Class AB Output Stage - University of Pennsylvaniaese319/Lecture_Notes/Lec_22_ClassAB_Amplif… ·...

download Class AB Output Stage - University of Pennsylvaniaese319/Lecture_Notes/Lec_22_ClassAB_Amplif… · Class AB Output Stage Class AB amplifier Operation ... transistor is cut off. For

If you can't read please download the document

Transcript of Class AB Output Stage - University of Pennsylvaniaese319/Lecture_Notes/Lec_22_ClassAB_Amplif… ·...

  • ESE319 Introduction to Microelectronics

    12008 Kenneth R. Laker, updated 26Nov12 KRL

    Class AB Output Stage Class AB amplifier Operation Multisim Simulation - VTC Class AB amplifier biasing Widlar current source Multisim Simulation - Biasing

  • ESE319 Introduction to Microelectronics

    22008 Kenneth R. Laker, updated 26Nov12 KRL

    Class AB Operation

    IQ

    IQ

    VB

    vI

    (set by VB)

  • ESE319 Introduction to Microelectronics

    32008 Kenneth R. Laker, updated 26Nov12 KRL

    Basic Class AB Amplifier Circuit1. Bias Q

    N and Q

    P into slight conduction (fwd. act.)

    when vI = 0: i

    N = i

    P.

    2 Ideally QN and Q

    P are:

    a. Matched (unlikely with discrete transistors and challenging in IC).

    b. Operate at same ambient temperature.

    NOTE. This is base-voltage biasing with all its stability problems!

    iL=iNiP

    3.For vi > 0: i

    N > i

    P i.e. Q

    N most cond. (like Class B).

    4.For vi < 0: i

    P > i

    N i.e. Q

    P most cond. (like Class B).

  • ESE319 Introduction to Microelectronics

    42008 Kenneth R. Laker, updated 26Nov12 KRL

    Class AB VTC Plot

    Ideally the two DC base voltage sources are matched and VBB/2 = 0.7 V.V BB /20.7V

  • ESE319 Introduction to Microelectronics

    52008 Kenneth R. Laker, updated 26Nov12 KRL

    Class AB VTC Simulation

    VBB/2

    VBB/2

    VCC

    -VCC

    RL

    RSig

    Amplitude: 20 Vp

    Frequency: 1 kHz

  • ESE319 Introduction to Microelectronics

    62008 Kenneth R. Laker, updated 26Nov12 KRL

    Class AB VTC Simulation - cont.

    V BB2

    =0.1V

    V BB2

    =0.5V

    V BB2

    =0.7V

    Amplitude: 2 Vp

    Frequency: 1 kHz

  • ESE319 Introduction to Microelectronics

    72008 Kenneth R. Laker, updated 26Nov12 KRL

    Class AB Circuit Operation - cont.

    I N=I P=I Q=I S eV BB2V T

    Output voltage for vi 0:

    for vi0 vo=viV BB2

    v BEN vovi

    Base-to base voltage is constant!vBENv EBP=V BB

    for vi0 vo=viV BB2

    v EBP vov i

    Bias (QN & Q

    P matched):

    iN=iPiL

    vBEN=V BB2

    vO

    vEBP=vOV BB2

    for DC vi = 0

    +vi

    for all vi

    iN iP=I Q2

    Let us next show thatfor all v

    i

  • ESE319 Introduction to Microelectronics

    82008 Kenneth R. Laker, updated 26Nov12 KRL

    Class AB Circuit Operation - cont.

    for vi0 vo=viV BB2

    v BEN vBEN=vivoV BB2

    for vi0 vo=viV BB2

    v EBP vEBP=vov iV BB2

    ADD

    vBENv EBP=V BB for all vi

    iN=I S evBENvT vBEN=V T ln iNI S iP=I S e

    vEBPV T v EBP=V T ln iPI S

    Using the currents

    I N=I P=I Q=I S eV BB2V T V BB=2V T ln I QI S

    V T ln iNI S V T ln iPI S =2V T ln I QI S for all vi

    Note for Class B VBB

    = 0

  • ESE319 Introduction to Microelectronics

    92008 Kenneth R. Laker, updated 26Nov12 KRL

    Class AB Circuit Operation - cont.

    V T ln iNI S V T ln iPI S =2V T ln I QI S V T ln iN iPI S2 =2V T ln I QI S

    ln iN iP ln I S2 =2ln I Q2ln I S

    ln iN iP=ln I Q2

    iN iP=I Q2

    iN=iPiL

    Constant base voltage condition:

    from the previous slide

    vBENv EBP=V BB =>

    or iN iP=I Q2

  • ESE319 Introduction to Microelectronics

    102008 Kenneth R. Laker, updated 26Nov12 KRL

    Class AB Circuit Operation VTC cont.iP iN=I Q

    2The constant base voltage condition

    For example let IQ = 1 mA and iN = 10 mA.

    iP=I Q2

    iN=1106

    10103=0.1mA= 1

    100iN

    The Class AB circuit, over most of its input signal range, operates as if either the Q

    N or Q

    P transistor is conducting and the Q

    P or Q

    N transistor is cut off.

    For small values of vI both Q

    N and Q

    P conduct, and as v

    I is increased or

    decreased, the conduction of QN or Q

    P dominates, respectively.

    Using this approximation we see that a class AB amplifier acts much like a class B amplifier; but without the dead zone.

    where IQ is typically small.

  • ESE319 Introduction to Microelectronics

    112008 Kenneth R. Laker, updated 26Nov12 KRL

    Class AB Small-Signal Output Resistance Instantaneous resistance for theQ

    N transistor - assume 1 :

    diNdvBEN

    =I S e

    vBENV T

    V T=

    iNV T

    = 1r eN

    For the QP transistor:diP

    dvEBP=

    iPV T

    =1

    r ePHence:

    reN=V TiN

    reP=V TiP

    andac ground

    ac ground

    BN

    BP

    EN

    EP

    CN

    CP

    Rout=r eNrePv

    I > 0 V: i

    N > i

    P => RoutreN

    RoutreP

    iN=I S evBENvT

    in

    ip

    vI = 0

    Root

    vO

    v I=0

    vI < 0 V: i

    P > i

    N =>

  • ESE319 Introduction to Microelectronics

    122008 Kenneth R. Laker, updated 26Nov12 KRL

    Small-Signal Output Resistance - cont.The two emitter resistors are in parallel:

    Rout=r eNr eP=

    V T2

    iN iPV TiN

    V TiP

    =V T

    iN iP 1iN 1iP =

    V TiNiP

    At iN = iP (the no-signal condition i.e. vO = 0 => iL = 0): iN=iP=I Q

    Rout=V T2 I Q

    So, for small signals, a small load current IQ flows => no dead-zone!

    iL=vORL

    =i NiPand

  • ESE319 Introduction to Microelectronics

    132008 Kenneth R. Laker, updated 26Nov12 KRL

    Class AB Power Conversion Efficiency & Power Dissipation Similar to Class B

    Accurate for small Vo-peak

    .

    V o peak

    Let VCC = 12 V and RL=100

    = 7.63 V0.7 V

    PDisp(max) = 0.29 W

    0.20 W

    PDispB=2

    V opeakRL

    V CC12

    V opeak2

    RL

    P Disp

    PDisp max=2V CC

    2

    2RL=0.29W

    P Disp 0 when Vo-peak = 0

  • ESE319 Introduction to Microelectronics

    142008 Kenneth R. Laker, updated 26Nov12 KRL

    Class AB Amplifier BiasingA straightforward biasing approach: D1 and D2 are diode-connectedtransistors identical to QN and QP, respectively.They form mirrors with the quiescentcurrents IQ set by matched R's:

    I Q=2V CC1.42R

    =V CC0.7

    R

    R=V CC0.7

    I QRecall: With mirrors, the ambient temperature for all transistors needs to be matched!

    or:

    QN

    QP

    +

    -

    VBB

    IQ

    IQ

    IQ

    IQ

    D2

    D1

    current mirror

  • ESE319 Introduction to Microelectronics

    152008 Kenneth R. Laker, updated 26Nov12 KRL

    Widlar Current Source

    I REF=V CCV BE1

    R=12V 0.7V

    11.3k =1mA

    V BE1=V T ln I REFI S

    I Q Re=V T ln I REFI Q

    IREF

    VCC

    IO

    IQ

    VBE1

    + +- -VBE2

    R

    Re

    emitter degeneration

    Q2 = QNI

    Q = I

    N

    Note: Pages 543-546 in Sedra & Smith Text.

    IN = bias current for Class AB amplifier NPN

    Note Re > 0 iff IQ < IREF

    V BE2=V T ln I QI S

    V BE1=V BE2I Q Re

    V BE1V BE2=V T ln I REFI S

    I SI Q

    =V T ln I REFI Q

  • ESE319 Introduction to Microelectronics

    162008 Kenneth R. Laker, updated 26Nov12 KRL

    Widlar Current Source - cont.

    I Q Re=V T ln I REFI Q

    I Q=V TRe

    ln I REF ln I Q

    RI

    REF

    IQ

    VCC

    Solve for IQ graphically.

    If IQ specified and IREF chosen by designer:

    Re=V TI Q

    ln I REFI Q

    If Re specified and IREF chosen

    by the designer:

    Example Let IQ = 10 A & choose IREF = 10 mA, determine R and Re:

    R=V CCV BE1

    I REF=12V0.7V10mA

    =1.13 k

    Re=V TI Q

    ln I REFI Q =0.025V10 A ln 10m A10A .=2500 ln 1000=17.27 k

    R=1.13 k Re=17.27 k

    IQ

    Re

  • ESE319 Introduction to Microelectronics

    172008 Kenneth R. Laker, updated 26Nov12 KRL

    Widlar Current Mirror Small-Signal Analysis

    r1/gm

    ..

    i x=g m viro=gm vv xv

    rov=rRe i x

    i x=g m rRe i xvxro

    rRe ixro

    gm Rer1

    Rout is greatly enhanced by adding emitter degeneration.

    Rout=v xi xro[ gmRer]

    .g m rRe ixvxro

    Rout

  • ESE319 Introduction to Microelectronics

    182008 Kenneth R. Laker, updated 26Nov12 KRL

    iL

    Class AB Current Biasing SimulationBias currents set at I

    REF and I

    Q by R and emitter resistor(s) R

    e.

    IREF IQN

    IQP

    IL

    PNP Widlar current mirror

    NPN Widlar current mirror

    RL=100

    Amplitude: 0 Vp

    Frequency: 1 kHz

    Re=10

    Re=10

    IREFR=2.8 k

    R=2.8 k

    iN

    iL

    I REF4mA

    R=V CCV BE1

    I REF=

    V CCV EB3I REF

    2.8 k

    Re=V TI QN

    ln I REFI QN 10

    I Q= I QN= I QP2mA

    iL=iNiPQ1

    Q2

    Q3

    Q4

  • ESE319 Introduction to Microelectronics

    192008 Kenneth R. Laker, updated 26Nov12 KRL

    ConclusionsADVANTAGE:

    Class AB operation improves on Class B linearity.Power conversion efficiency similar to Class B

    DISADVANTAGES:1. Emitter resistors absorb output power.2. Power dissipation for low signal levels higher than Class B.3. Temperature matching will be needed more so. if emitter degeneration resistors are not used.

    TitleSlide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Slide 19