Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of...

35
Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical & Computer Engineering * Professor Emeritus, Carleton University, Ottawa, ON, Canada. SiGe BiCMOS 65-GHz BPSK Transmitter and 30 to 122 GHz LC- Varactor VCOs with up to 21% Tuning Range

Transcript of Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of...

Page 1: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau,

Miles Copeland*, Sorin Voinigescu

University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical & Computer Engineering

* Professor Emeritus, Carleton University, Ottawa, ON, Canada.

SiGe BiCMOS 65-GHz BPSK Transmitter and 30 to 122 GHz LC-Varactor VCOs with up to

21% Tuning Range

Page 2: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Outline

• Motivation

• VCO and BPSK transmitter circuit topologies

• Design methodology for lowest phase noise

VCOs

• Experimental results

• Conclusions

Page 3: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Motivation

• Advanced communications (60-GHz radio)

and radar systems (77-GHz cruise control).

• Investigate a systematic VCO design

methodology focused on lowest phase noise.

Page 4: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Outline

• Motivation

VCO and BPSK transmitter circuit topologies

• Design methodology for lowest phase noise

VCOs

• Experimental results

• Conclusions

Page 5: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

• Differential Colpitts Configuration

• C2 implemented as accumulation-mode

nMOS varactor.

• Cascode for improved isolation of output

from resonant tank, and power gain.

• LEE & Resistive tail bias with low-pass filter

to reduce bias circuit’s noise contribution.

Fundamental Mode VCO Topology

21

21

EQ CC

CCC,

EQB

OSC CL2

1

πf

21

2

m

CC

gResistance Neg.

ω

Page 6: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Push-Push VCO Topology

• Active and passive components

operate at ½ output frequency

• Similar topology as fundamental-

mode VCO except output is

taken at Q2 & Q4’s base.

• Intrinsically isolated output.

• Allows differential tuning

(VTUNE+POS, VTUNE,-NEG).

Page 7: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

35-GHz VCO (Fund.) 70-GHz VCO (Push-Push)

VCO Schematics

Page 8: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

BPSK Transmitter Schematic

Page 9: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Outline

• Motivation

• VCO and BPSK transmitter circuit topologies

Design methodology for lowest phase noise

VCOs

• Experimental results

• Conclusions

Page 10: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

VCO Design Parameters:

• VTANK – tank voltage swing

• QTANK – tank quality factor

• JBIAS – current density

• C1:C2 – capacitance ratio

• LB – base inductance

• IBIAS – bias current

Designing for Lowest Phase Noise

R

LQ B

TANK

ω

Simulation Test Circuit

Page 11: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

1. Optimum C1:C2 Ratio

Page 12: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

2. Optimum Current Density (JBIAS)

OPTIMUM JBIAS = optimum noise current density (Jopt) of cascode.

OPTIMUM JBIAS

Page 13: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

3. Optimum Bias Current (IBIAS)

Page 14: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

3. Optimum Base Inductance (LB)

Smallest LB results in Lowest Phase Noise

Page 15: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

VCO Design Methodology

1. Maximize quality factor (Q) of resonant tank.

2. Bias transistors at optimum noise current density Jopt.

Show a simulated plot of Jopt @ 40 GHz & fT, fMAX for cascoded transistor configuration

Page 16: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

VCO Design Methodology (con’t)

4. Choose smallest reproducible base inductance (LB).

5. Sweep IBIAS to minimize phase

noise while choosing C1:C2 ratio

to maximize VTANK while

maintaining fosc.

6. Add inductive emitter

degeneration LE.

[Li and Rein, JSSC 2003]

Page 17: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

VCO Design Space Examined

13 VCOs & Oscillators fabricated to examine

the impact on phase noise of:

1. Base inductance (LB)

2. Accumulation-mode nMOS varactors versus. MIM

capacitors

3. Addition of LE

4. Operation on 2nd harmonic versus. operation on

fundamental.

Page 18: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Outline

• Motivation

• VCO and BPSK transmitter circuit topologies

• Design methodology for lowest phase noise

VCOs

Experimental results

• Conclusions

Page 19: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

• Jazz Semiconductor’s commercial SBC18 0.18 m

BiCMOS process.

Fabrication Technology

• Peak fT and fMAX

near 155 GHz.

NFmin extracted from measured y-parameters [S. P. Voinigescu, et. al, JSSC 1997]

Page 20: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Varactor Q Characteristics

Page 21: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Microphotographs

Family of 13 VCOs: Fundamental-Mode: (8) 35 GHz, (2) 60 GHz,

Push-Push: (1) 70 GHz, (2) 120-GHz

Page 22: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Microphotographs (con’t)

65-GHz BPSK transmitter

Page 23: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

35-GHz VCO Measurements

Averaged Spectral Plots for 35-GHz VCO

(LB = 100 pH, with LE):

(A) VCO (B) Fixed Freq. Oscillator

Page 24: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

35-GHz VCO Measurements (con’t)

Tuning and Output Power Characteristics:

Page 25: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Lowest Phase Noise Design Space

Impact of: 1. Base Inductance

2. Inductive Emitter Degeneration (LE)

Page 26: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

60-GHz VCO Measurements

Averaged Spectral Plots:

(A) VCO (B) Fixed Freq. Oscillator

Page 27: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

60-GHz VCO Measurements (con’t)

Measurements over Temperature:

Page 28: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Push-Push VCO Measurements

Spectral Plots:

(a) 70-GHz VCO

POUT > -14 dBm

(b) 120-GHz VCO

POUT > -30 dBm

Page 29: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Push-Push VCO Measurements (con’t)

Tuning Characteristics:

Page 30: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Si-Based mm-wave VCO Comparison

Reference VCOL{foffset}

(dBc/Hz)Tuning Range

PDC (mW)

POUT (dBm)

FOM * fT/fMAX

(26-GHz) -87 at 100 KHz 15% 75 1.0 -177.5 ~ 40/50 GHz (BJT)

(40-GHz) -97 at 1 MHz 15% 17.3 -5.0 -171.7 0.13 m (SOI)

(43-GHz) -110 at 1 MHz 26% 280 6.5 -184.7 ~ 200 GHz (HBT)

(77-GHz) -95 at 1 MHz 6% 930 14.3 -177.3 ~ 200 GHz (HBT)

(63-GHz) pp -85 at 1 MHz 4% 119 -4.0 -156.2 0.25 m CMOS

(150-GHz) pp -85 at 1 MHz 23% 170 -5.0 -161.2 ~ 220 GHz (HBT)

35-GHz Osc. -112.7 at 1 MHz N/A 193 4.0 -184.5 ~ 155 GHz (HBT)

35-GHz VCO -110.3 at 1 MHz 19% 188 4.0 -181.4 ~ 155 GHz (HBT)

60-GHz Osc. -104 at 1 MHz N/A 244 4.0 -179.5 ~ 155 GHz (HBT)

60-GHz VCO -103 at 1 MHz 13% 240 4.0 -178.6 ~ 155 GHz (HBT)

70-GHz VCO pp -94 at 1 MHz 21% 128 > -14 < -156.8 ~ 155 GHz (HBT)

*FOM = L{foffset} - 20log(fosc/foffset) + 10log(PDC/POUT)

pp = push-push VCO

Page 31: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

With DATA (231-1 PRBS):

BPSK Transmitter Measurements

No DATA:

Page 32: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

BPSK Transmitter Meas. (con’t)

With DATA (27-1 PRBS pattern):

Page 33: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

Outline

• Motivation

• VCO and BPSK transmitter circuit topologies

• Design methodology for lowest phase noise

VCOs

• Experimental results

Conclusions

Page 34: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

• Presented, with experimental validation, a systematic VCO design methodology for lowest phase noise.

• Compared to a MIM capacitor, accumulation-mode nMOS varactors degrades phase noise by 1-2 dB.

• Inductive degeneration lowers phase noise by 3-4 dB.

• Operation on 2nd harmonic increases tuning range by 50% - at expense of lower POUT

• First 65-GHz BPSK transmitter.

Conclusions

Page 35: Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &

• Jazz Semiconductor, Gennum Corporation.• Canadian Foundation for Innovation,

Micronet, Canadian Microelectronics Corporation, NSERC.

• Marco Racanelli and Paul Kempf.

Acknowledgements