionoftherandzaxes.

    Wenowmakeourmomentumbalancebasedonequation2.11(pg.41)fromyourBSLbook:

    2| | 2| | 2 0Wethendividethisequationby2toget:

    | | | | 0

    Thesameas,

    | | | |

    Bytakingthelimitoftheequationontheleftsidewhenr0,weget:

    lim| |

    | |

  • 8/2/2019 Class Notes Topic 31

    14/31

    Andbydefinition,

    lim| |

    Therefore,

    | |

    NowweevaluatethecomponentsandwiththevaluesinAppendixB.1: 2 (*Remember:Vr=0) Bysubstitutingthesevaluesinand: 2

    Wenowhavethefollowingsimplifications:

    1) BecausewehaveVz=Vz(r),theterm

    willbethesameatbothendsofthetube.

    | | 2) BecausewehaveVz=Vz(r),theterm 2 willbethesameatbothendsofthetube.

    2 | 2 |

    Sonowourequationsturnsinto:

    0

  • 8/2/2019 Class Notes Topic 31

    15/31

    Withthesepressuredifferences,wecannowusemodifiedpressures.Letstakealookatthe

    diagramfirst:

    0 | wherePisthemodifiedpressure

    |

    0

    Byusingseparableequationsandintegrating:

  • 8/2/2019 Class Notes Topic 31

    16/31

    TolookforthevalueofconstantC1,weusecertainboundaryconditionstosimplifyour

    problem.Letslookatthefollowingdiagram,wherewecanwatchthevelocityprofile:

    BoundaryCondition1:

    Whenr=0,=0Therefore,C1=0andbysubstitutingwithNewtonsLawofViscosity(obtainedfromApendixB.2) weobtain:

    2

    Integratingthisfirstorderdifferentialequationweobtain:

    4 ThisnewconstantC2isevaluatedfromtheboundarycondition

    B.C.2: atr=R, vz=0

    Then,fromthisC2isfoundtobe: 4 .Hence,thevelocitydistributionis:

    4 1 Weseethatthevelocitydistributionforlaminar,incompressibleflowofaNewtonianfluidina

    longtubeisparabolic.

  • 8/2/2019 Class Notes Topic 31

    17/31

    Oncethevelocityprofilehasbeenestablished,variousderivedquantitiescanbeobtained:

    (i) Themaximumvelocity,occursatr=0andis:

    ,

    4

    (ii) Theaveragevelocityisisobtainedbydividingthetotalvolumetricflowratebythecrosssectionalarea

    8 12 ,

    (iii)Themassrateflowwistheproductofthecrosssectionalarea

    ,thedensity ,andtheaveragevelocity

    8

    ThisratherfamousresultiscalledtheHagenPoiseuille equation.Itisused,alongwith

    experimentaldatafortherateofflowandthemodifiedpressuredifference,to

    determinetheviscosityoffluids(seeExample2.31)inacapillaryviscometer.

    (iv)Thezcomponentoftheforce,oftheFluidonthewettedsurfaceofthepipeisjust

    theshearstressintegratedoverthewettedarea

    2 | Theresultstatesthattheviscousforceiscounterbalancedbythenetpressureforceandthegravitationalforce.

    Theresultsofthissectionareonlyasgoodasthepostulatesintroducedatthebeginningofthesection,namelythat and .

    ExperimentshaveshownthatthesepostulatesareinfactrealizedforReynoldsnumbersupto2100;abovethatvalue,theflowwillbeturbulentifthereareanyappreciable

    disturbancesinthesystem,thatis,wallroughnessorvibrations.

  • 8/2/2019 Class Notes Topic 31

    18/31

    ForcirculartubestheReynoldsnumberisdefinedby ,whereD=2Risthetubediameter.

    WenowsummarizealltheassumptionsthatweremadeinobtainingtheHagenPoiseuille

    equation.

    (a)Theflowislaminar(Re Le.(f) Thefluidbehavesasacontinuum,thisassumptionisvalid,exceptforverydilutegasesorverynarrowcapillarytubes,inwhichthemolecularmeanfreepathis

    comparabletothetubediameter(theslipflowregion)ormuchgreaterthanthe

    tubediameter(theKundsenfloworfreemoleculeflowregime).

    (g) Thereisnoslipatthewall,sothatB.C.2isvalid;thisisanexcellentassumptionfotpurefluidsundertheconditionsassumedin(f).

  • 8/2/2019 Class Notes Topic 31

    19/31

    2.4FCaso

    fluid

    entre

    Com

    envo

    ante

    Tng

    ygra

    obte

    La c

    LUJOATRAparticulare

    incompre

    doscilindr

    nzamos ef

    ltura cilnd

    iormentep

    aseencuen

    vedadact

    ner

    onstante C

    VSDEUNncoordena

    sible fluye

    scirculares

    ectuando

    ica, y se ll

    araelflujoe

    taquepara

    anendirec

    1 no pue

    NULOdascilndric

    enestado

    coaxialesd

    n balance

    ga a la m

    nuntubo

    esteproble

    ionesopue

    e determi

    asdeunflu

    stacionario

    eradioskR

    de cantida

    isma ecuaci

    maP=p+p

    stas.Esta

    narse de f

    idoviscoso

    a travsd

    R.

    d de movi

    in diferen

    gz,puestoq

    cuacindif

    orma inm

    atravsde

    la regin

    imiento so

    ial que se

    uelasfuerz

    erencial se

    diata, pue

    unanulo.U

    comprendid

    re una fin

    ha obtenid

    asdepresi

    integra,pa

    to que n

    n

    a

    a

    o

    n

    a

    ,

  • 8/2/2019 Class Notes Topic 31

    20/31

    disp

    enni

    existi

    r=R,

    Teniquel

    Nte

    habe

    laec

    ecua

    Integ

    Ahor

    sigui

    Subs

    ecua

    Sere

    nemosdei

    ngunade l

    irunmxim para el cundo

    esto

    e

    aecuacin

    sequees

    rsubstituid

    acinante

    indiferen

    randoconr

    apuedene

    ntescondi

    ituyendoe

    ionessimu

    suelveyse

    nformacin

    sdossupe

    odelacurv

    al la densi

    ncuenta,

    p

    nteriorset

    todavaun

    C1pore

    iorlaleyde

    cial:

    espectoar:

    aluarselas

    ioneslmite

    CL1:

    CL2:

    tascondici

    ltneas

    ncuentra

    acercadel

    ficiesr=kRdevelocid

    ad de fluj

    edesubsti

    ransformae

    aconstante

    squeconoc

    laviscosida

    osconstan

    :

    p

    p

    neslmites

    densidad

    or=R.Lomadenuncie

    de cantid

    uirseC1

    po

    n

    de integra

    emoselsig

    ddeNewto

    tesdeinteg

    ara r=kR

    ara r=R

    enlaecuaci

    eflujo,de

    squepod

    rtoplano(

    ad de mov

    r

    indescon

    ificadofsic

    n

    racinyC

    v

    v

    nanterior

    cantidadde

    mosdecir

    astaahora

    imiento ha

    ocida.La

    ode.Sub

    se

    2,utilizando

    =0

    =0

    seobtienen

    movimient

    esquehad

    desconocid

    de ser cer

    ,con

    l

    icaraznd

    tituyendoe

    obtieneest

    lasdos

    estasdos

    o

    e

    )

    .

    o

    e

    n

    a

  • 8/2/2019 Class Notes Topic 31

    21/31

    Subs

    la diveloc

    conc

    ituyendoe

    tribucin didad, para

    ntricosson

    tosvalores

    e densidadel flujo inc

    :

    enlasecua

    de flujo dmpresible

    cionesante

    cantidaden estado

    rioresseob

    emovimieestacionari

    ienen,resp

    nto y la di a travs

    ectivament

    tribucin do dos tub

    ,

    es

  • 8/2/2019 Class Notes Topic 31

    22/31

    2.5FLUJODEDOSLQUIDOSIMMISIBLESADYACENTES

    Situacindelainterfasededoslquidos,estosfluyenendireccindelejedezconunalongitud

    LyunanchoW,esteflujobajoungradientedepresinhorizontalexpresadocomo(p0p)/L.el

    flujode

    estos

    es

    ajustado

    de

    manera

    que

    se

    dividan

    por

    sus

    densidades.

    El

    flujo

    deba

    ser

    lo

    suficientementelentoparaquenopresenteninestabilidadenlainterfasedeestos,estopara

    encontrarelflujodemomentumylavelocidaddedistribucin.

    Ecuacindiferencialparaflujodemomentun

    Alintegrallaecuacinanteriorseobtiene

    Dosflujos

    immisibles

    entre

    dos

    places

    paralelas

    don

    aplicacin

    de

    un

    gradiente

    de

    presin

    HaciendousoinmediatodeBoundaryconditions,dondeelfluidode momentun escontinuode

    lainterfaselquido liquido

  • 8/2/2019 Class Notes Topic 31

    23/31

    B.C.1: atx=0, =

    Las y sernlaconstantesdelaintegra,estasiguala

    Lasustituir

    la

    leu

    de

    viscosidad

    de

    newtons,

    en

    Fig.

    2.5

    2y2.5

    3obtenemos

    Estassepuedenentegrarparaobtener

    LastresconstantesdeintegracionsepuedendeterminarsiguiendoNoslipB.C.

    B.C.2: atx=0, vIz=V

    IIz

    B.C.3: atx=b, v=0

    B.C.4: atx=+b, v=0

    Cuandoestastrescondicionessonaplicadas,conseguimostresecuacionessimultneas

    paralasconstantesdelaintegracin:

    Deestastresecuacionesconseguimos

  • 8/2/2019 Class Notes Topic 31

    24/31

    Losresultadosdelflujodemomentunyperfildevelocidadson

    Siambasviscosidadessoniguales,despusdeladistribucindelavelocidadesparablica

    Lavelocidadmediaencadacapapuedeserobtenidayresultara

    Lasdistribucionesdelavelocidaddadasarriba,sepodraobtenerlavelocidadmxima,la

    velocidaden

    la

    interfase,

    el

    plano

    cero

    del

    estrs

    cortante,

    yla

    friccin

    en

    las

    paredes.

    Anteriormentesehansolucionadoproblemasdeflujosviscosos.Sehantratadosolo

    componentesrectilneosconuncomponentedevelocidad.Elflujoalrededordeunaesfera

    aplicadoscomponentesnonvanishingdelavelocidad,vryvnosepuedeexplicar

    convenientementeporlastcnicasexplicadasalprincipiodeestecaptulo.Unabrevediscusin

    delflujoalrededordeunaesferasedeterminaaqudebidoalaimportanciadelflujoalrededor

    deobjetos.Enelcaptulo4sedemuestracmoobtenerlasdistribucionesdelavelocidadyde

    presin.Aqusemuestralosresultadosycomopuedenserutilizadosparaciertasderivaciones

    posteriormente.Aqu

    como

    en

    el

    captulo

    4,

    se

    trabaja

    con

    el

    arrastre

    del

    flujo.

    (este

    en

    un

    flujo

    lento)

    ConsideramosaquelflujodeunlquidoincompresiblesobreunaesferaslidadelradioRydel

    dimetroDsegnlasindicacionesdefig.2.61.Ellquido,conladensidadpylaviscosidad

  • 8/2/2019 Class Notes Topic 31

    25/31

  • 8/2/2019 Class Notes Topic 31

    26/31

    2.6 CREEPINGFLOWAROUNDASPHERE

    Theproblemtreatedhereisconcernedwith"creepingflow"thatis,veryslowflow.Thistypeof

    flowisalsoreferredtoas"Stokesflow." Weconsiderheretheflowofanincompressiblefluid

    aboutasolidsphereofradiusRanddiameterDasshowninFig.2.61.Thefluid,withdensity

    andviscosity ,approachesthefixedsphereverticallyupwardinthezdirectionwithauniform

    velocity . Forthisproblem,"creepingflow"meansthattheReynoldsnumberRe=D/,is

    lessthanabout0.1.Thisflowregimeischaracterizedbytheabsenceofeddyformation

    downstreamfromthesphere.

  • 8/2/2019 Class Notes Topic 31

    27/31

    Thevelocityandpressuredistributionsforthiscreepingfloware:

    InthelastequationthequantityP0isthepressureintheplanez=0farawayfromthesphere.

    Theterm pgzisthehydrostaticpressureresultingfromtheweightofthefluid,andthetermcontainingvisthecontributionofthefluidmotion.

    Equations2.61,2,and3showthatthefluidvelocityiszeroatthesurfaceofthesphere. Furthermore,inthelimitasr ,thefluidvelocityisinthezdirectionwithuniform

    magnitudev;thisfollowsfromthefactthatvz=vrcos Vsin ,andvx=vy=0.

  • 8/2/2019 Class Notes Topic 31

    28/31

    Thecomponentsofthestresstensor rinsphericalcoordinatesmaybeobtainedfrom the

    velocitydistributionabovebyusingTableB.1.Theyare

    andallothercomponentsarezero.Notethatthenormalstressesforthisflowarenonzero,

    exceptatr=R.

  • 8/2/2019 Class Notes Topic 31

    29/31

    IntegrationoftheNormalForce

    Ateachpointonthesurfaceofthespherethefluidexertsaforceperunitarea (p+

    rr)/r=Ronthesolid,actingnormaltothesurface.Sincethefluidisintheregionofgreaterrand

    thesphereintheregionoflesserr,wehavetoaffixaminussigninaccordancewiththesign

    conventionestablishedin1.2.Thezcomponentoftheforceis (p+ rr)/r=R(cos).Wenow

    multiplythisbyadifferentialelementofsurfaceR2sindd togettheforceonthesurface

    element(seeFig.A.82).Thenweintegrateoverthesurfaceofthespheretogettheresultant

    normalforceinthezdirection:

    AccordingtoEq.2.65,thenormalstress rriszero5atr=Randcanbeomittedintheintegralin

    Eq.2.67.Thepressuredistributionatthesurfaceofthesphereis,accordingtoEq.2.64,

    WhenthisissubstitutedintoEq.2.67andtheintegrationperformed,thetermcontainingp0

    giveszero,thetermcontainingthegravitationalaccelerationggivesthebuoyantforce,andthe

    termcontainingtheapproachvelocityv givesthe"formdrag"asshownbelow:

  • 8/2/2019 Class Notes Topic 31

    30/31

    Thebuoyantforceisthemassofdisplacedfluid(4/3 R3)timesthegravitationalacceleration

    (g).

    IntegrationoftheTangentialForce

    Ateachpointonthesolidsurfacethereisalsoashearstressactingtangentially.The

    forceperunitareaexertedinthe directionbythefluid(regionofgreaterr)onthesolid

    (regionoflesserr)is+r/r=R .Thezcomponentofthisforceperunitareais(r/r=R)sin.We

    nowmultiplythisbythesurfaceelementR2sindd andintegrateovertheentirespherical

    surface.Thisgivestheresultantforceinthezdirection:

    Theshearstressdistributiononthespheresurface,fromEq.2.66,is

    SubstitutionofthisexpressionintotheintegralinEq.2.610givesthe"frictiondrag"

    HencethetotalforceFofthefluidonthesphereisgivenbythesumofEqs.2.69and2.612:

    or

  • 8/2/2019 Class Notes Topic 31

    31/31

    Thefirsttermisthebuoyantforce,whichwouldbepresentinafluidatrest;itisthemassofthedisplacedfluidmultipliedbythegravitationalacceleration.

    Thesecondterm,thekineticforce,resultsfromthemotionofthefluid. TherelationFk=6R(2.615)isknownasStokeslaw. Itisusedindescribingthemotionofcolloidalparticlesunderanelectricfield,inthe

    theoryofsedimentation,andinthestudyofthemotionofaerosolparticles.

    Stokes'lawisusefulonlyuptoaReynoldsnumberRe=Dv/ ofabout0.1. AtRe=1,Stokes'lawpredictsaforcethatisabout10%.toolow.

    Example

    Derivearelationthatenablesonetogettheviscosityofafluidbymeasuringthe

    terminalvelocity tofasmallsphereofradiusRinthefluid.

    Ifasmallsphereisallowedtofallfromrestinaviscousfluid,itwillaccelerateuntilitreachesaconstantvelocitytheterminalvelocity.

    Whenthissteadystateconditionhasbeenreachedthesumofalltheforcesactingonthespheremustbezero.

    Theforceofgravityonthesolidactsinthedirectionoffall,andthebuoyantandkineticforcesactintheoppositedirection:

    Herepsandparethedensitiesofthesolidsphereandthefluid.Solvingthisequationfortheterminalvelocitygives

    ThisresultmaybeusedonlyiftheReynoldsnumberislessthanabout0.1.