Chiroptical Spectroscopy

32
144 Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Masters Level Class (181 041) Wednesdays, 10-12 am, NC 02/99 Lecture 6: Circular dichroism (exciton coupling)

Transcript of Chiroptical Spectroscopy

Page 1: Chiroptical Spectroscopy

144

Chiroptical SpectroscopyTheory and Applications in Organic Chemistry

Masters Level Class (181 041)

Wednesdays, 10-12 am, NC 02/99

Lecture 6: Circular dichroism (exciton coupling)

Page 2: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 145

Octant rule: Methyl cyclohexanone

3-Methyl cyclohexanone

Assume chair conformation with methyl group in

equatorial position

Methyl substituent in (+)-octant

Positive CD band for n-* transition

Page 3: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 146

Examples for the octant rule: The orientation confusion

Page 4: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten

Structure Octant Projection Cotton effectPred. / Exp.

(+) / + 2.1

(+) / + 5.4

(+) / + 0.6

(+) / + 1.2

147

Examples for the octant rule

OH Geometry of 5-rings

contributes to CD signal!

Page 5: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 148

Exciton coupling

Trivial case:

One or more separated chromophores, i.e. a

carbonyl and a remote C=C group

Spectrum is superposition of individual

contributions

Exciton coupling:

Simultaneous excitation of two identical

chormophores (not conjugated, but spatially

close)

UV band composed of two strong transitions

CD band shows strong Cotton effect

(+/- or –/+ pattern)

Page 6: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 149

Exciton coupling: Benzoates

Harada et al. „Electronic CD exciton chirality…“, in Berova et al., Comprehensive Chiroptical Spectroscopy, Vol 2., Wiley-VCH, 2012

R

OO

O

O

Br

Br

Page 7: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 150

Exciton coupling: Not just an empirical rule

-stateenergy

dipole strength 1/2

rotational strength ⋅

-stateenergy

dipole strength 1/2

rotational strength ⋅

If Vij > 0, -state lower in energy than -state,i.e. longer wavelength side features positive sign.

The outcome of the theoretical consideration for -* transitions:

Mixing of chromophores i and j leads to splitting of bands by Vij.

Rotational strength of -state is of opposite sign than -state!

Rotational strength (approxmiately) depends on distance of edtm (as intra-

chromphore magnetic contribution are negligible).

chromohore i chromohore j

Page 8: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 151

Exciton coupling: Benzoates

∝ ⇒ 0

∝ ⇒ 0

vector product

Only mutual spatial orientation of the two dipolemoments matter and determine the sign!

Try reversing the directions of µ0a and see yourself!Harada et al. „Electronic CD exciton chirality…“, in Berova et al., Comprehensive Chiroptical Spectroscopy, Vol 2., Wiley-VCH, 2012

Page 9: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 152

Exciton coupling: Qualitative definition

If two EDTM constitute a clockwise screw sence, CD shows positive first at longer

wave length and negative second Cotton effect at shorter wavelength, and vice versa.

+

-

Positive exciton chirality

Negative exciton chirality

⋅ 0

⋅ 0

Page 10: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 153

Exciton coupling

OO

O

O

Br

Br

R

OO

O

O

Br

Br

OO

OO

Br

Br

From EC pattern:Negative exciton chirality angle < 0

O

OBr

OO

Br

OO

O

O

Br

Br(+) (-)

Advantage of benzoates: edtm almost parallel to C-O of alcohol Benzoate EC directly reflects angle of diols!

Harada et al. „Electronic CD exciton chirality…“, in Berova et al., Comprehensive Chiroptical Spectroscopy, Vol 2., Wiley-VCH, 2012

correct stereochemistry!

Page 11: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 154

Useful chromophores for EC

Chromophores for OH groups:

O

ON

N N

NM

O

O

Ph

Ph

Ph

X = H, Br, OMe, NMe2230-310 nm

X = OMe, NMe2300-360 nm

235 nm, fluorescent 270 nm, fluorescent

M = 2H, Zn, Mg410 nm, fluorescent

Only para-substituted phenyl has edtm parallel to C-CO2R axis, ortho and meta not!

TPP-COOH shows very strong band at 410 nm, so that even microanalysis is possible!

Page 12: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 155

Useful chromophores for EC

For NH2 groups: For –COOH groups For –C=C – groups

M = 2H, Zn, Mg420 nm, fluorescent

260 nm

230 nm, fluorescent260 nm, fluorescent

305 nm

350 nm

280 nm, fluorescent

Page 13: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 156

Exciton coupling: Amines

N

NO

O

O

O (-)

(10% 1,4-dioxane in EtOH) Intramolecular charge-tranfer band of benzamides:

polarized along long axis of chormophore

Harada et al. „Electronic CD exciton chirality…“, in Berova et al., Comprehensive Chiroptical Spectroscopy, Vol 2., Wiley-VCH, 2012

Page 14: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 157

Exciton coupling: Binaphthyl systems

(EtOH)

positive exciton chirality

positive angle between naphthyl planes

HOH2CCH2OH

HOH2CCH2OH

(+)

Harada et al. „Electronic CD exciton chirality…“, in Berova et al., Comprehensive Chiroptical Spectroscopy, Vol 2., Wiley-VCH, 2012

Page 15: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 158

Exciton coupling

(+)

Stereoisomer A

or stereoisomer B?

Harada et al. „Electronic CD exciton chirality…“, in Berova et al., Comprehensive Chiroptical Spectroscopy, Vol 2., Wiley-VCH, 2012

Page 16: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 159

Exercise on exciton coupling: Determination of AC of diols

OO

O

O

H3C

OR

CH3

HOR

HH

CH3

H

ROOR

HH

H

OR

H3COR

HH

(+) (-)

Additional measurement of 1H-coupling constants necessary

to confirm the preferred conformation before AC assignment.Harada et al. „Electronic CD exciton chirality…“, in Berova et al., Comprehensive Chiroptical Spectroscopy, Vol 2., Wiley-VCH, 2012

(S)CH3CN

Page 17: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 160

Peptide secondary structures: Applications in biophysical chemistry

CD spectrum of poly(L-Glu) at pH 4.3:

Characteristic CD pattern of -helical structure

*

n *~222

~190 transition

~208|| transition

G. Snatzke, Angew. Chem. Int. Ed. 7 (1968) 14-25

Toniiolo et al. „Electronic CD of peptides“, in Berova et al., Comprehensive Chiroptical Spectroscopy, Vol 2., Wiley-VCH, 2012

µ Remember: µ from (+)(-), but m from (-)(+)

Page 18: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 161

Peptide secondary structures: Applications in biophysical chemistry

Toniiolo et al. „Electronic CD of peptides“, in Berova et al., Comprehensive Chiroptical Spectroscopy, Vol 2., Wiley-VCH, 2012

Main applications in biophysical chemistry:

1) Monitoring structural changes

Example of N-acetylated 17mer consisting ofL-Ala, L-Glu and L-Lys (pH 7)

Thermal degradationfrom -helical to unordered structure

2) Drug binding studies

Databases and component analysis software are

available to quantify the %-contributions of individual

secondary structures from their characteristic model

spectra!

Page 19: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 162

From MO models to calculations

CD response mainly arising from strongly twisted tetraene system

CD can be calculated in -approximation: SCF-CI-DV MO method

Harada et al, J. Am. Chem. Soc. 1985, 107, 423-428

Page 20: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 163

From MO models to calculationsHarada et al, J. Am. Chem. Soc. 1987, 109, 1661-1665

Calculation predicts rotational strength and dipole strength ( ⋅ ) in cgs units

Calc. yields stick spectra which need to be broadened by assigning Gaussian band shape

Page 21: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 164

From MO models to calculationsHarada et al, J. Am. Chem. Soc. 1989, 111, 5668-5674

Even in presence of several functional groups,

the -system can be shown to dominate the CD spectrum

Page 22: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 165

Reassignments of AC based on calculations

Assignment of AC based on exciton coupling: (aS)

O

OOH

H3CO

OCH3

O

OOH

H3CO

OCH3

Assumption for exciton coupling analysis:

UV transition at 324 nm arises from p-methoxycinnamoyl moiety

Positive exciton chirality (+)-angle

Orientation of edtm difficult to determine

-system actually extended over entire fragment

Harada et al, J. Am. Chem. Soc. 1992, 114, 7687-7692

Page 23: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 166

Reassignments of AC based on calculations

Assignment of AC based on exciton coupling: (aS)

based on calculations: (aR)!

Harada et al, J. Am. Chem. Soc. 1992, 114, 7687-7692

Page 24: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 167

Supramolecular chemistry: Characterization of a molecular motor

(P,P)-trans-1(M,M)-cis-2(P,P)-cis-2(M,M).trans-1

Koumura et al. Nature 401 (1999) 152-155

Unidirectional molecular motors designed by Feringa an co-workers

show distinct CD spectra for each switching state

Page 25: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 168

Supramolecular chemistry: Characterization of a molecular motorHarada et al. J. Am. Chem. Soc. 1997, 119, 7241-7248

Configurations could be assigned to

switiching states by comparison with

calculated CD spectra

Page 26: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 169

Computing chiroptical spectra

OO

O

O

H3C

OR

CH3

HOR

HH

Today‘s standard: Time-dependent DFT… implemented in all major software packages… computes vertical excitations… difference to previous examples: not just -electrons!

Page 27: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 170

Computing chiroptical spectraJ. Autschbach, Chirality 21 (2009) E116-E152

G. Pescitelli, T. Bruhn, Chirality 28 (2016) 466–474

If the molecules can adopt many different

conformations, their individual spectra need

to be averaged using Boltzmann statistics:

Important:

Getting good single conformer energies E!

Note:

Computed excitation energies often too

high, therefore energy axis often empirically

scaled to allow better comparison!

Page 28: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 171

An everyday example

N

N

NHN

S

NH2

HN

SNH2

O

O

63.0% 15.6% 10.6%

Li et al., Acta Pharmaceutica Sinica B, 4 (2014) 167-171

Boltzmann averaging

Page 29: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 172

Influences on the quality of agreement

Theoretical level of calculation

Solvent effects: Shifting of excitation energies

(polar vs. non-polar) Explicit solvation

(affects conformations or excitation energies)

Vibronic fine structure of bands

Line width used in Gaussian broadening ofbands (user-dependent)

gas phase

3-methylpentane

B3LYP / aug-cc-pVDZ

Page 30: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 173

Not so every day: More challenging tasks

For small molecules, it is even feasible to

calculated the vibrational fine structure together

with the CD signature

J. Autschbach, Chirality 21 (2009) E116-E152

Transition metal complexes still challenging,

but quite acceptable results can be obtained.

Page 31: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 174

Discussion: How reliable are AC assignments?

Are these reliable assignments?

Which information do you need to be

sure this assignment is correct?

Which additional information might be

required?

Nugroho et al, J Nat Med 68 (2014) 1–10

Page 32: Chiroptical Spectroscopy

Chiroptical spectroscopy | Dr. C. Merten 175

Outline of the lecture

Dates topics

20.04. introduction

27.04. polarization of light

04.05. theoretical basis of optical activity

11.05. optical rotation (measurements and pitfalls)

18.05. Pentecost (Pfingsten)

25.05. Circular dichroism

01.06. Circular dichroism

08.06. Circular dichroism – selected examples

(15.06.)

22.06. Vibrational optical activity

29.06. Vibrational optical activity – selected examples

06.07.

13.07. applications

20.07. applications your part