CIS 601 Image Fundamentals Longin Jan Latecki

46
CIS 601 Image Fundamentals Longin Jan Latecki Slides by Dr. Rolf Lakaemper

description

CIS 601 Image Fundamentals Longin Jan Latecki. Slides by Dr. Rolf Lakaemper. Fundamentals. Parts of these slides base on the textbook Digital Image Processing by Gonzales/Woods Chapters 1 / 2. Fundamentals. Today we will - PowerPoint PPT Presentation

Transcript of CIS 601 Image Fundamentals Longin Jan Latecki

Page 1: CIS 601 Image Fundamentals  Longin Jan Latecki

CIS 601Image Fundamentals

Longin Jan Latecki

Slides by Dr. Rolf Lakaemper

Page 2: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Parts of these slides base on the textbook

Digital Image Processingby Gonzales/Woods

Chapters 1 / 2

Page 3: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Today we will

• Learn some basic concepts about digital images (Textbook chapters 1 / 2)

• Show how MATLAB can help in understanding these concepts

• Build a simple video – surveillance system using MATLAB !

Page 4: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

In the beginning…

we’ll have a look at the human eye

Page 5: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Page 6: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

We are mostly interested in the retina:

• consists of cones and rods• Cones• color receptors• About 7 million, primarily in the retina’s

central portion • for image details

• Rods• Sensitive to illumination, not involved in

color vision• About 130 million, all over the retina• General, overall view

Page 7: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Distribution of cones and rods:

Page 8: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

The human eye is sensible to electromagnetic waves in the ‘visible spectrum’ :

Page 9: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

The human eye is sensible to electromagnetic waves in the ‘visible

spectrum’ , which is around a wavelength of

0.000001 m = 0.001 mm

Page 10: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

The human eye

• Is able to perceive electromagnetic waves in a certain spectrum

• Is able to distinguish between wavelengths in this spectrum (colors)

• Has a higher density of receptors in the center

• Maps our 3D reality to a 2 dimensional image !

Page 11: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

…or more precise:

maps our continous (?) reality to a (spatially) DISCRETE 2D image

Page 12: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Some topics we have to deal with:

• Sharpness• Brightness

• Processing of perceived visual information

Page 13: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Sharpness

The eye is able to deal with sharpness in different distances

Page 14: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Brightness

The eye is able to adapt to different ranges of brightness

Page 15: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Processing of perceived information: optical illusions

Page 16: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

optical illusions:

Digital Image Processing does NOT (primarily) deal with cognitive

aspects of the perceived image !

Page 17: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

What is an image ?

Page 18: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

The retinal model is mathematically hard to handle (e.g. neighborhood ?)

Page 19: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Easier: 2D array of cells, modelling the cones/rods

Each cell contains a numerical value (e.g. between 0-255)

Page 20: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

• The position of each cell defines the position of the receptor

• The numerical value of the cell represents the illumination received by the receptor

5 7 1 0 12 4 ………

Page 21: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

• With this model, we can create GRAYVALUE images

• Value = 0: BLACK (no illumination / energy)

• Value = 255: White (max. illumination / energy)

Page 22: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

A 2D grayvalue - image is a 2D -> 1D function,

v = f(x,y)

Page 23: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

As we have a function, we can apply operators to this function, e.g.

H(f(x,y)) = f(x,y) / 2

Operator Image (= function !)

Page 24: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

H(f(x,y)) = f(x,y) / 2

6 8 2 0

12 200 20 10

3 4 1 0

6 100 10 5

Page 25: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Remember: the value of the cells is the illumination (or brightness)

6 8 2 0

12 200 20 10

3 4 1 0

6 100 10 5

Page 26: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

As we have a function, we can apply operators to this function…

…but why should we ?

some motivation for (digital) image processing

Page 27: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

• Transmission of images

Page 28: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

• Image Enhancement

Page 29: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

• Image Analysis / Recognition

Page 30: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

The mandatory steps:

Image Acquisition and Representation

Page 31: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Acquisition

Page 32: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Acquisition

Page 33: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Typical sensor for images:

CCD Array (Charge Couple Devices)

• Use in digital cameras• Typical resolution 1024 x 768

(webcam)

Page 34: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

CCD

Page 35: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

CCD

Page 36: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

CCD: 3.2 million pixels !

Page 37: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Representation

The Braun Tube

Page 38: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Representation

Black/White and Color

Page 39: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Color Representation: Red / Green / Blue

Model forColor-tube

Note: RGB is not the ONLY color-model, in fact its use is quiet restricted. More about that later.

Page 40: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Color images can be represented by3D Arrays (e.g. 320 x 240 x 3)

Page 41: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

But for the time being we’ll handle

2D grayvalue images

Page 42: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Digital vs. Analogue Images

Analogue:Function v = f(x,y): v,x,y are REAL

Digital:Function v = f(x,y): v,x,y are INTEGER

Page 43: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Stepping down from REALity to INTEGER coordinates x,y: Sampling

Page 44: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Stepping down from REALity to INTEGER grayvalues v : Quantization

Page 45: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Samplingand

Quantization

Page 46: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

MATLAB demonstrations of sampling and quantization effects in sampling.m