Chipmunk Creek

download Chipmunk Creek

of 30

Transcript of Chipmunk Creek

  • 7/25/2019 Chipmunk Creek

    1/30

    1

    THERE ARE6 PAGESOF DATA INPUT

    Estimate date 12-Nov-08

    Fixed options for design of all alternatives o f powerplant and conduit.

    6 Currency, Canadian $ = 1, USA $ = 2. 17 Project design standard Industrial (1) or Utility design (2) -------- 1 Comment

    8 Industrial generator (1) or utility generator (2). ---------------------- 1 Comment9 D e-sander required at intake, yes = 1, no = 0. --------------------- 0 Comment

    10 D am design for extreme flood, no = 1, yes = 2. ------------------- 1 Comment

    1112 Turbine and powerhouse characteristics.

    13 Total powerplant flow, m3/s. 2.60 Comment

    14 Desired number of units in powerplant. 2 Comment Comment15 Rated head ( Iterate to = F6 ), m. 454.86 Calc head = 454.86

    16 Estimated powerplant utilization factor. 0.4600 Comment 1.19617 Normal tailwater elevation m. 317.00 Water use in m3/s per year

    18 Powerhouse flood tailwater level, m. 322.00 Comment

    19 Average rock level at powerhouse, m. 325.00 --- Must be > 323.8720

    21 Generator characteristics.

    22 System frequency, Hz. 60.00 Comment

    23 Generator power factor. (Range 0.9 to 1.0) 0.90 Comment

    24 Generator inertia ratio to normal, "J". 1.00 Comment25

    26

    2728

    29 Turbine type Suitability Comment Cost $M

    30 Horiz. axis, 1 jet, 1 runner impulse turbine. ----YES ---- 1 9.420

    31 Horiz. axis, 2 jet, 1runner impulse turbine. ----YES ---- 1 6.11432 Horiz. axis, 1 jet, 2 runner impulse turbine. ----YES ---- 1 7.405

    33 Horiz. axis, 2 jet/r, 2 run. impulse turbine. -------------- 1 0.000

    34 Vert. axis, 1 jet, 1 runner impulse turbine. -------------- 1 0.00035 Vert. axis, 2 jet, 1 runner impulse turbine. ----YES ---- 1 7.657

    36 Vert. axis, 3 jet, 1 runner impulse turbine. ----YES ---- 1 7.80037 Vert. axis, 4 jet, 1 runner impulse turbine. -------------- 1 0.000

    38 Vert. axis, 5 jet, 1 run. impulse turbine. -------------- 1 0.000

    39 Vert. axis, 6 jet, 1 run. impulse turbine. -------------- 1 0.000

    40 Horiz. axis, 1 jet, 1 turgo runer turbine. -------------- 1 0.00041 Horiz. axis, 2 jet, 1 turgo runner turbine. -------------- 1 0.000

    42 Horiz. axis BANKI (Ossberger) turbine. -------------- 1 0.00043

    44 Project hydraulics.45 Normal +ve waterhammer design for penstock % 15

    46 Allowable negative waterhammer on penstock % 38

    4748 Side stream intakes and stream crossings.

    49 Side stream intakes, ratio of flow to main intake flow. 0 Comment50 Stream crossings under/over pipe/penstock. 0

    51 Input page 1.

    DATA INPUT SHEET - HYDROHELP

    BAKER - CHIPMUNK CREEK

    Allowable waterhammer

    calculated by program.

    Horizontal axis, 2 jet, 1runner impulse

    turbine.

    RECOMMENDED TURBINE TYPE

  • 7/25/2019 Chipmunk Creek

    2/30

    2

    52 BAKER - CHIPMUNK CREEK Estimate date 12-Nov-08

    53

    54 Surge tank. Tank hgt, m. 0.0

    55 Surge tank used, (1), not used (0). 0 Comment56 Surge tank in steel =1, in rock exc. = 2 2 Comment Tank cost $M.

    57 If in rock, conc lining (1), no lining, (0) 1 Comment 0.00058 Elevation rock at top of tank, if in rock, m. 800 Comment

    59 Elevation at surge tank tee, meters . 710 Comment60 Tank diameter based on min for stability (1), or larger, (2) 2 0.8

    61 If tank diameter is larger, select diameter, m. 3.0 Comment

    6263 Main concrete weir dam.64 Design maximum (1/1000?) flood flow, m3/s. 300 Deck level, m. 847.60

    65 Design weir + LL outlet flood flow (1/200?), m3/s. 300 Comment

    66 Crest length between abutments at damsite, m. 100 Comment67 River bed level, m. 840.0 Comment

    6869 1.470 Spillway sill level, m. 845.00

    71 Required depth of spill over weir, m. 2.30 Comment

    72 Required number of inflatable rubber dams 2 Comment73

    74 De-sander design. 2.2 Must be =< 3.4

    75 Basin volume ratio. 160 Comment76 Design particle size, range 0.1mm to 0.4mm. 0.25 Comment

    7778 Embankment dams - main dam.79 Normal tailwater level at dam, m. 840.00 Must be > 840.00

    80 Design acceleration for earthquake, g. 0.25 = 1/1000 DBE Comment

    81 River or lowest ground level at dam, m. 840.0082 Embankment material factor for dam stability 1.20 Comment83 Foundation material factor for dam stability 1.20 Comment

    84 Rip-rap design.

    85 Effective fetch, km. 1 Comment86 Design wind speed, km/hour. 100 or m/sec = 27.8

    87 Dam quantity calculation. Comment88 Dam crest length, m. 20 Crest El. m= 848.97

    89 River width, m. 5

    90 Average depth of overburden excavation, m. 291 Valley shape factor (0.5 to 1.0) 0.7 Comment

    92 Length of cutoff excavation, m. 3093 Average depth of cutoff to impervious material, m. 8 Comment

    94 Concrete or slurry wall length, m. 30 Comment95 Maximum depth of concrete or slurry wall to impervious material, m. 896 Slurry wall valley shape factor (0.25 to 0.75). 0.5 Comment

    97

    98 Embankment dams - side dam.

    99 Name of side dam. 1A

    100 River or lowest ground level at dam, m. 840.00101 Embankment material factor for dam stability 1.65 Comment

    102 Foundation material factor for dam stability 1.60 Comment

    103 Input page 2.

    Weir spillway. Coef ficient o f discharge =

  • 7/25/2019 Chipmunk Creek

    3/30

    3

    104 BAKER - CHIPMUNK CREEK Estimate date 12-Nov-08

    105

    106 Rip-rap design.

    107 Effective fetch, km. 3 Comment108 Design wind speed, km/hour. 100 or m/sec = 27.8

    109 Side dam 1A quantity calculation.

    110 Dam crest length, m. 0 Crest El. m= 849.75

    111 River width at dam, m. 0112 Average depth of overburden excavation, m. 0

    113 Valley shape factor (0.5 to 1.0) 0.5 Comment

    114 Length of cutoff excavation, m. 0 Comment115 Average depth of cutoff to impervious material, m. 0 Comment

    116 Concrete or slurry wall length, m. 0 Comment

    117 Maximum depth of concrete or slurry wall to impervious material, m. 0118 Slurry wall valley shape factor (0.25 to 0.75). 0.5 Comment

    119

    120 Conduit from reservoir to powerhouse. Comment121 Number of conduits intake to powerhouse. 1 L/H ratio = 10.6

    122 Automatic (1) or manual (2) optimization. 1 Comment123 Select pipe diam (m) for manual optimization. 10.000 Comment.

  • 7/25/2019 Chipmunk Creek

    4/30

    4

    156 BAKER - CHIPMUNK CREEK Estimate date 12-Nov-08157

    158 Conduit surge tank to powerhouse.

    159 Vertical bore.160 Bore length, m. 0

    161 Ratio of length bore lined with concrete. 0 Comment162 High pressure tunnel.163 Total high pressure tunnel length, m. 0164 Adit length, m. 0

    165 Ratio of length tunnel lined with concrete. 1 Comment

    166 Tunnel steel lined section length, m. 0 Comment167 Buried steel Penstock.168 Elevation at upper end of liner/penstock, m. 660.00 Must be

  • 7/25/2019 Chipmunk Creek

    5/30

    5

    208 BAKER - CHIPMUNK CREEK Estimate date 12-Nov-08209

    210 Site access and conditions.

    211 Access road length, km. 1.2212 Main access road difficulty factor. 1.3 Comment

    213 Local access road length, km. 8214 Local accsss road difficulty factor. 1.5 Comment

    215 Temporary bridge over river, span, m. 0216 Frost days at site, from a world Atlas. 120 Comment

    217 Union (2) or non-union (1) labour at site. 1

    218219

    220 Work item. Unit cost.

    221222 Earthwork and clearing. Comment

    223 Clearing, per hectare, $/H $7,404.09 $7,404.09

    224 Unit cost of overburden excavation, m3. $13.04 $13.04225 Unit cost of rock excavation, $/m3. $52.17 $52.17

    226 Unit cost of found excav in sand or gravel for cutoff, $/m3. $31.95 $31.95227 Rock excavation in tunnels, $/m3. $0.00 $0.00

    228 Impervious fill in cofferdams, $/m3. $0.00 $0.00229 Rock fill in cofferdams, $/m3. $73.85 $73.85

    230 Impervious fill in dams, $/m3. $33.43 $33.43

    231 Filter material in dams, $/m3. $44.16 $44.16232 Rock or embankment material in dams, $/m3. $58.81 $58.81

    233 Rock rip-rap, $/m3. $182.01 $182.01234 Sidehill rock excavation for pipeline, $/m3. $39.22 $39.22

    235 Sidehill overburden excavation for pipeline, $/m3. $13.04 $13.04

    236 Side creek crossing, cost per crossing. $0.00 $0.00

    237238 Concrete work.239 Concrete including forms and re-bars, $/m3. $1,022.64 $1,022.64

    240 Concrete only, excluding forms and re-bars, $/m3. $670.25 $670.25

    241 Concrete formwork, $/m2. $94.77 $94.77242 Reinforcing bars, $/kg. $7.99 $7.99

    243 Concrete in tunnel linings, $/m3. $0.00 $0.00

    244 Dental concrete on rock in dam foundations, $/m3. $0.00 $0.00245 Concrete or slurry wall, $/m3. $1,870.58 $1,870.58

    246247 Steelwork and powerhouse superstructure.

    248 Trashrack steel cost, $/kg. $6.32 $6.32

    249 Pipeline steel cost, $/ton. $5,492.57 $5,492.57

    250 Tunnel steel lining cost, $/ton. $0.00 $0.00251 Powerhouse superstructure steel cost $/ton. $7,038.09 $7,038.09252 Powerhouse siding, $/m2. $157.67 $157.67

    253 Powerhouse roofing, $/m2. $222.99 $222.99

    254 Temporary steel pile bridge over river, cost per m. $0.00 $0.00255

    256 Ratio of Sclairpipe cost to equivalent steel pipe cost. 0.50 Comment

    257

    258 Inflation factor, 2008 to present. 1.001

    259 Input page 5.

    Suggested unitcost, based on

    quantity of

    work.

  • 7/25/2019 Chipmunk Creek

    6/30

    6

    260 BAKER - CHIPMUNK CREEK Estimate date 12-Nov-08

    261

    262 Indirect costs. Estimated indirect

    263 Cost $M.264 Feasibility studies and site investigations. 2.0 0.501

    265 Environmental work. 2.0 0.511266 Detailed designs and contract documents. 2.0 0.522

    267 Site supervision work. 4.0 1.064268 Contingencies on civil and overheads. 20.0 4.059

    269 Contingencies on electromechanical work. 8.0 0.590

    270271 Interest rate % 6 Interest = 1.035

    272

    273 Value of generation in cents/kWh. 8.0274 Operating staff manhour cost per hour, $. 80 Comment

    275

    276277

    278 Turb ine output at rated head and flow, MW. 5.13

    279 Powerplant output at rated head and flow, MW. 9.83

    280 Turbine rated net head, m. 454.86

    281 Conduit average diameter, m. 0.92 Number of generating

    282 Power plant average annual generation, GWh. 42.34 units = 2

    283 Overburden excavation, cubic meters. 28,907

    284 Rock excavation, m3. 5,459

    285 Rock tunnel excavation, cubic meters. 0

    286 S teel pensto ck an d tunn el lin er weigh t, tonn es. 689

    287 Total concrete volume, cubic meters. 2,630

    288 Powerhouse footprint, width and length, m . 8.1 Length, m 22.4

    289 Overall turbine + generator + transformer + conduit efficiency at full load, %. 71.07290 Average overall project efficiency, excltransmission, for energy calc. % 78.76

    291 Head loss in conduit as a % of rated net head on turbine. ------------------------- > 14.98

    292 Speed regulation on an isolated system. Absolutely no speed regulation capability.

    293 Estimated time required for construction, months. ----------------------------------- > 14

    294

    295

    296297

    298299

    300

    301

    302303304

    305

    306307

    308309

    310

    311 Input page 6.

    Worth further analysis, but proceed cautiously.

    Head iterated OK in auto

    mode.

    Estimated project payback in years 12.0

    Turbine type selected by program. Horizontal axis, 2 jet, 1runner impulse

    turbine.

    Total project cost, including interest during

    construction, $M. $33.4

    % of direct

    costChange % to

    suit, based on

    estimated

    costs in

    Column F

    Summary of program output.

    END OF DATA INPUT

  • 7/25/2019 Chipmunk Creek

    7/30

    7

    OUTPUT STARTSWITHA COVER PAGE

    Cost from intake to high voltage end of transmission line, including interest.

    Powerplant average annual generation, GWh.

    42.34

    Power conduit and powerhouse generation, costs and dimensions developed with

    $33.3

    CAN $

    BAKER - CHIPMUNK CREEK

    12-Nov-08

    HydroHelp 3 Impulse

    An EXCEL program for optimizing hydro powerhouse capacity and conduit size.

    Powerplant output at rated head and flow, MW.

    9.8

  • 7/25/2019 Chipmunk Creek

    8/30

    8

    FOLLOWEDBYA SUMMARY PAGE

    BAKER - CHIPMUNK CREEK Date -- 12-Nov-08

    6 Project parameters determined by program.

    7 Turbine output at rated head and flow, MW. 5.13

    8 Powerplant output at rated head and flow, MW. 9.83

    9 Turbine rated net head, m. 454.86

    10 Conduit average diameter, m. 0.922

    11 Powerplant average annual generation, GWh. 42.3

    12 Estimated cost, in millions of dollars. $33.3 CAN $1314 Summary of input data for project.

    15 Number of turbines and flow in m3. 2 Flow, m3 2.6016 Access road and transmission lengths, km. 1.2

    17 Headpond full supply level, m. (FSL) 847.30 LSL = 844.00

    18 Normal tailwater level at powerhouse, m. 317.00 Trans. km. 119 Number of water conduits to powerhouse. 1 Length to head20 Conduit length, intake to powerhouse, m. 4,823 ratio ------ > 10.62122 Summary of program output for some parameters. Powerplant utilization

    23 Overburden excavation, cubic meters. 28,907 factor, % 46.024 Rock tunnel excavation, cubic meters. 0 Rock Ex. m3. 5,459

    25 Steel penstock and tunnel liner weight, tonnes. 689 Turbine runner outside26 Total concrete volume, cubic meters. 2,630 diameter, m. 1.19

    27 Turbine type selected by program.28

    29Turbine type eliminated from consideration during

    operation of program.30 Powerhouse footprint, width and length, m. 8.1 Length, m 22.4

    31 Overall turbine + generator + transformer + conduit efficiency at full load, %. 71.07

    32 Average overall project efficiency, excluding transmission, for energy calc. % 78.7633 Head loss in conduit as a % of rated net head on turbine --------- > 14.98 Com ment

    34 Speed regulation on an isolated system. Absolutely no speed regulation capability.35 Estimated time required for construction, months. -------------------------------------- > 14

    36

    37 Data input and options selected during data input, may vary for each alternative.38 Surge tank on conduit. No Diam., m. 0.00

    39 Turbine equipped with inlet valve. Yes Diam., m. 0.39540 Conduit optimization option. By program4142 Fixed options for design of all alternatives of powerplant and conduit.43 Currency, Canadian $ = 1, USA $ = 2. -------------------------------- 144 Industrial design (1) or Utility design (2) -------------------------------- 1 Comment

    45 Industrial generator (1) or utility generator (2). ---------------------- 1

    46 De-sander required at intake, yes = 1, no = 0. --------------------- 047 Dam design for extreme flood, no = 1, yes = 2. ------ ---------- --- 1

    Page 1.

    None.

    An EXCEL program for optimizing hydro powerhouse capacity and conduit size.

    Executive summary

    HydroHelp 3 Impulse

    Horizontal axis, 2 jet, 1runner impulse

    turbine.

  • 7/25/2019 Chipmunk Creek

    9/30

    9

    THERE ARE 22 PAGES OFDETAILEDOUTPUT

    2

    3 Input data4 Total powerplant flow, m3/s. = 2.60 Comment

    5 Desired number of units in powerplant. = 2.00 Comment6 Rated head ( Iterate to = F6 ), m. 454.86 Calc head = 454.86

    7 System frequency, Hz. = 60.00 Comment

    8 Generator power factor. (Range 0.9 to 1.0) = 0.90 Comment9 Generator inertia ratio to normal, "J". 1.00 Comment

    10 Estimated powerplant utilization factor. 0.46

    11 Normal tailwater elevation m. 317.0012 Powerhouse flood tailwater level, m. 322.00

    13 Average rock level at powerhouse, m. 325.00 --------- Must be > 323.9

    14

    1516

    17

    18 TOTAL POWERPLANT RATED OUTPUT, MW. 9.819 Rated flow per unit ( cubic meters / sec. ) 1.30

    20 Number of runners per unit 1.00 Runner CL El. 323.19

    21 # jets per turbine 2.00 Draft tube22 System frequency ( Hz ) 60.00 sill Elev. 320.13

    23 Calculated flow per jet, cubic meters/sec. 0.6524 T urbo-generator shaft alignment. HORIZONTAL Runaway

    25 Calculated synchronous rotational speed ( rpm ) 900.00 s peed, rpm = 1620

    26 Turbine inlet spherical valve diameter, m. 0.40 Unit spacing, m. 8.5627 Calculated runner pitch circle diameter ( m ) 0.93 0.00

    28 Calculated outside runner diameter ( m ) 1.19

    29 Calculated jet diameter ( m ) 0.09 0.0030 Calculated peak efficiency, all jets operating, %. 0.89

    31 Peak efficiency flow/jet. m3/s. 0.9832 Peak efficienc y flow as % of full load flow. 75.00

    33 Turbine full load efficiency, % 88.51

    34 Calculated turbine full load output ( MW ) 5.1335 Calculated generator ful l l oad ef ficiency, %. 95.78

    36 Calculated generator ful l load output ( MW ) 4.92

    37 Calculated water to wire cost, excluding substation, millions. 6.1138

    39 GENERATOR DATA40 Generator inertia, metric GD2. 7.48 Tonnes meters squared.41 Generator inertia, Imperial WR2. 44,373 Pounds feet squared.

    42 Generator electrical "H" value. 1.52 kW-secs/kVA

    43 Generator MVA 5.4644 Mechanical start time for unit, secs. ( Tm.) 3.38

    45 Generator full load efficiency, % 0.964

    46 Generator speed, rpm. 900.047 Page 2

    Absolutely no speed

    regulation capability.

    BAKER - CHIPMUNK CREEK

    RECOMMENDED TURBINE

    Horizontal axis, 2 jet, 1runner impulse turbine.

    TURBINE SELECTION

  • 7/25/2019 Chipmunk Creek

    10/30

    10

    48 BAKER - CHIPMUNK CREEK # of units 2

    495051 Powerhouse crane capacity, tonnes. 20.86 # of cranes 1

    52 Powerhouse crane span, with crane over valve, m. 7.42

    53 Powerhouse length, m. 22.4054 Powerhouse width, m. 8.14 Walls, m2 401

    55 Powerhouse height, repair bay floor to roof, m. 6.57 Roof, m2. 182

    56 Powerhouse roof elevation, m. 329.0757 Powerhouse concrete volume, m3. 265.78 PH Vol, m3. 1198

    58 Powerhouse formwork, m2. 318.9459 Powerhouse s tructural steel weight, tonnes. 53.41

    60 Powerhouse repair bay floor level, m. 322.50

    61 Distance between unit centerlines, m. 8.56

    6263 Comment on water to wire cost estimate. Total W/W Total generator Peak turbine64 Turbine axis, jet and runner configuration. Cost US$m. capacity, MW efficiency65 Comment Comment

    66 Horiz. axis, 1 jet, 1 runner impulse turbine. 9.420 9.879 0.895

    67 Combination of capacity, head and flow is suitable for this type of turbine. Reject68 Horiz. axis, 2 jet, 1runner impulse turbine. 6.114 9.833 0.890

    69 Combination of capacity, head and flow is suitable for this type of turbine. SELECT70 Horiz. axis, 1 jet/r, 2 run. impulse turbine. 7.405 11.744 0.899

    71 Combination of capacity, head and flow is suitable for this type of turbine. Reject

    72 Comment73 Horiz. axis, 2 jet/r, 2 run. impulse turbine. 0.000 9.976 0.903

    74 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject

    75 Vert. axis, 1 jet, 1 runner impulse turbine. 0.000 9.862 0.89376 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject

    77 Vert. axis, 2 jet, 1 runner impulse turbine. 7.657 9.854 0.89278 Combination of capacity, head and flow is suitable for this type of turbine. Reject

    79 Vert. axis, 3 jet, 1 runner impulse turbine. 7.800 11.900 0.911

    80 Combination of capacity, head and flow is suitable for this type of turbine. Reject81 Vert. axis, 4 jet, 1 runner impulse turbine. 0.000 9.992 0.912

    82 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject83 Vert. axis, 5 jet, 1 run. impulse turbine. 0.000 9.982 0.911

    84 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject

    85 Vert. axis, 6 jet, 1 run. impulse turbine. 0.000 9.975 0.91086 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject

    87 Horiz. axis, 1 jet, 1 turgo runer turbine. 0.000 8.309 0.854

    88 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject89 Horiz. axis, 2 jet, 1 turgo runner turbine. 0.000 9.517 0.803

    90 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject91 Horiz. axis BANKI (Ossberger) turbine. 0.000 97.369 0.586

    92 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject93 Comment

    94 Vertical axis Francis turbine. 0.000 10.168 0.912

    95 Combination of capacity, head and flow NOT suitable for this type of turbine. ----------------96

    97 Page 3

    Powerhouse and crane data.

  • 7/25/2019 Chipmunk Creek

    11/30

    11

    98

    99100

    101102

    103104

    105 Turbine type Suitability

    106 Hori z. axis, 1 j et, 1 runner impulse turbine. ----YES ---- 1107 Hori z. axis, 2 j et, 1runner impulse turbine. ----YES ---- 1

    108 Hori z. axis, 1 j et, 2 runner impulse turbine. ----YES ---- 1109 Hori z. axis, 2 j et/r, 2 run. impulse turbine. -------------- 1

    110 Vert. axis, 1 jet, 1 runner i mpulse turbine. -------------- 1

    111 Vert. axis, 2 jet, 1 runner i mpulse turbine. ----YES ---- 1

    112 Vert. axis, 3 jet, 1 runner i mpulse turbine. ----YES ---- 1113 Vert. axis, 4 jet, 1 runner i mpulse turbine. -------------- 1114 Vert. axis, 5 jet, 1 run. impulse t urbine. -------------- 1

    115 Vert. axis, 6 jet, 1 run. impulse t urbine. -------------- 1

    116 Horiz. axis, 1 jet, 1 turgo runer turbine. -------------- 1117 Hori z. axis, 2 j et, 1 turgo runner turbine. -------------- 1

    118 Hori z. axis BANKI (Os sberger) turbine. -------------- 1119

    120

    121122 Selected Selected

    123 LV/gHTe Tm/Te

    124 Deflector close 2.09 1.69125 Valve open 0.24 0.19

    126127

    128

    129130

    131132

    133

    134135 Overall project efficiency 78.76

    136137 20 9.27 83.4

    138 30 9.25 83.3

    139 40 9.17 82.5140 50 8.99 80.9

    141 60 8.84 79.6142 70 8.67 78.0

    143 80 8.45 76.1

    144 90 8.20 73.8145 100 7.92 71.2

    146 0 0.000

    147 0 0.000148 Page 4

    BAKER - CHIPMUNK CREEK

    If the recommended turbine is not satisfactory, a second recommendation (based on cost) can be

    obtained by eliminating the recommended turbine from consideration with a zero (0) placed oppositethe recommended turbine in Column D. Suitable turbines are shown in Column E

    SPEED REGULATION CHARACTERISTIC

    0.0

    0.2

    0.4

    0.6

    0.8

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    Mechanical start time / governor timePenstoc

    kstart

    time/go

    vernor

    tim

    e

    Good above 1.0, poor below.

    .

    Rapid load off with

    deflector, slow load onwith spear valves.

    OVERALL PROJECT EFFICIENCY

    60

    70

    80

    90

    20 30 40 50 60 70 80 90 100

    FLOW RATIO %EFFICIENCY%

  • 7/25/2019 Chipmunk Creek

    12/30

    12

    149

    150 Powerhouse plan dimensions.151 Total length, m. 22.40

    152 Full width including piping and control rooms, m. 8.14

    153 Length of repair bay, m. 4.28154 Distance between unit c enterlines, m. 8.56

    155 Powerhouse height, above r epair bay floor, m. 13.51

    156 Vertical axis unit Crane span. 0.00 0.00157 Crane capacity in tonnes. 0.0

    158159 0.00

    160 0.00

    161 El.162 0.00

    163164 0.00 0.00165

    166 El. 0.00167

    168 0.00

    169 Repair 170 bay floor

    171 0.00 El. 0.00172

    173 0.00

    174 El. 0.00175

    176 Flood TWL177 elevation

    178 0.00

    179 322.71180 TWL. El, m.

    181 0.00182

    183 0.00

    184 0.000185 0.00

    186

    187188 Runner removal pass age width, m. 0.00

    189190

    191

    192193 P owerhouse superstructure perimeter, m. 61.08

    194 Powerhouse wall area, m2. 825195 Powerhouse roof area, m2. 182

    196 Powerhouse clearing, Ha. 0.2

    197198

    199 Page 5

    BAKER - CHIPMUNK CREEK

    Note - Impulse units MUST be set above flood level. They cannot operate submerged, unlesstailwater depressed by compressed air, and this is very expensive due to high demand for air.

    Air demand is high due to loss from enrtainment as water falls off runner.

    Unit shaft alignment is

    HORIZONTAL

    As selected by program.

    Top ofgenerator

    Valve diameter, m.

  • 7/25/2019 Chipmunk Creek

    13/30

    13

    200

    201202

    203 Crane capacity in tonnes. 21.9

    204 1.63

    205 3.07

    206 El., m. 336.44

    207208 7.14

    209 4.49

    210 8.14

    211 4.02212 El., m. 323.19

    213214 6.19 El., m. 322.93

    215

    216217 Flood TWL

    218 m. 322.00219

    220 El., m. 317.00

    221222 El., m. 320.13

    223

    224

    225 Valve diameter, m. 0.40226 Turbine runner pitch circle d iameter, m. 0.935227

    228 Site access and transmission. Comment229 Access road length, km. 1.2 Cost, $M. 1.018

    230 Access road difficulty factor. 1.3231

    232 Local access road length, km. 8 Cost, $M. 6.805

    233 Local accsss difficulty factor. 1.5234

    235 Temporary steel pile bridge o ver river, total length, m. 0 Cost, $M. 0.000236

    237 Transmission line length, km. 1 Transmission kV 24238 Transmission line difficulty factor. 2 Cost, $M. 0.415239

    240 Local transmission to intake, length, km.. 6 Local Trans kV 4241 Local transmission to intake, difficulty factor. 2 Cost, $M. 0.895

    242

    243 Calculated switchyard cost $M 0.124

    Page 6

    BAKER - CHIPMUNK CREEK

    Horizontal a xis unit.

    Crane span

  • 7/25/2019 Chipmunk Creek

    14/30

    14

    If there are side stream intakes, ratio of f lows to main intake flow. 0 Comment

    Main Dam.

    7 Design maximum (1/1000) flood flow, m3/s. 300 Deck level, m. 847.60

    8 Design weir flood (1/200) flow, m3/s. 3009 Required height of dam to accommodate low level sluice below trashracks, m. 7.70

    10 Crest length between abutments at damsite, m. 100 Comment 81.111 River bed level, m. 840

    12 Low level sluice capacity, m3/s. 2.6 Comment

    13 Spillway sill level, m. 845.00

    14 Required depth of spill over weir, m. 2.30 Comment15 Required number of inflatable rubber dams 2 Comment16

    17 Inflatable rubber Dam.18 Selected flood for weir design, m3/s. 300 From cover, line 4719 Length of one rubber dam, including sloped section, m. 34.8 Maximum ----- > 45.1920 Rubber dam cost, installed. $millions. 0.78321

    22 Concrete weir. C oefficient of discharge = 1.4 Total crest length, dams23 Length of flat weir crest (upstream-downstream) , m. 12.8 and weirs, m. 10124 Low level sluice sillelev. Top just at trashrack sill, m. 840.20

    25 Low level sluice width and height, m. 0.5 Height, m 0.6

    26 Total length of spil lway including end piers, m. 7627 Total length of weir and intake, between abutments, m. 81.1

    28 Concrete volume, m3. 224029 Normal flood level for 1/200 flood, m. 847.3

    30 Approximate extreme flood level, 1/1000 flood. 847.3 2.3

    3132 De-sander design.33 Design flow, m3/s. 2.600 Head loss, m. 0.7134 Basin volume ratio. 160 Iterate until

    35 Basin volume, m3. 416

    36 Basin water depth, m. (semi-circ ular basin section) 2.2 Must be < 3.437 Basin length, m. 43.6 Basin width, m. 4.4

    38 Design partic le size, range 0.1mm to 0.4mm. 0.2539 Particle transit time, secs. 125 Clearing for desander,40 Sander weir cr est width upstream of trashrack s, m. 3.1 Ha. - ---- -- --- -- > 0.09

    41 Low level sluice from de-sander, width, height, m. 0.00 Height, m. 0.0042 Average depth of excavation at intake/weir, m . 0.1

    43 Particle drop distance in basin, m. 3.444 Flow Velocity, m/s. 0.3

    45 Part drop rate, m/s. 0.027

    46 Concrete volume, m3. 047 Flow depth,m 0.748 Height, m= 0.00

    49 Exc. vol, m3. 050 Page 7

    BAKER - CHIPMUNK CREEK

    Depth of flow overweir at extreme

    flood, m. --- >

    A desander is very

    expensive. Would be located

    downstream of dam.

    Arrangement depends on

    topograpy, and is not shown.

    Dam weir, d e-sanding chamber and access roads.

  • 7/25/2019 Chipmunk Creek

    15/30

    15

    51 BAKER - CHIPMUNK CREEK Dam and weir

    52 Schematic showing arrangement of dam, weir and low level sluice.53 Elevation top of gate hoist tower, m. 851.67 Number rubber dams.

    54 Extreme flood (1/1000) level, m. 847.30 2

    55 Total length spillway including piers, m. 75.67 Dam cres t elevation, m.56 847.60

    57 Flood level, m.58 847.30 Rubber dam crest elevation, m.

    59 847.30

    60 Full supply61 level, m. Rubber dam sill elevation, m.

    62 847.30 845.00

    63 Low supply64 level, m. 34.8

    65 844.00 2.3066 Trashrack 30.23

    67 top elev, m.68 842.45 Low level outlet gate top, m.69 1.55 840.76

    70 Trashrack71 sill level, m. Low level outlet gate sill, m.

    72 840.76 840.20

    73 0.5774 Right angle at blue line. Expanded elevation to show intake at right angle to dam-weir centerline.

    75

    76 Total length of desander basin, m. 87.2 Width, m. 5.3

    77

    7879

    80

    81

    82

    83

    8485

    8687

    88 43.6

    89 Number of desander basins. 190

    91 Radius R, m. Nominal wall thickness, m. 0.4892 2.2

    93 Concrete area in section, m2 7.63

    9495 Concrete volume in desander,

    96 cubic meters. 66697

    98 De-sander required at intake. No

    99100 Page 8

    Plan typical double desander. If industrial design, 1

    basin, if utility design, there should be 2 basins.

    2m

    Active settling

    length.

    Typical section through

    desander. Section B - B

  • 7/25/2019 Chipmunk Creek

    16/30

    16

    BAKER - CHIPMUNK CREEK MAIN DAM

    Dam design.Flood level at dam, meters. 847.30

    5 Normal full supply level at trashracks, m. 847.30

    6 Normal low supply level at trashracks, m. 844.007 Normal tailwater level at dam, m. 840.00 Must be > 317.00

    8 Design acceleration for earthquake, g. 0.25 = 1/1000 DBE9 River or lowest ground level at dam, m. 840.00

    10 Embankment material factor for dam stability 1.20 Comment

    11 Foundation material factor for dam stability 1.20 Comment12 Dam type - rock fi ll centr al core (1 ) or h omogeneou s ( 2) 2 Com ment

    13 Dam crest elevation, m. 848.97 Dam downstream14 Dam slope (x)/1 Upstream. x = 2.14 slope (x)/1 1.64

    15 Dam height, crest t o river/lowest bed level, m. 8.97 Cres t

    16 Dam base width at river level, m. 38 width, m. 5.317

    18 Rip-rap design.

    19 Effective fetch, km. 1 Comment20 Design wind speed, km/hour. 100 or m/sec = 27.8

    21 Max. wave height, m. And period, secs. 1.1 Secs = 2.622 Wave length, m. And slope a/l 10.8 a/l = 0.11

    23 Wave run-up on dam. 1.20

    24 Minimum freeboard, m. 1.6725 Weight D50kg rip-rap and average size, Dm. D50kg = 144 Dm = 0.38

    26 Rip-rap thickness (m). 0.727

    28 Dam quantity calculation.

    29 Dam crest length, m. 2030 River width, m. 5

    31 Valley shape factor (0.5 to 1.0) 0.7 Comment32 Average depth of overburden excavation, m. 2

    33 Length of cutoff excavation, m. 30

    34 Average depth of cutoff to impervious material, m. 8 Comment35 Concrete or slurry wall length, m. 30 Comment

    36 Maximum depth of concrete or slurry wall to impervious material, m. 837 Slurry wall valley shape factor (0.25 to 0.75). 0.5 Comment

    38 Total embankment vol. above river bed level, m3 = 2,519 excluding cutoff

    39 Rip-rap volume (m3) and average size, (m). 158 d50, m. 0.3840 Cutoff excavation and fill volume, m3. 4,725 Cutoff excavation

    41 Compacted rock fill 189 slope = 1.4

    42 Filter transition zone A 83 Filt. Zone B 8343 Rip - rap bedding gravel, m3. 79 Clearing for dam,

    44 Till core 2,007 Hectares= 0.245 F oundation rock excavation for cor e contact, m3. 0 Ove rburden e xcavation

    46 Dental concrete for core contact, m3. 6 vol, m3. 757

    4748 Slurry or concrete cut-off wall. Elev. Top of wall, m. 842.00 Bottom El 834.00

    49 Concrete or slurry wall area, m2. 120 Width, m. 0.6050 Concrete or slurry wall volume, m3. 72

    51 Page 9

  • 7/25/2019 Chipmunk Creek

    17/30

    17

    52 BAKER - CHIPMUNK CREEK MAIN DAM53

    54 Crest elevation, m. 0.00 Width, m. 0.055 Upstream and downstream slopes Height, m. 0.0

    56 0.00 0.00 Wall top El 842.00

    57 0.00 0.0 Wall bot El 834.005859

    60

    6162

    63

    6465

    66

    6768

    6970

    7172

    73

    74 Slurry wall option Cut-off depth, m. 0.075 Cut-off slope, x:1 = 0.0

    76 0.0

  • 7/25/2019 Chipmunk Creek

    18/30

    18

    BAKER - CHIPMUNK CREEK SIDE DAM # 1A

    Dam design.Flood level at dam, meters. 847.30

    5 Normal full supply level at trashracks, m. 847.306 Normal low supply level at trashracks, m. 844.00

    7 Normal tailwater level at dam, m. 840.008 Design acceleration for earthquake, g. 0.25 = 1/1000 DBE

    9 River or lowest ground level at dam, m. 840.00

    10 Embankment material factor for dam stability 1.65 Comment11 Foundation material factor for dam stability 1.60 Comment

    12 Dam type - rock fi ll centr al core (1 ) or h omogeneou s ( 2) 2 Com ment

    13 Dam crest elevation, m. 849.75 Dam downstream14 Dam slope (x)/1 Upstream. x = 2.84 slope (x)/1 2.34

    15 Dam height, crest t o river/lowest bed level, m. 9.75 Cres t

    16 Dam base width at river level, m. 55 width, m. 5.417

    18 Rip-rap design.

    19 Effective fetch, km. 3 Comment

    20 Design wind speed, km/hour. 100 or m/sec = 27.821 Max. wave height, m. And period, secs. 1.9 Secs = 3.6

    22 Wave length, m. And slope a/l 19.9 a/l = 0.10

    23 Wave run-up on dam. 1.1224 Minimum freeboard, m. 2.45

    25 Weight D50kg rip-rap and average size, Dm. D50kg = 507 Dm = 0.5826 Rip-rap thickness (m). 1.0

    27

    28 Dam quantity calculation.

    29 Dam crest length, m. 030 River width, m. 031 Valley shape factor (0.5 to 1.0) 0.5 Comment

    32 Average depth of overburden excavation, m. 0

    33 Length of cutoff excavation, m. 034 Average depth of cutoff to impervious material, m. 0 Comment

    35 Concrete or slurry wall length, m. 0 Comment

    36 Maximum depth of concrete or slurry wall to impervious material, m. 037 Slurry wall valley shape factor (0.25 to 0.75). 0.5 Comment

    38 T otal embankm ent vo l. above river bed level, m 3 = 0 excluding cuto ff 39 Rip-rap volume (m3) and average size, (m). 0 d50, m. 0.58

    40 Cutoff excavation and fill volume, m3. 0 Cutoff excavation

    41 Compacted rock fill 0 slope = 2.042 Filter transition zone A 0 Filt. Zone B 0

    43 Rip - rap bedding gravel, m3. 0 Clearing for dam,44 Till core 0 Hectares= 0.0

    45 F oundation rock excavation for cor e contact, m3. 0 Ove rburden e xcavation

    46 Dental concrete for core contact, m3. 0 vol, m3. 047

    48 Slurry or concrete cut-off wall. Elev. Top of wall, m. 0.00 Bottom El 0.0049 Concrete or slurry wall area, m2. 0 Width, m. 0.60

    50 Concrete or slurry wall volume, m3. 0

    51 Page 11

  • 7/25/2019 Chipmunk Creek

    19/30

    19

    52 BAKER - CHIPMUNK CREEK SIDE DAM # 1A53

    54 Crest elevation, m. 0.00 Width, m. 0.055 Upstream and downstream slopes Height, m. 0.0

    56 0.00 0.00 Wall top El 0.00

    57 0.00 0.0 Wall bot El 0.005859

    60

    6162

    63

    6465

    66

    6768

    6970

    7172

    73

    74 Slurry wall option Cut-off depth, m. 0.075 380.13 Cut-off slope, x:1 = 0.0

    76 0.0

  • 7/25/2019 Chipmunk Creek

    20/30

    20

    2 Project hydraulics.3 Flood level at dam, meters. 847.304 Normal full supply level at trashracks, m. 847.30

    5 Low supply level at trashracks, m. 844.006 Design reservoir level for turbine rating, m. 846.2

    7 Number of conduits intake to powerhouse. 1 L/H ratio = 10.6

    8 Number of turbines on each conduit. 2 L = Total conduit length, m .9 C alculated rated flow per conduit, m3/s. 2.60 H = turbine rated head, m.

    10 Automatic (1) or manual (2) optimization. 1 Comment11 Target automatic conduit head loss ratio % 15.85 Comment

    12 Calculated head loss % 14.98 Comment

    13 Calculated average diam of upstream and downstream steel pipes, m. 0.89 Comment14 Select pipe diam (m) for manual optimization. 10.000 Comment.

  • 7/25/2019 Chipmunk Creek

    21/30

    21

    52 BAKER - CHIPMUNK CREEK

    53 Side stream total cost, included in intake and equipment costs. 0.00054

    55 Conduit intake to surgetank. ooooooooooooooooooooooooooooooooo56 Intake pipeline concrete encased length, m. 5 Note - pipeline steel cost57 Pipeline on surface (1) or buried (2). 2 has been reduced to58 Pipe length in rock sidehill, m. 1100 72 % based on59 Pipe length in earth sidehill, m. 2580 use of some Sclairpipe.

    60 Elevation of end of pipeline, m. 66061 Total pipeline length, meters. 3685 Comment Pipe vel, m/s.

    62 Pipeline diameter, meters. 0.974 Comment 3.4963 Pipeline steel thickness, millimeters. 7.0 Comment

    64 Pipeline(s) steel weight, kg. 468,838

    65 Pipeline(s) total conc casing pier+anchor volume, m3. 4

    66 Length of Sclairpipe used instead of steel, m. 2,03167 Average sidehill slope in rock, hor. to 1 vert. 2.1 Comment68 Average sidehill earth slope, horiz. to 1 vert. 2.3 Comment

    69 Sideslope roughness factor. (1.5 to 3.0) 1.5 Comment

    70 Rock excavation for pipeline(s), m3. 2,590 Slope fact= 0.5471 Overburden excavation for pipeline(s), m3. 20,040 Slope fact= 0.77

    72 Pipeline and penstock clearing width. Pipe, m. 5 Penstock, m. 373 Pipeline and penstock(s) clearing hectares. 48.2

    74

    75 Low pressure tunnel size and cost calculation. ooooooooooooooooooooooooooooooooo76 Low pressure tunnel length, m. 0 Adit L, m = 0

    77 Tunnel rock diameter, m. 2.400

    78 Ratio of length tunnel lined with concrete. 1 Conc lined 079

    Length of tunnel lined with steel, m. 0

    80 Tunnel(s) excavation volume, including adit, m3. 0 Adit vol m3= 081 Tunnel(s) conc rete lining volume incl. Adit plug, m3. 0 Adit plug m3 0

    82 Tunnel lined section diameter, m. 1.824

    83 Liner min. thickness for buckling/handling, mm. 8.2 Steel li ner, kg. 084

    85 Surge tank size and cost calculation. ooooooooooooooooooooooooooooooooo86 Surge tank used, (1), not used (0). 0 Comment

    87 Design acceleration for earthquake, g. 0.25 = 1/1000 DBE

    88 Surge tank in steel =1, in rock exc. = 2 289 If in rock, conc lining (1), no lining, (0) 1

    90 Elevation rock at top of tank, if in rock, m. 800 Comment91 Elevation of surge tank tee, or conduit "knee", m. 710 Comment IMPORTANT92 Tank diameter based on min for stability (1), or larger, (2) 2

    93 Tank min. diam for stability, m. 0.8 Tank cost $M 0.00094 If tank diameter is larger, select diameter, m. 3.0 Comment

    95 Turbine rated head, m. 454.9 NOTE96 Upstream conduit length, meters. 3685

    97 Acceleration head loss to tank, m. 47.98 Surge in tank as a % of

    98 Retardation head loss to tank, m. 32.85 turbine head 0.099 Elevation of top of tank, meters. 848.3 Should be less than 8%.

    100 Elevation of bottom of tank, meters. 749.8 Pref erably l ess than 5%.

    101 Tank height, top to bottom, and T to roof, meters. 98.5 T to roof, m= 138.3

    102 Page 14

    PVC pipe is suitable for this

    application.

  • 7/25/2019 Chipmunk Creek

    22/30

    22

    103 BAKER - CHIPMUNK CREEK

    104 Conduit surge tank to powerhouse. ooooooooooooooooooooooooooooooooo

    105 Vertical bore size and quantity calculation.106 Bore length, m. 0 Bore diam, m. 1.171107 Ratio of length bore lined with concrete. 0

    108 Bore excavation volume, m3. 0 Bore lined section

    109 Bore concrete lining volume, m3. 0 diameter, m. 0.890110

    111 High pressure tunnel. ooooooooooooooooooooooooooooooooo112 Total high pressure tunnel length, m. 0

    113 Adit L, m = 0

    114 Tunnel diameter, m. 2.300115 Ratio of length tunnel lined with concrete. 1

    116 Tunnel excavation volume, including adit, m3. 0 Adit vol m3= 0117 Tunnel concrete lining volume incl. adit plug, m3. 0 Adit plug m3 0

    118 Tunnel concrete lined section diameter, m. 1.748119 Tunnel steel lined section length, m. 0 Tunnel d. m 2.748120 C alc. liner thick ness ups. end for buckling, mm. 15.1 Liner d. m.= 1.748

    121 Tunnel lined section excavation volume, m3. 0

    122 Concrete around liner, m3. 0 Steel liner kg. 0123

    124 Buried steel Penstock. ooooooooooooooooooooooooooooooooo125 Elevation at upper end of liner/penstock, m. 660.00

    126 Penstock length and sideslope in rock cut, m. 569.00

    127 Penstock length and sideslope in earth cut, m. 569.00128 Average sidehill slope in rock, hor. to 1 vert. 10.00 Slope fact= 0.1

    129 Average sidehill earth slope, horiz. to 1 vert. 10.00 Slope fact= 0.1130 Sideslope roughness factor. (1.5 to 3.0) 1.50 Comment

    131 Penstock rock excavation, m3. 724 Earth exc, m3. 1,358132 Surface steel penstock. ooooooooooooooooooooooooooooooooo133 Surface penstock length, m. 0

    134 Earth overburden average depth of cut, m. 1135 Average excavation depth in rock, m. 2

    136 Penstock rock excavation, m3. 0 Earth exc, m3. 0

    137 Conc. anchor & ring girder pier volume, m3. Anchor = 0 Pier vol, m3 0138 Penstock data. ooooooooooooooooooooooooooooooooo139 Total penstock/tunnel liner length, meters. 1,138 Comment140 Penstock diameter, meters. 0.798

    141 Maximum penstock steel thickness, millim eters. 11.9 Com ment

    142 Penstock steel weight, kg. 220,148143

    144 Tailrace. ooooooooooooooooooooooooooooooooo145 Tailrace channel length, meters. 50 Tailrace channel invert146 Tailrace ch. rock level at powerhouse DT exit, m. 325 level, m. = 322.33

    147 Tailrace channel average overburden depth, m. 5 Flow depth 0.86148 Tailrace channel overburden excavation volume, m3. 3,222

    149 Tailrace rock excavation volume, m3. 177

    150 Tailrace Manning friction factor. 0.032151 Approximate head loss in tailrace channel, m. 0.36 Note - not in conduit losses.

    152153 Number of side stream crossings over penstock. 0

    Page 15

  • 7/25/2019 Chipmunk Creek

    23/30

    23

    154 Dam and spillway.155 Minimum elevation top of hoisthouse, m. 851.67

    156 Flood level, m. Deck level, m.157 847.30 847.60

    158 Total height of 159 Full supply concrete intake

    160 level, m. rock to deck, m

    161 847.30 7.59162 Low supply

    163 level, m. Intake gate164 844.00 lintel elev, m.

    165 Rack top, m. 842.04

    166 842.45167 Rack height, m. Intake gate

    168 1.68 sill elev, m,.169 Stoplog height, m. 840.76170 1.53

    171 Gate height, m.172 1.28

    173 Rack sill elev, m.174 840.76

    175

    176177 Section elevation through center of intake and pipe.178

    179 Rack width, m. 1.55180 Tunnel or

    181 Stoplog width, m. 1.12 pipe diam, m.

    182 0.974183 Gate width, m. 1.02

    184185

    186187 Total rack width 1.55

    188 Plan through intake at pipe level A - A

    189190 Minimum distance racks to Deck width, m. 2.88 (minimum)

    191 gate, m. 2.50 Deck length, m 3.95 (minimum)192 Pier width, m. 0.00

    193

    194

    195196197

    198

    199200

    201

    202203

    204 Page 16

    BAKER - CHIPMUNK CREEK

    Plan at deck level C - CPlan section B - B

  • 7/25/2019 Chipmunk Creek

    24/30

    24

    205 BAKER - CHIPMUNK CREEK

    206

    207 Surge tank dimensions. 0.0208 El, m. Surge tank diameter, m. 0.00 m. Tank top, m.

    209 0.0 El, m. 0.0

    210

    211 FSL Surge rise, m.212 El, m. 0.0

    213 0.0214 Friction drop, m.

    215 LSL 0.0

    216 E l, m.217 0.0 Surge drop, m.

    218 0.0

    219220 Tank bottom, m

    221 El, m. 0.0222

    223 Upstream Riser diam, m.

    224 conduit length, m. 0.0225 0

    226 Level surge227 tank T, m.

    228 0.0

    229230

    231 Penstock and conduit hydraulics.

    232 Allowable waterhammer at turbine on valve closure, %. 15233 Upstream pipeline or tunnel LV, m2/s. 3588

    234 Penstock pipe or tunnel LV, m2/s. 5917 Surge tank used on235 Average velocityin conduit intake to turbine, m/s. 3.89 conduit ------- No236 Val ve times in s econds. Close (total ) --> 130.4 Open (total) 29.1237

    238 Top of tank or Maximum waterhammer

    239 FSL at dam. level at turbine, m.240 0.0 925.92

    241 Bottom of tank or Max waterhammer head, m.242 LSL at dam. 602.73

    243 0.0

    244 Minimum waterhammer

    245 level at turbine, m.246 670.53

    247 Min waterhammer head, m.248 347.34

    249250 Turbine inlet elevation, m.

    251 323.19

    252 Maximum tailwater elev, m.253 322.00

    Page 17

    Surge tank height, from

    pipe/riser "T" to roof, m.

    Schematic

    showing

    waterhammer

    conditions on

    penstock or

    pipeline.

    Negative waterhammergradient

  • 7/25/2019 Chipmunk Creek

    25/30

    25

    BAKER - CHIPMUNK CREEK

    5 Frost days at site, from a world Atlas. 120 Frost factor. 0.72

    6 Union (2) or non-union (1) labour at site. 1 Labor factor. 1.007 Site install ation work cost factor ---------> 0.72

    89

    10 Gates, gantries, monorail hoists, stoplogs,1112 0.413

    14 Spillway stoplogs for gate adjacent to intake. Width, = 0.45 Height, = 0.5715 Number of openings. 1 W^2Hh = 0

    16 Sets of stoplogs. 0 Monorail hoists. 017 Hoist capacity, tonnes. 0.500 Gantries. 0

    18 Supply. Install.

    19 Stoplogs. 0.000 0.00020 Guides. 0.000 0.000

    21 Hoist. 0.000 0.00022 Total. 0.000 0.000

    23 Total cost of spillway stoplog equipment. 0.000

    2425 Spillway gate - adjacent to intake. Width, = 0.45 Height, = 0.57

    26 Number of openings. 1 W^2Hh = 0.032834927 Type of gate, f lat roller (1) tainter (2) 0

    28 Supply. Install.

    29 Gates guides and hoists. 0.000 0.00030 Total cost of spillway gate equipment. 0.0003132 Intake stoplogs or bulkhead gates. Width = 1.123 Height = 1.531

    33 Number of openings. 1

    34 Head to sill for stoplogs/bulkhead. 6.535 W^2Hh = 1335 Sets of bulkhead gates. 1 Monorail hoists. 0

    36 Sets of stoplogs. 0 Gantries. 0

    37 Hoist capacity for bulkheads. 3.3 Hoist cap. for stoplogs. 0.038 Supply. Install.

    39 Stoplogs or bulkhead gates. 0.010 0.00140 Guides. 0.000 0.000

    41 Hoist. 0.000 0.000

    42 Total. 0.010 0.00143 Total cost of intake stoplog and/or bulkhead gate equipment. 0.0114445 Intake gates, guides and hoists. Width, = 1.021 Height, = 1.276

    46 Number of openings. 1 W^2Hh = 9

    47 Head to sill. 6.53548 Hoist on tower (1) or on deck (0) 0

    49 Supply. Install.

    50 Total cost of intake gate equipment. 0.013 0.003

    51 Total cost of intake gate guides and hoist equipm ent. 0.01652 Page 18

    If there are side stream intakes, sum of ratio of flows to main intake

    Mechanical equipment cost.

  • 7/25/2019 Chipmunk Creek

    26/30

    26

    53 BAKER - CHIPMUNK CREEK54 Powerhouse crane. Number of cranes. 1

    55 Capacity of main hook. 21 Nominal capacity = 21.956 Capacity of auxiliary hook. 2.1

    57 Span. 7.4 WL1.5 = 443

    58 Supply. Install.59 Total. 0.231 0.017

    60 Total cost of powerhouse crane. 0.24861

    62 Trashracks. Width = 1.546 Height = 1.68

    63 Number of openings. 1 WH = 364 Height to sill 7.54 W2Hh = 27

    65 Type of racks, sectioned (2) or single (1). 2 Wt. factor 1

    66 Estimated weight of racks in tonnes. 0.467 Supply. Install.

    68 Total. 0.003 0.00069 Total cost of trashrack equipment. 0.00370

    71 De-sander sluice gate.72 Low level outlet gates. Width, = 0.00 Height, = 0.00

    73 Head to sill. 3.27 W^2Hh = 0.0074 Supply. Install.75 T otal. 0.000 0.000

    76 Total cost of low level outlet gate equipment. 0.00077

    78 Powerhouse ancillary mechanical and electrical systems.79 Rated flow per unit, m3/s. 1.30 Number of units. 2

    80 Generator rated MVA. 5.5 Generator rpm. 900.0

    81 Supply. Install.82 Dewatering pumps and piping. 0.000 0.000

    83 Cooling water pumps, filters and piping. 0.024 0.01184 Compressed air, 100psi. 0.020 0.009

    85 Heating, ventilating, lighting. 0.011 0.009

    86 Total. 0.045 0.01987 Total powerhouse ancilliary mechanical systems. 0.06488

    8990

    9192 In millions of CAN $93 Total cost of spillway stoplog equipment. 0.000

    94 Total cost of spillway gate equipment. 0.001

    95 Total cost of trashrack equipment. 0.00496 Total cost of intake stoplog and/or bulkhead gate equipment. 0.01597 Total cost of intake gate guides and hoist equipm ent. 0.02298 Total cost of low level de-sander gate. 0.000

    99 Total cost of powerhouse crane. 0.248100 Total powerhouse ancilliary mechanical systems. 0.064101 Total cost of major mechanical equipment,102 except turbines.----- ---------------------------------------------> $0.353103

    104 Page 19

    Cost of major mechanical equipment, summary.

  • 7/25/2019 Chipmunk Creek

    27/30

    27

    Work item. Unit cost. Estimated

    quantity.

    Earthwork and clearing. Comment

    10 Clearing, per hectare, $/H $7,404.09 48.6 $7,404.09

    11 Unit cost of overburden excavation, m3. $13.04 7,509 $13.0412 Unit cost of rock excavation, $/m3. $52.17 2,145 $52.1713 Unit cost of found excav in sand or gravel for cutoff, $/m3. $31.95 4,725 $31.9514 Rock excavation in tunnels, $/m3. $0.00 0 $0.0015 Impervious fill in cofferdams, $/m3. $0.00 0 $0.00

    16 Rock fill in cofferdams, $/m3. $73.85 189 $73.8517 Impervious fill in dams, $/m3. $33.43 2,007 $33.4318 Filter material in dams, $/m3. $44.16 244 $44.1619 Rock or embankment material in dams, $/m3. $58.81 189 $58.8120 Rock rip-rap, $/m3. d50 size, m. = 0.38 $182.01 158 $182.01

    21 Sidehill rock excavation f or pipeline, $/m3. $39.22 3,314 $39.2222 Sidehill over burden exc avation for pipeline, $/m3. $13.04 21,399 $13.0423 Side creek crossing, cost per crossing. $0.00 0 $0.00

    2425 Concrete work.

    26 Concrete including forms and re-bars, $/m3. $1,022.64 2,358 $1,022.6427 Concrete only, excluding forms and re-bars, $/m3. $670.25 266 $670.2528 Concrete formwork, $/m2. $94.77 319 $94.7729 Reinforcing bars, $/kg. $7.99 19,770 $7.9930 Concrete in tunnel linings, $/m3. $0.00 0 $0.0031 Dental concrete on rock in dam foundations, $/m3. $0.00 0 $0.00

    32 Concrete or slurry wall, $/m3. $1,870.58 72 $1,870.58

    33

    34 Steelwork and powerhouse superstructure.35 Trashrack steel cost, $/kg. $6.32 458 $6.3236 Pipeline steel cost, $/ton. $5,492.57 689 $5,492.57

    37 Tunnel steel lining cost, $/ton. $0.00 0 $0.0038 Powerhouse superstructure steel cost $/ton. $7,038.09 53 $7,038.0939 Powerhouse siding, $/m2. $157.67 825 $157.6740 Powerhouse roofing, $/m2. $222.99 182 $222.9941 Temporary steel pile bridge over river, cost per m. $0.00 0 $0.0042

    43 Ratio of overburden excavation to dam impervious fill -------- > 0.0044 Ratio of S clairpipe cost to equivalent steel pipe cost. 0.50

    Inflation factor, 2008 to present. 1.001Page 20

    BAKER - CHIPMUNK CREEK

    Unit prices used in cost estimate.

    Suggested

    unit cost,based on

    quantityof

    work.

    Fill in unit prices (blue column) before entering data in other pages. Return to this page after

    completing all data entry to see if unit prices are compatible with quantities shown in column

    F.

  • 7/25/2019 Chipmunk Creek

    28/30

    28

    1 BAKER - CHIPMUNK CREEK2

    3 Approximate cost by quantities in millions $. CAN $4 Civil work item and unit of measure. Cost $/unit. Quantity. Cost $ Millions

    5 Clearing for all structures. Ha. $7,404.09 48.6 0.3606 Access roads and bridge cost. 7.8237

    8 Embankment dam.9 Damsite and spillway overburden exc. cost. (m3) $13.04 757 0.010

    10 Damsite(s) rock excavation cost. (m3) $52.17 0 0.000

    11 C utoff trench sand/gravel excavation cost. (m3) $31.95 4,725 0.15112 Im pervious fill dam and cofferdam from borrow. (m3) $33.43 2,007 0.067

    13 Filter material cost. (m3) processed from exc. $44.16 244 0.011

    14 Rock embankment material cost. (m3) from exc. $58.81 189 0.01115 Rip-rap cost. (m3) selected from excavations $182.01 158 0.029

    16 Dental concrete for core contact, m3. $0.00 6 0.00017 Concrete or slurry wall volume, m3. $1,870.58 72 0.135

    18 Sub-total cost of embankment dam. ----------------------------------------------> 0.413

    1920 Side str eam ap prox. t otal cost, in cluding in take and eq uip . cost s 0.00021 Intake, de-sander and weir spillway.22 Intake and channel overburden excavation cost. (m3) $13.04 65 0.001

    23 Intake and channel rock excavation cost. (m3) $52.17 13 0.001

    24 In take+weir+ desander str ucture concrete cost. ( m3) $1,022.64 2 ,354 2.40725 Trashrack supports and guides cost, kg. $6.32 60 0.000

    26 Sub-total intake civil work cost. ------------------------------------------------------------ > 2.40927

    28 Tunnels and vertical bore.

    29 Tunnel rock excavation cost. (m3) $0.00 0 0.000

    30 Tunnel concrete lining cost. (m3) $0.00 0 0.00031 Bore rock excavation cost. (m3) $0.00 0 0.00032 Bore concrete lining cost. (m3) $0.00 0 0.000

    33 Low pressure tunnel steel lining cost, installed, ton. $0.00 0 0.000

    34 H igh pressure tunnel steel lining cost, installed, ton. $0.00 0 0.00035 Sub-total underground work cost. --------------------------------------------------------- > 0.00036

    37 Surge tank cost, if required. Lump sum. 0.00038

    39 Steel pipelines and penstocks.

    40 Number of side creek crossings, cost per crossing. $0.00 0 0.000

    41 Pipeline rock excavation cost. (m3) $52.17 3,314 0.173

    42 Pipeline earth excavation cost. (m3) $13.04 21,399 0.279

    43 Pipeline concrete casing cost. (m3) $1,022.64 4 0.00444 Penstock anchor and pier concrete, m3. $1,533.96 0 0.00045 Pipeline/penstock steel cost, installed, ton. $5,492.57 689 3.784

    46 S ub-total pipelines and penstocks. -------------------------------------------------------- > 4.240

    4748 Tailrace.

    49 Tailrace overburden excavation cost. (m3). $13.04 3222 0.04250 Tailrace rock excavation cost. (m3). $52.17 177 0.009

    51 Sub-total tailrace excavation work. ------------------------------------------------------- > 0.05152 Page 21

  • 7/25/2019 Chipmunk Creek

    29/30

    29

    53 BAKER - CHIPMUNK CREEK54

    55 Powerhouse.56 Overburden excavation, m3. $13.04 3,464 45

    57 Rock excavation, m3. $52.17 1,955 102

    58 Concrete, m3. (Excluding forms, re-bar) $670.25 266 17859 Formwork, m2. $94.77 319 30

    60 Reinforcing, kg. $7.99 19,770 15861 Powerhouse superstructure steel weight, tonnes. $7,038.09 53 376

    62 Wall area, m2. $157.67 825 130

    63 Roof area, m2. $222.99 182 4164 Total powerhouse civil work cost. ---------------------------------------------------------- > 1.06065

    66 Total civil work cost, millions $ ------------------------------------------------------- > $16.35767

    68 Cost of major mechanical equipment, summary.69 Total cost of trashrack equipment. 0.004

    70 Total cost of intake stoplog and gate equipment. 0.037

    71 Total cos t of spillway low level gate and bulkhead equipment. 0.00172 Total cost of low level de-sander gate. 0.000

    73 Total cost of powerhouse crane. 0.24874 Total cost rubber dams. 0.783

    75 Total powerhouse ancilliary mechanical systems. 0.064

    76 Sub-total cost of major mechanical equipment, except generators and valves. 1.136

    77

    78 Generating equipment, transmission and substation at powerplant.

    79 Substation cost, disconnects and transformer. 0.124

    80 Transmission lines cost. 1.309

    81 Station service. 0.028

    82 6.11483 Sub-total cost of W/W equipment, including valve(s) and transmission. 7.57584

    85 Total electromechanical+transmission work cost, millions $ ---------- > $8.7118687 Total direct cost, millions $ ------------------------------------------------------------ > $25.06888

    89 Indirect costs. % of direct Sub-total90 cost for %

    91 Feasibility studies and site investigations. 2.0 25.068 0.50192 Environmental work. 2.0 25.570 0.511

    93 Detailed designs and contract documents. 2.0 26.081 0.522

    94 Site supervision work. 4.0 26.603 1.064

    95 C ivil c ontingencies and unforseen cost allowance. 20.0 20.293 4.05996 Electromechanical contingencies 8.0 7.374 0.59097 Sub-total indirect costs. 7.247

    98

    99

    100

    101

    102 Page 22

    W/W cost of generating equipment, inlet valve, switchgear and controls.

    Cost of development including transmission, no interest $32.3

  • 7/25/2019 Chipmunk Creek

    30/30

    30

    103 BAKER - CHIPMUNK CREEK104

    105 Estimated construction time, months. 14106 Interest rate % 6

    107 Interest during construction, $M. 1.035108109

    110111

    112

    113 Summary of principal project statistics.114 Total installed capacity, MW 9.8115 Estimated annual generation, GWh. 42.3

    116 Manhours per annum for operation. 879117 Total overheads as % of total cost. 22.4

    118119 Summary of principal civil work quantities.120 Total length of conduit from intake to powerhouse, m. 4,823

    121 Length of pipe substituted wi th PVC pipe, m. Type Sclairpipe 2031

    122 Overburden excavation, cubic meters. 28,907123 Rock excavation, cubic meters. 5,459

    124 Rock tunnel excavation, cubic meters. 0

    125 Concrete, cubic meters. 2,630126 Steel penstock and tunnel liners, tonnes. 689

    127 Powerhouse superstructure steel, tonnes. 53128

    129

    130131 Site revenue calculation.132 Operating staff manhours. 879

    133 Operating staff manhour cost per hour, $. 80

    134 Annual manhour cost $M. 0.070135 Total generation capacity (from page 1) --- MW . 9.8

    136 Estimated plant annual average load factor. 0.46137 Average overall project efficiency, excluding transmission, for energy calc. % 78.76

    138 Calculated annual generation. (GWh) 42.3

    139 Value of generation in cents/kWh. 8.0140 C alculated annual value of generation $(m) 3.2

    141 Calculate d o pear ation & maintenance cost $( m) 0.401142 Calculated annual net revenue before taxes, interest and amortization. $(m) 2.769

    143

    144 s ma e pro ec pay ac n years .145

    146147

    148149150

    Page 23

    $33.4

    Worth further analysis, but proceed cautiously.

    Project screening - calculation to determine whether project worth

    further analysis.

    Comments on whether project worth further investigation:-

    Total project cost, including interest during

    construction, $M.

    Head iterated OK in auto

    mode.

    END OFDETAILEDOUTPUT