Class 11 - Mathematical Modeling of Pneumatic System

18
System Modeling Coursework P.R. VENKATESWARAN Faculty, Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Karnataka 576 104 INDIA Ph: 0820 2925154, 2925152 Fax: 0820 2571071 Email: [email protected] , [email protected] Web address: http://www.esnips.com/web/SystemModelingClassNotes Class 11: Modeling of Pneumatic systems

Transcript of Class 11 - Mathematical Modeling of Pneumatic System

Page 1: Class 11 - Mathematical Modeling of Pneumatic System

System Modeling Coursework

P.R. VENKATESWARANFaculty, Instrumentation and Control Engineering,

Manipal Institute of Technology, ManipalKarnataka 576 104 INDIAPh: 0820 2925154, 2925152

Fax: 0820 2571071Email: [email protected], [email protected]

Web address: http://www.esnips.com/web/SystemModelingClassNotes

Class 11: Modeling of Pneumatic systems

Page 2: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 2

WARNING!

I claim no originality in all these notes. These are the compilation from various sources for the purpose of delivering lectures. I humbly acknowledge the wonderful help provided by the original sources in this compilation.

For best results, it is always suggested you read the source material.

Page 3: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 3

Contents

Description of a Pneumatic system•

Model of the Pneumatic system

Some questions.

Page 4: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 4

What is a pneumatic system

Pneumatic system uses compressible fluid as working medium and it is usually air.

In pneumatic systems, compressibility effects of gas cannot be neglected and hence dynamic equations are obtained using conservation of mass.

In pneumatic systems, change in fluid inertia energy and the fluid’s internal thermal energy are assumed negligible.

In pneumatic system, the mass and volume flow rates are not readily interchangeable

Page 5: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 5

Description of Pneumatic system

Pneumatic devices involve the flow of gas or air, through connected pipe lines and pressure vessels.

Hence, the variables of pneumatic system are mass flow rate, qm

, and pressure P.•

The mass flow rate is a through variable and it is analogous to current. The pressure variable is across variable and is analogous to voltage.

The two basic elements of a pneumatic system are the resistance and capacitance.

Page 6: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 6

Definition for Pneumatic Resistance

The gas flow resistance, R is defined as the rate of change in gas pressure difference for a change in gas flow rate.

2, /, / sec

Changein gas pressuredifference N mRChangein gas flowrate Kg

=

Page 7: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 7

Definition for pneumatic capacitance

Pneumatic capacitance is defined for a pressure vessel and depends on the type of expansion process involved. The capacitance of a pressure vessel may be defined as the ratio of change in gas stored for a change in gas pressure.

2

,, /

Changein gas stored KgCChangein gas pressure N m

=

Page 8: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 8

Pros and Cons of Pneumatic systems

Advantages –

The air or gas used is non inflammable and so it offers safety from fire hazards.

The air or gas has negligible viscosity, compared to high viscosity of hydraulic fluids.

No return pipelines are required and since air can be let out at the end of work cycle.

Disadvantage –

The response is slower than that of hydraulic systems because of the compressibility of the working fluid.

Page 9: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 9

Applications of Pneumatic systems

Guided Missiles•

Aircraft systems

Automation of production machines•

Automatic controllers

…and many more

Page 10: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 10

Pneumatic system

Pi

= air pressure of the source at steady state (newton/m2)P0

= air pressure in the vessel at steady state (newton/m2)∆

Pi

= small change in air pressure of the source from its steady state ∆

P0

= small change in air pressure of the vessel from its steady state

Page 11: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 11

System dynamics

Rate of gas storage in vessel = rate of gas inflow

The mathematical model of a simple pneumatic system shown in figure is given by

Applying Laplace and rearranging the terms, we get

0 0id P P PPCdt R RΔ Δ −ΔΔ

= =

0 0id P P PPCdt R RΔ Δ −ΔΔ

= =

0 ( ) 1( ) ( 1)i

P sP s RCs

Δ=

Δ +

Page 12: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 12

Try for this system

Page 13: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 13

Description of the system

Page 14: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 14

Solution –

Part I

Page 15: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 15

Solution –

Part II

Page 16: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 16

Summary

The transfer function of the system presents the same order as that of the level system with respect to the assumed dynamics and structure.

The common thread however will be with respect to the capacitance and resistance of the system

Page 17: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 17

References

1.

Advanced Control Systems Engineering, Ronald Burns

2.

Modern Control Engineering, Ogata3.

Control Systems, Nagoor

Kani

…amongst others

Page 18: Class 11 - Mathematical Modeling of Pneumatic System

July – December 2008 prv/System Modeling Coursework/MIT-Manipal 18

And, before we break…

Comparisons give us the cancer of the soul–

G. Jampolsky

Thanks for listening…