CHEMICAL SAFETY REPORT (CSR) - ECHA

66
CHEMICAL SAFETY REPORT Chemical Safety Report Use number:1 1 CHEMICAL SAFETY REPORT (CSR) Chapters 9 and 10. Legal name of applicant(s): Laboratoires Expanscience Submitted by: Laboratoires Expanscience Substance: 1, 2-dichloroethane (EDC) – CAS No. 107-06-2 Use title: Use as process and extracting solvent in fine chemical processes. Use number: 1 __________________________________________________________________________

Transcript of CHEMICAL SAFETY REPORT (CSR) - ECHA

Page 1: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 1

CHEMICAL SAFETY REPORT

(CSR)

Chapters 9 and 10.

Legal name of applicant(s): Laboratoires Expanscience

Submitted by: Laboratoires Expanscience

Substance: 1, 2-dichloroethane (EDC) – CAS No. 107-06-2

Use title: Use as process and extracting solvent in fine chemical processes.

Use number: 1

__________________________________________________________________________

Page 2: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 2

Contents

Part A ...................................................................................................................................................... 4 

1.  SUMMARY OF RISK MANAGEMENT MEASURES ................................................................ 4 

2.  DECLARATION THAT RISK MANAGEMENT MEASURES ARE IMPLEMENTED ............ 4 

3.  DECLARATION THAT RISK MANAGEMENT MEASURES ARE COMMUNICATED ....... 4 

Part B ...................................................................................................................................................... 5 

9.0 EXPOSURE ASSESSMENT ........................................................................................................... 5 

9.0.0 Introduction ................................................................................................................................ 5 

9.0.0.1. Process description ............................................................................................................. 5 

9.0.0.2. Rigorous containment of the substance by technical means .............................................. 7 

9.0.0.3. Procedural and control technologies to minimise emission. .............................................. 8 

9.0.0.4. Cleaning and maintenance ............................................................................................... 13 

9.0.0.5. Teams and employees involved in use of EDC. .............................................................. 14 

9.0.0.6. Exemption of quality control laboratory activities. .......................................................... 15 

9.0.1. Overview of uses and Exposure Scenario. .............................................................................. 16 

9.0.2. Introduction to the assessment. ............................................................................................... 16 

9.0.2.1. Environment ..................................................................................................................... 16 

9.0.2.2. Workers ............................................................................................................................ 16 

9.0.2.3. Consumers ........................................................................................................................ 20 

9.0.2.4. Man via environment ....................................................................................................... 20 

9.1 Exposure scenario 1: Use as process and extracting solvent in fine chemical processes. .............. 21 

9.1.1. Environmental contributing scenario ...................................................................................... 21 

9.1.1.1. Exposure and risks for the environment and man via the environment ............................... 21 

9.1.2. Worker contributing scenario 1: Production process including storage, transfers, sampling, recycling, waste transfers (PROC 2) ................................................................................................. 30 

9.1.2.1. Conditions of use ............................................................................................................. 30 

9.1.2.2. Exposure and risks for workers ........................................................................................ 30 

9.1.3. Worker contributing scenario 2: Receipt of EDC from road tank (PROC 8b) ....................... 32 

9.1.3.1. Conditions of use ............................................................................................................. 32 

9.1.3.2. Exposure and risks for workers ........................................................................................ 33 

9.1.4. Worker contributing scenario 3: Non-routine maintenance and cleaning (PROC 8b) ............ 35 

9.1.4.1. Conditions of use ............................................................................................................. 35 

9.1.4.2. Exposure and risks for workers ........................................................................................ 36 

9.1.5. Worker contributing scenario 4: General maintenance and cleaning (PROC 8b) .................. 38 

9.1.5.1. Conditions of use ............................................................................................................. 38 

9.1.5.2. Exposure and risks for workers ........................................................................................ 39 

10. RISK CHARACTERISATION RELATED TO COMBINED EXPOSURE ................................. 41 

Page 3: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 3

10.1. Human health ........................................................................................................................... 41 

10.1.1. Workers ............................................................................................................................. 41 

10.1.2. Consumer .......................................................................................................................... 42 

10.2. Environment (combined for all emission sources) ................................................................... 42 

APPENDIX 1: Description of technical methodology used by laboratories for EDC monitoring data 43 

APPENDIX 2: Inhalation monitoring data ........................................................................................... 45 

APPENDIX 3: Advanced Reach Tool (ART) inputs details – tier 2 .................................................... 46 

APPENDIX 4: RISKOFDERM data and results .................................................................................. 50 

APPENDIX 5: Evaporation rate calculation for dermal exposure assessment. .................................... 52 

APPENDIX 6: Detailed EU TGD Spreadsheet software calculation ................................................... 53 

Page 4: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 4

Part A

1. SUMMARY OF RISK MANAGEMENT MEASURES

Please refer to the Succinct summary of OCs/RMMs document attached to section 13 of IUCLID dossier.

2. DECLARATION THAT RISK MANAGEMENT MEASURES ARE IMPLEMENTED

Expanscience declares that all risk management measures described in chapter 9 and summarised in Succinct summary of OCs/RMMs document are implemented.

3. DECLARATION THAT RISK MANAGEMENT MEASURES ARE COMMUNICATED

The substance is not sold to downstream users, therefore no risk management measures need to be communicated.

Page 5: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 5

Part B

9.0 EXPOSURE ASSESSMENT

9.0.0 Introduction

Laboratoires Expanscience has one European site (Épernon, France) using EDC as extracting solvent in fine chemical processes.

9.0.0.1. Process description

EDC is used as major extraction solvent in a liquid/liquid extraction unit operation.

The two active substances of drug correspond to a blend of two substances highly purified: avocado and soybean oil unsaponifiables. These families of molecules are purified separately from the two independent sources of oil: avocado oil on one hand and soybean oil on the other hand. To reach adequate purity of unsaponifiables, a specific proprietary and highly selective extraction and purification process has been designed. One key step involves a liquid/liquid extraction step using EDC.

The extraction process can be divided in 5 main steps (as described in Figure 1 hereafter):

1) Saponification of the oil in a mixed vessel containing the oil, water, ethanol and a strong

base and dilution

2) First liquid/liquid extraction of the unsaponifiable compounds from the saponification reaction mixture, using EDC in a counter-current agitated column

3) Washing of the solvent phase (EDC + unsaponifiable compounds) with water to remove

ethanol and soap traces (second liquid/liquid extraction)

4) Evaporation of the solvent in a falling film evaporator, and recycling

5) Deodorisation of the extract through water vapour stripping to remove remaining solvent traces and other minor contaminants to obtain a pure unsaponifiable fraction

The EDC evaporated during step 4 can be directly re-used in the extraction process. In addition, the EDC collected after step 2, step 3 and 5 is purified in a specific process on our industrial site (reactivation process) in order to be recycled and re-used in the extraction step (batch process performed continuously 7/7). The ethanol engaged in the process is also collected (from the aqueous phase), purified and recycled.

1

2

3

4

5

Page 6: CHEMICAL SAFETY REPORT (CSR) - ECHA

Chemica

Figure 1

NB: Avounsaponwhich E

The avocin an indthe plant

HistoricaselectivitIngredieand yield

The targspectrumpolar, likin one stgiven spactivity.

al Safety Rep

- Schematic

ocado and snifiables is

EDC is used

cado and soydependent pat.

ally, EDC haty towards tnt) matchingd whatever th

geted molecum of polarityke tocopherotep with a ve

pecific molec

port

c overview o

soybean oil made when

d.

ybean oil unart of the fac

as been used the targeted g quality requhe origin of t

ules (the oil , ranging fro

ols or aliphatery good sel

cule but to th

U

f the extracti

are processn filling the

nsaponifiableility and inte

for avocadomolecules,

uirements in the oils).

unsaponifiabom non-polartic alcohols. lectivity. Thehe whole extr

Use number:

ion process

sed separatcapsules. T

es substancesegrated in ca

o and soybeaenabling to a robust and

bles) are a br such as hydEDC enable

e clinical actract: its comp

1

tely; the bleThe dotted p

s, extracted aapsules. No E

n oil unsapoget active s

d reproducibl

blend of varidrocarbons aes to extract tivity of our position is fu

CHEMI

end of avocapink line sho

as such separEDC is used

nifiables extubstance (Ale way (to ob

ious moleculand furanic cthe whole spdrug substan

undamental f

ICAL SAFET

ado and soyows the lim

rately, are trin this secon

traction becaActive Pharmbtain the sam

les exhibitincompounds, pectrum of mnce is not linfor its pharm

TY REPORT

6

ybean oil mit within

ansferred nd part of

ause of its maceutical me quality

ng a large to highly

molecules nked to a

maceutical

Page 7: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 7

9.0.0.2. Rigorous containment of the substance by technical means

Production unit

All equipment and processes from production units involving EDC are under closed systems. All of the tanks and reactors are with control vacuum secure equipment. All seals (static, dynamic) are under assurance of leak-proof sealing by means of monitoring and repair. Most of the dynamic seals are double-axial face seal with barrier fluid and secure alarm. All transfers (from storage tank to extraction reactors, from extraction to washing solvent column, from washing column to falling film evaporator) are automated and under panel control and alarms (solvent alarm). In case of emergency, the whole unit is connected to a secure unit tank storage. The continuous unit process is slightly under-pressure to minimize accidental release and equipment is under nitrogen-blanket. All reactors are equipped with safety equipment measures for protection of over pressure with safety release valves, safety rupture discs or safety instrumental systems (SIL). All equipment is venting through a thermal oxidiser unit.

Storage

EDC is stored in a specific zone of the manufacturing plant in above ground storage tanks of 30 m3 capacity. These tanks are under controlled atmosphere with nitrogen. The storage area is equipped with secondary containment. As this area is classified “Ex-zone”, the facility is totally fenced-up and surrounded by kerb-humps. All transfer lines are aerial while all roads and operating areas are paved with either concrete or asphalt. The storage tanks are used through a thermal oxidiser unit to prevent any air emission. The tanker transfer area is also equipped with a basin to retain any possible leaks from the discharge pipe. The retention capacities are designed to retain the total capacity of a tanker truck.

The storage area is also fully equipped for enhanced security: - Specific fire protection - Leak detection and warning devices - Emergency scrubbing systems for storage of toxic gases - EDC tank is filed with nitrogen gas atmosphere “inerted” to minimise explosion risks

All liquid transfer operations follow detailed written procedures to minimise the risks of accidental spillage. Storage tanks are venting to a thermal oxidiser system (incinerator) to prevent from air pollution.

Transport

EDC is shipped to the production area as a bulk using 24 m3 tanker trucks. The containers and tankers used for bulk EDC are compliant with the European Agreement of Road Transport of Dangerous Goods (ADR standards). The tankers are certified by an approved third party inspection body and meet the French National Standards before being used for transportation. Road Transport Operations are carried out safely in compliance with all the transportation requirements. Under the approved standards, the tank farm and tank container undergo periodic inspections.

Page 8: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 8

9.0.0.3. Procedural and control technologies to minimise emission.

The API is produced by batch processes in a dedicated building hereafter referred to as “unit B2”. Considered as the last generation organic fine chemical plant, the facility is a “state of the art” plant dedicated to one unique API production. It requires the observance of the rules of current Good Manufacturing Practice (GMP) and 2 medicine approval authorities (process modifications can be only carried out after approval granted upon fulfilling the required variation procedure).

Unit B2 was built in 2010/2012 and started to operate in late 2013.

Figure 2 - Unit B2 Figure 3 – Panel control room

To minimize environmental impacts, major aspects have been considered as follows:

- The prevention and minimization of the environmental impacts have been taken into account since the onset of the process design and the “Management and treatment of waste streams”. Health and safety considerations were integrated into process development. Structured safety assessment has been carried out for normal and abnormal operation of the plant.

- The number of operations used in the process remains reasonably small. These include charging/discharging of reactants and solvents, inertisation, reactions, phase separation, filtration, distillation. Cooling, heating and the application of vacuum are necessary. The unavoidable waste streams are treated in recovery/abatement systems or disposed of as waste.

- The synthesis of the API is achieved by an entirely enclosed process to avoid any openings in order to minimize uncontrolled emissions.

Page 9: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 9

Figure 4 - Closed process equipment in unit B2

The airtightness of process equipment is an important prerequisite for the prevention of fugitive emissions and the reduction of exhaust gas volume flows to recovery or abatement facilities. To ensure airtightness of vessels, pressure tests are carried out regularly within preventive maintenance program.

Several techniques were considered to control VOC emissions, including: extra condensers, scrubbing, thermal oxidation abatement treatment. Thermal oxidation was selected in order to treat all possible emissions on the site at once.

Figure 5– Thermal oxidation Figure 6 – Carbon absorption

Furthermore, and in case of an unplanned events or emergency shutdowns, a carbon adsorption abatement unit is in place as a back-up system.

By design, the plant minimises diffuse emissions and optimises energy efficiency. For example, the processes apply indirect cooling technology to reduce energy consumption.

Page 10: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 10

Figure 7– Nitrogen lines

All equipment is set under pressure in order to detect potential leaks. Inside the reactors and the vessels during production, a light overpressure of nitrogen slightly decreases the evaporation of VOCs (blanketing) and thus prevents from their emission.

The addition of liquid as top feed with a pipe directed to the wall reduces splashing and hence, the organic load in the displaced gas.

Figure 8 – Overpressure control

The building is closed and ventilated mechanically. The pressure inside the building is 10 % higher than outside. The building is divided into fireproof compartments which are individually ventilated. All condensers and vents from sewage are connected to the thermal oxidiser to make sure all point emissions are treated.

Page 11: CHEMICAL SAFETY REPORT (CSR) - ECHA

Chemica

Solvent

Solvent r

Figure 9

Solvent required

Water-f

Water-frprocedur

Figure 1

Monitor

Althoughorder to

al Safety Rep

Recovery

recovery is c

– Solvent re

recycle lood. 99.3 % of E

free vacuum

ree vacuum re by means

0 - Water-fre

ring of emiss

h an oxidativreflect the op

port

carried out on

ecovery

ops system hEDC has bee

m system

generation isof dry runnin

ee vacuum g

sions to air

ve abatemenperational m

U

n-site. Figur

have been men recovered

s achieved bng pumps.

generation by

nt treatment mode of the pr

Use number:

re below sho

made possibin 2014.

by using mec

y using a dry

is implemenroduction pr

1

ows the appli

ble by obtai

chanical pum

running pum

nted, emissioocess.

CHEMI

ed processin

ning the qu

mping system

mp

on profiles h

ICAL SAFET

ng units.

uality and th

ms in a close

have been rec

TY REPORT

11

he purity

ed circuit

corded in

Page 12: CHEMICAL SAFETY REPORT (CSR) - ECHA

Chemica

Conden

The condhighly logas and lthe distil

Figure bdownstre

Figure 1

Waste g

Wastewaand thendischargthe dischtemperatby authofacilitiesproperly(DREAL

al Safety Rep

sation of VO

densation ofoaded exhauliquid phasellation colum

below gives eam to equip

1 - Overview

generation a

aters producn directed

ged from a siharge point, ture and subjorized wastes. A file of hy handled. AL) as required

port

OCs from re

f VOCs fromust gases befo. Depending

mn), the cond

an overviewpment.

w of the two

nd handling

ed during thto the onsiingle discharwastewater

jected to daile disposal cohazardous waA summary d.

U

eactors and

m reactor andore downstreon the situat

densate is sub

w of the two

cooling step

g

he process arte biologicarge line intois continuouly analysis. Wompanies. Aaste shipmenof these re

Use number:

distillations

d distillationseam exhaust

ation (e.g. refbsequently fe

cooling step

ps

re first collecal treatment o a common usly sampledWastes generAll wastes ant and disposecords is se

1

s

s columns is t gas treatmeflux process ed back to th

ps: two cond

cted, treated facility. A

wastewater d and monitorated from E

are incineratesal records int every ye

CHEMI

carried out bent, followedor required t

he process or

densers are s

to remove aAfter treatme

treatment plored for pH,

EDC use are ded at an agrs held to cerear to the c

ICAL SAFET

by indirect cd by separatitemperature pr stored for re

systematicall

any traces ofent, wastewlant. Before , COD, flowdisposed andreed waste trtify that wacompetent au

TY REPORT

12

ooling of on of the profile of e-use.

ly settled

f solvents aters are reaching

w rate and d handled treatment stes were uthorities

Page 13: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 13

9.0.0.4. Cleaning and maintenance

General annual maintenance: The general annual maintenance of equipment is done 3 weeks/year (2 in the summer, 1 at the end of year). Before any equipment dismantlement, the equipment is flushed with water under pressure and purged with nitrogen gas. The maintenance work to do and the specific risk management measures are described in a permit procedure. Personal Protective Equipment is mandatory (inhalation full mask ABEK and fluorinated rubber chemical gloves - see section 9.0.2.2).

Non-routine maintenance, such as maintenance conducted only in case of dysfunction of an equipment (e.g. pump), happens on an average of less than once a month.  In case of equipment dysfunction or equipment change, operators from the plant unit are in charge of connecting secondary equipment (e.g. pump) when relevant. These actions are on/off valve actions. The unit operators are not authorized to dismantle equipment. This task will be done by maintenance operators, with the same precautions applied for annual maintenance: the equipment is flushed with water and purged with nitrogen gas. The maintenance work to do and the specific risk management measures are described in a permit procedure. Personal Protective Equipment is mandatory (inhalation full mask ABEK and fluorinated rubber chemical gloves - see section 9.0.2.2). Outside annual maintenance, cleaning or maintenance is performed on equipment only if equipment failure is detected.

As mentioned above, annual and daily maintenance are done by Expanscience workshop operators (different from those working in the production unit).

Page 14: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 14

9.0.0.5. Teams and employees involved in use of EDC.

The industrial site is producing in closed batch processes continuously, 24/24, all year (only 3 weeks/year annual maintenance break). As described above, the processes using EDC are closed systems without direct handling of EDC by operators except for EDC sampling for quality control, raw material unloading from road tank (connecting/disconnecting flexible hoses) and maintenance. Then the exposure scenario will consist of 4 contributing scenarios (CS1 to 4). The number of workers is summarized in the next table, and each contributing scenario is described afterward:

Table 1 – Overview of number of operators exposed, duration and frequency

Task # of workers Duration (hr/day)

Frequency (days/y)

CS1

21 • Organized in 5 teams • 3-5 operators per team in three

8-hour shifts

8 240

CS2 4

• During an unloading operation, only 1 operator is involved

1 1

CS3

24 (sharing both tasks)

* for CS3 only 2 operators are involved during an

operation.

* for CS4 only 4 operators are involved during complete 5-day duration

0.5 10

CS4 6 5

CS1 - Production process, including storage, transfers, sampling, recycling, waste transfers (PROC 2). This CS covers the complete operators shift working in the unit B2. The tasks done by operators are facility supervision, control from the panel control room (most of the activity = 70%), visual control routine on unit (1 or 2 per shift), EDC sampling for QC (1 per shift), final product packaging (EDC < 5ppm in the final product).

There is only one direct handling of EDC during the entire shift which is EDC sampling for QC. Even if EDC sampling for QC is not to be considered in CS1 as justified below, complete shift measured data used for inhalation exposure CS1 include sampling. Thus, inhalation is the worst case event for CS1.

There are 21 employees working in the unit B2 using EDC (different from those considered in CS2, CS3 and CS4 (total Expanscience employees on site = 280). Those 21 employees are in 5 teams (3 to 5 operators per team). CS1 is applicable all year long.

CS2 - Receipt of EDC from road tank (PROC 8b). This CS covers the specific operation of road tank EDC unloading. This operation is done once a year. Only unloading team operators are doing this operation. There are 4 employees in the unloading team (different from those involved in CS1, CS3 and CS4). During an unloading

Page 15: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 15

road tank operation, only 1 operator from unloading team is doing the tasks (connecting flexible hoses to road tank, visual control during unloading, disconnecting flexible hoses after unload – see detailed description in chapter 9.1.3). This operation lasts about 1 hour.

CS3 – Non routine maintenance and cleaning (PROC 8b). This CS covers the specific operation of small repairs in case of equipment dysfunction (e.g. pump, see description in chapter 9.1.4). This task is performed only by maintenance operators (different from those considered in CS1 and CS2). There are 24 employees in the maintenance team (same operators in CS4). For a non-routine maintenance operation only 2 operators out of the 24 are involved.

CS4 – General maintenance and cleaning (PROC 8b). This CS covers the specific operation of maintenance and cleaning of general equipment 3 weeks per year (e.g. reactors, vessels) (see description in chapter 9.1.5). This task is done only by maintenance operators (different from those considered in CS1 and CS2). There are 24 employees in the maintenance operator team (same operators in CS3). During the 3 weeks maintenance, only 5 working days in total are dedicated to EDC process equipment maintenance and only 4 operators out of 24 are involved.

Trained personnel

General training on risks for chemical is provided regularly for all operators involved in chemical handling. Specific trainings on chemical risk handling are given regularly to all plant operators handling EDC. All tasks involving EDC handling are performed by trained operators.

9.0.0.6. Exemption of quality control laboratory activities.

According to Article 3 (23) of REACH, “scientific research and development (SR&D)” means any scientific experimentation, analysis or chemical research carried out under controlled conditions in a volume less than one ton per year. Substances used for SR&D are exempted from authorisation according to Article 56 (3) REACH. According to ECHA Q&A1 and the opinion of the French, German and English helpdesk contacted for that purpose, analytical activities such as monitoring and quality control including the collection of samples within industrial setting, their transportation to an internal or external laboratory, are exempted from authorisation, as long as the conditions of SR&D are met (i.e. under 1 t/y and controlled condition). Those conditions are:

Controlled conditions for sampling: Sampling for quality control is done at a dedicated sampling point from process line (outside) by activing manual valve. After filling, the 250 mL flask is hermetically sealed and sent to laboratory. During the sampling task the operator is wearing dermal and respiratory personal protective equipment (see description in chapter 9.0.2.2).The sampling step lasts about 1min and is conducted once a day. The quantity of EDC sampled does not exceed 250 mL.

Controlled conditions for laboratory:

1 ECHA FAQ n° 585 - http://echa.europa.eu/support/qas-support/search-qas)

Question Does the exemption for the use of Annex XIV substances in scientific research and development under Article 56(3) REACH also apply to analytical activities such as monitoring and quality control?

Answer Yes, it does. Under Article 3(23) REACH, scientific research and development means any scientific experimentation, analysis or chemical research carried out under controlled conditions in a volume less than one ton per year. Thus, scientific research and development can cover analysis, and a substance may be exempted from authorisation under Article 56(3) REACH if used, on its own or in a mixture, in analytical activities such as monitoring and quality control. For instance, routine quality control or release tests in laboratory scale using the substance as extraction solvent or analytical standard fall into the definition of 'scientific research and development' under Article 3(23) REACH and in the scope of the exemption foreseen in Article 56(3) REACH, as long as the quality control or release tests are carried out under controlled conditions and in a volume not exceeding one ton per year and per legal entity.

Page 16: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 16

All handling of EDC samples are done under fume cupboard. This equipment is certified and controlled each year. All laboratory tasks involving EDC handling are done by competent and authorized trained operators.

Tonnage per year for quality control purpose: Based on 1 EDC sampling of 250 mL per day for quality control, the annual tonnage is widely

below 1 t/year.

9.0.1. Overview of uses and Exposure Scenario.

Table 2 – Overview of uses and exposure scenario There is only one exposure scenario with 4 contributing scenarios for workers, plus one regarding the indirect impact of EDC on human health at the local and regional level (cf 9.0.2.4)

Identifiers Market Sector

Titles of exposure scenarios and the related contributing scenarios

ES1 - IW1 SU9 Exposure scenario 1: Use as process and extracting solvent in fine chemical processes. - Industrial use of processing aids in processes and products, not becoming part of articles (ERC 4) - Production process including storage, transfers, sampling, recycling, waste transfers (PROC 2) - Receipt of EDC from road tank (PROC 8b) - Non routine maintenance and cleaning (PROC 8b) - General annual maintenance and cleaning (PROC 8b)

Manufacture: M-#, Formulation: F-#, Industrial end-use at site: IW-#, Professional end-use: PW-#, Consumer end-use: C-#, Service life (by workers in industrial site): SL-IW-#, Service life (by professional workers): SL-PW-#, Service life (by consumers): SL-C-#.)

9.0.2. Introduction to the assessment.

9.0.2.1. Environment

Not applicable. Environment assessment is not subject to this CSR due to the fact EDC is only include in Annex XIV for its carcinogenic properties (C1B).

9.0.2.2. Workers

Scope and type of assessment

The scope of exposure assessment and type of risk characterisation required for workers are described in the following table based on the hazard conclusions presented in the document RAC/33/2015/09 Rev1.

The RAC has published a reference dose-response relationship for carcinogenicity of 1,2-dichloroethane. This dose response relationship has also been used to calculate the excess risk of cancer due to occupational exposure to 1,2-dichloroethane.

Page 17: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 17

Table 3. Type of risk characterisation for workers

Route Type of effect Type of risk characterisation

Hazard conclusion (see RAC/33/2015/09 Rev1)

Inhalation

Systemic Long Term Semi-quantitative* Excess risk = 6.0 x 10- 7 (µg/m3)-1 x concentration (µg/m3)

Systemic Acute Not needed -

Local Long Term Not needed -

Local Acute Not needed -

Dermal

Systemic Long Term Semi-quantitative* Based on 50% absorption, Excess risk = 2.1 x 10- 6 (µg/kg bw/day)-1 x dose µg/kg bw/day)

Systemic Acute Not needed -

Local Long Term Not needed -

Local Acute Not needed -

Eye Local Not needed -

*Because EDC is a CMR without a threshold, only a semi-quantitative characterisation can be performed.

Comments on assessment approach related to toxicological hazard

1,2-dichloroethane has been included into Annex XIV of the REACH regulation due to the following intrinsic properties: carcinogenic substance; classification as C1B. According to REACH, Article 62 (4)(d), the CSR supporting an application for authorisation needs to cover only those risks arising from the intrinsic properties specified in Annex XIV. Therefore only the human health risks related to the classification of EDC as a carcinogenic substance are addressed in this CSR.

Inhalation exposure assessment

Contributing scenario 1 (CS1, general production process).

For the main contributing scenario covering the production process (CS1), the inhalation exposure assessment for workers has been done with measured data approach. A specific measurement campaign has been done in 2014 based on the following guidance:

- CSN EN 689, - BOHS NVvA sampling strategy guidance 2011 - ECHA guidance R14, 2012 for sampling strategy - ISO 16200 (NIOSH 1003) “Workplace air quality - Sampling and analysis of volatile

organic compounds by thermic desorption/gas chromatography” for sampling and analytical requirements (see annex 1).

The sampling strategy is based on specific on-site plant visits by Certified Industrial Hygienist (IOHA certification). Similar Exposure Group (SEG) exposed to EDC are identified and linked with the Contributing Scenarios. A minimum of six samples per SEG is collected as required in the European reference CSN EN 689. The sample collection technique is performed by personal air sampling – the sampling device is directly attached to the employee within the worker’s breathing zone. The certified laboratory provided clear descriptions of all technical conditions and task during the sampling duration. Measures and analysis are performed by a certified laboratory in compliance with NIOSH 1003 requirements.

Contributing scenario 2 (CS2, road tank unloading).

There are no existing measured data for this CS (cf. infra), thus a tier 2 model assessment approach using Advanced Reach Tool (V1.5) has been used as main approach for inhalation exposure assessment. As the frequency of this activity is very low (once a year), with closed system equipment (see description in chapter 9.1.3), trained operators and management system in place,

Page 18: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 18

regular measurement for this activity is not technically feasible. In addition, due to low frequency, it was not possible to schedule measures campaign in 2014 for this study.

Contributing scenarios 3 (CS3, non-routine maintenance) and 4 (CS4, general annual maintenance).

There are no existing measured data for those CS (cf. infra), thus a tier 2 ART model has been used as main approach for inhalation exposure assessment. Scheduled maintenance is infrequent (3 weeks per year) and is only performed after equipment and pipe are flushed in-depth and purged. This considerably reduces residual amount of solvent present in such equipment. Moreover only trained workers are authorised to perform maintenance activities and management system covering this activity is set up and regular internal/external audits are performed. Therefore regular measurement for this activity is considered as not relevant.

The dose-response relationship for EDC, as recommended by RAC, assumes a worker life time exposure of 8 hours per day, 5 days per week during a working life of 40 years. When calculating the excess risk due to inhalation exposure for the contributing scenarios (as Time Weighted Average exposure over 8 hours), correction factors has been used to recalculate the exposure on a basis of 8 hours (e.g. if a measure has been done on 2 hours to cover a contributing scenario with a result concentration of C1 (µg/m3), the exposure based on 8 hours will be: Exp1 (µg/m3) = C1*2/8). Such factors considering less-than-shift duration of activities will be used in CS2, CS3 and CS4 based on the fact that after exposure, the operators will not be involved anymore with EDC operations or process within the CS assessed. The combined exposure is calculated in chapter 10, since the 2 maintenance operator in CS3 (non-routine maintenance) can be among the operator pool of CS4 (general annual maintenance).

The frequency of an activity is also taken into account for excess risk calculation, the exposure result will be multiplied by a factor of 1/(N/W*W/M*M), where

- N/W is the number of days per workweek - W/M is the number of week worked per month - M is the number of months

E.g for an activity with a frequency of once every 6 months, the factor will 1/(5*4*6) since N/w=5, W/m=4, M=6.

As explained in the introduction of chapter 9.0 “Teams and employees involved in use of EDC”, except for CS3 and CS4, employees from a CS are not working in others CS. When respiratory personal protective equipment is used during the task, an efficiency of 95% will be used to calculate the real exposure. The 95% efficiency can be justified by the use of full mask with filters ABEK conforming with EN136. Specific PPE are proposed and validated by EHS department. The PPE are available in the store-room. The material is inspected once a year. The PPE availability is controlled by chief operator. Audits are done to ensure a good behaviour regarding PPE. The inhalation protective equipment (full mask) is individual. The mask equipment are cleaned after each use. The ABEK filter is changed on a regular basis. Efficiency values are based on British Standards Institution, London, 1997, American National Standards Institute, New York, 1992 and ART TNO report 2009.

Calculation of exposure taking into account PPE:

PPE is worn during the whole task : C real = C mesured * Effic PPE is worn partially during the task : C real = (C PPE * T PPE * Effic + C noPPE * T noPPE) / (T PPE

+ T noPPE) C PPE and T PPE are respectively concentration and duration when PPE used.

C noPPE and T noPPE are respectively concentration and duration when no PPE used.

Effic is a coefficient implemented to take into account the efficiency of the PPE; here Effic = 0.05 (95% of efficiency for masks and gloves used).

Page 19: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 19

Dermal exposure assessment

The dermal exposure assessment has been done using RISKOFDERM V2.0 tier 2 model. As mentioned in ECHA guidance R14, chapter R14.5.2 on RISKOFDERM dermal model, the 75th percentile of the output distribution will be used as a reasonable worst case estimator when conservative values are used for inputs in the model. When it is not the case (not all conservative values), a 90th percentile is used. Regarding ventilation, “normal or good ventilation” input can be considered as a conservative choice because the impact in dermal exposure is low (it is not a major input of RISKOFDERM). As for liquids, results from RISKOFDERM are given in µl, EDC density factor (1.244 g/cm3 at 20°C) will be used to get the exposure results in mg. In the case of maintenance activity where EDC is diluted with flushed water the density factor of 1.244 g/cm3 will be kept as worst case value (instead of value between 1.244 and 1). Body weight (bw) value of 70 kg will be used to get the final result in mg/kg bw/d.

As described in ECHA guidance R14, appendix R14.1, evaporation rate has been used to estimate the dermal exposure duration (see appendix 5). In the case of intermittent contact level, the duration is 0.22 min (see appendix 5). In this case, the duration is lower than RISKOFDERM applicability duration (0.33 min), but still acceptable as in a close range.

When dermal equipment (gloves) is used during the task, an efficiency of 95% will be used to calculate the actual exposure. The 95% efficiency can be justified by the use of protective gloves satisfying the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it:

- Full contact= Material: Fluorinated rubber; Minimum layer thickness: 0.7 mm; Break through time: 480 min;

- Splash contact= Material: butyl-rubber; Minimum layer thickness: 0.3 mm; Break through time: 62 min.

Also specific PPE are proposed and validated by EHS service. The PPE are available in the store-room. The PPE availability is controlled by chief operator. Audits are done to ensure a good behaviour regarding PPE. Specific trainings on PPE are given regularly to all plant operators handling EDC.

General information on risk management related to irritation classification

Although the inclusion criterion for EDC in Annex XIV was only its carcinogenic properties (C1B), a qualitative assessment was carried out with respect to eyes, skin and respiratory irritation classification (moderate hazard, H319, H335, H315) based on operational conditions and risk management measures from ECHA, part E, Table E.3.1. When those OC/RMM are applied, the qualitative assessment concludes to safe use:

- Containment as appropriate; - Minimise number of staff exposed; - Segregation of the emitting process; - Effective contaminant extraction; - Good standard of general ventilation; - Minimisation of manual phases; - Avoidance of contact with contaminated tools and objects; - Regular cleaning of equipment and work area; - Management/supervision in place to check that the RMMs in place are being used correctly and OCs followed; - Training for staff on good practice; - Substance/task appropriate gloves; - Skin coverage with appropriate barrier material based on potential for contact with the chemicals; - Substance/task appropriate respirator; - Optional face shield; - Eye protection.

Page 20: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 20

9.0.2.3. Consumers

No consumer assessment has been made, since there is no consumer related use for the substance, resulting in exposure for consumers (in the final product, the concentration of EDC, if present at all, is below 5ppm as per the Marketing Authorisation).

9.0.2.4. Man via environment

Scope and type of assessment The scope of exposure assessment and type of risk characterisation required for man via environment is based on the hazard conclusions presented in the document draft RAC/33/2015/09 Rev1 and is described in the following table. The risk assessment for man via the environment is mainly based on the potential exposure of the general population via air as well as indirect oral exposure through consumption of drinking water and/or various crops/food potentially contaminated with EDC following its industrial emission at Expanscience industrial facility. Local and regional risk assessment are conducted so to ensure that all potential emissions are taken into account.

Table 4. Type of risk characterisation for man via the environment

Route Type of effect Type of risk characterisation

Hazard conclusion (see RAC/33/2015/09 Rev1)

Inhalation

Systemic Long Term Semi-quantitative* Excess risk = 3.45 10-6 (µg/m3)-1 x concentration (µg/m3)

Systemic Acute Not needed -

Local Long Term Not needed -

Local Acute Not needed -

Oral

Systemic long term Semi-quantitative* Excess risk = 1.2 10 -5(µg/kg bw/d)-1 x concentration (µg/kg bw/d)

Systemic Acute Not needed -

Local Long Term Not needed -

Local Acute Not needed -

NB: the oral exposure given here is the end point used for risk assessment of the total exposure.

*Because EDC is a CMR without a threshold, only a semi-quantitative characterisation can be performed.

Page 21: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 21

9.1 Exposure scenario 1: Use as process and extracting solvent in fine chemical processes.

9.1.1. Environmental contributing scenario

9.1.1.1. Exposure and risks for the environment and man via the environment

A release factor for each environmental compartment is used to determine the fraction of the tonnage that will be released to each environmental compartment i.e. water, air, soil. The Environmental Release Category (ERC) 4 i.e. industrial use of processing aids (solvent) in process and products, not becoming part of articles is used to determine the default parameters used for the initial release rate calculation. The release estimation may then be refined using specific on-site data as Risk Management Measures (RMM) and Operational Conditions (OC) as well as measured data of the emission in air and waste waters, if available.

The on-site specific RMMs, defined with the best available technologies (BAT referenced in EU BREF Documents), are each assigned with a quantitative measure of release reduction and are used in the quantitative assessment in association with the initial default release factors to determine the actual release factor when needed.

When analytical results in influent/effluents or in the air phase as close as possible from the emission source are available, these will be used to back calculate the removal efficiency in the air phase or in the wastewaters.

Expanscience industrial site is operating using EDC at Épernon, France, in an industrial zone with a relatively few inhabitants in the surroundings (see below).

Figure 12 - Location of the Expanscience industrial site

The conditions of use regarding the industrial use of EDC are indicated in the following table in order to evaluate the impact on the general population via the environment.

Page 22: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 22

9.1.1.1.1 Conditions of use

The conditions of use related to the potential releases of EDC out of the production plant are indicated below.

Table 5 - Conditions of use related to the Expanscience industrial site

Amount used, frequency and duration of use (or from service life)

Annual amount used at a site: 1663 tons in 2014

Minimum recovery rate: 99%

Estimated annual tonnage of substance consumed at site: ≤ 40 tons/year (used as relevant tonnage for application)

Emission days: 3 weeks closing for maintenance, therefore for risk assessment 344 operating days are used.

Percentage of tonnage used at regional scale: = 100 %

Conditions and measures related to sewage treatment plant

The fraction of emission degraded in on-site biological sewage treatment plant (STP) and flow equalization basin is estimated by measurements of the remaining EDC concentration in the effluents of the STP (see below the monitoring section i.e. chapter 9.1.1.1.2)

The on-site STP is discharged to a municipal wastewater treatment plant

The discharge rate of industrial STP: 57,922 m3/year (2014 data)

Other conditions affecting environmental exposure

All tanks and reactors are double wall with control vacuum secured equipment. All seals (static, dynamic) are under assurance of leak-proof sealing by means of monitoring and repair. Most of the dynamic seals are double-axial face seal with barrier fluid and secure alarm. All transfers are automated and under panel control and alarms (solvent alarm). In case of emergency, the whole unit is connected with a secure unit tank storage.

Inside the continuous unit process there is a slight under pressure (5 mbar lower at ambient temperature) to minimize accidental release.

- If the pressure in the equipment is less than 5 mbar lower than the surrounding atmospheric pressure, an automatic control valve is open to introduce nitrogen gas.

- If the pressure in the equipment is more than 30 mbar higher than the surrounding atmospheric pressure, an automatic control valve is open and the released gas is connected to VOC lines (combustion treatment unit).

Page 23: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 23

Table 5 - Conditions of use related to the Expanscience industrial site (continued)

9.1.1.1.2. Monitoring data

Monitoring of the concentration of EDC in the emitted air phase

All gas vents are connected (closed system) to a thermal oxidizer with efficiency >99.8% (measured). In 2012, the results of the measurements in the exit of the thermal oxidizer showed an emitted flux rate of EDC of 32 kg/year with an air flow of 1840 m3/hour.

The fraction released in the air can be then calculated at 1.58 10-3 based on the following calculation:

EDC released in the air after thermal oxidizer: 32 kg/year

Corresponding to: 32 kg/year/344 operating days: 0.093 kg/day

Quantity EDC potentially released (based on the EDC consumed in 2012 i.e. 20,256 tons):

20,256 tons/344 operating days 58.88 kg/day

Fraction released in the air: (0.093 kg/day)/(58.88 kg/day) 1.58 10-3

Monitoring of the concentration of EDC in effluent out of the Expanscience waste water treatment plant and estimate of the quantity of EDC released in effluent water

The substance concentrations released in waste water effluent of the on-site sewage treatment plant are measured before release in the municipal STP. The following data have been obtained in 2014 and are summarized in the following table:

Conditions and measures related to treatment of wastes

Air treatment

All equipment is connected to a general vent-gas system with VOC treatment by combustion (900°C). In case of combustion unit dysfunction, the general vent-gas system can be connected with an activated charcoal system.

- Waste gas treatment by thermal oxidation. o Unique number for CEFIC library of RMM / OC : E12.12 (Default RMM efficiency 98%) o BAT Reference Document 'Common Waste Water and Waste Gas Treatment/Management

Systems in the Chemical Sector', page 212 (Efficiency 95-99.9%)

Waste Water treatment

All waste waters are transferred into the soap tank and transferred from soap tank to recovery solvent skid. After recovery solvent skid, waste waters are transferred to on-site biological station treatment and to a flow equalization basin before transfer to communal wastewater station treatment.

- On-site biological STP - Aerobic o Unique number for CEFIC library of RMM / OC : E13.21 (no specific value for non-

biodegradable substances) o BAT Reference Document 'Common Waste Water and Waste Gas Treatment/Management

Systems in the Chemical Sector', page 13 ff (only value referring to removal of chemical substances measured by reduction of COD)

Total efficiency of Air is > 99.8% (see measurement of emitted EDC) and Waste Water treatment is 90% according the risk management measures in place to comply with Directive on industrial emissions 2010/75/UE. In addition for risk assessment purposes within this CSR, the removal efficiency is based on the measurements of the emitted effluents from the on-site STP.

Page 24: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 24

Table 6 - Monitoring data EDC in the site effluents conducted in 2014

Week m3 mg/L 1 356.0 0.05 2 1054.0 0.10 3 1083 0.30 4 1210 0.30 5 1167 0.05 6 1084 0.05 7 1142 0.05 8 1373 0.05 9 1161 0.05

10 1389 0.40 11 1316 0.70 12 1139 0.05 13 1185 0.05 14 1088 0.05 15 1124 0.05 16 1255 0.05 17 905 0.05 18 1251 0.05 19 1435 0.05 20 1295 0.05 21 1244 0.10 22 828 0.05 23 1062 0.05 24 1017 0.30 26 1061 0.05 27 1117 0.05 28 1221 0.05 29 1007 0.05 30 1259 0.05 31 1026 0.05 37 1316 0.05 38 1342 0.05 39 1377 0.05 40 1282 0.05 41 1265 0.05 42 1296 0.05 43 1354 0.05 44 1168 0.05 45 1332 0.05 46 681 0.05 47 1279 0.05 48 1034 0.05 49 1332 0.05 50 1177 0.05 51 1192 0.05 52 729 0.05

Page 25: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 25

Based on this data, the following end points are then obtained:

- 90th percentile of the concentration of EDC released out of the effluents: 0.2 mg/L - Total annual volume of effluents with EDC analyses: 53,010 m3 or 154.1 m3/d For a consumed quantity of 12.45 tons in 2014, the release factor rate is back calculated with EU TGD Spreadsheet and corresponds to: 1.77 10-3 in waste waters.

Before final release in rivers the on-site biological treatment of effluents is discharged into a municipal STP with the following set up:

STP Epernon « Le Loreau »

Treatment: Activated sludges with prolonged aeration Capacity: 350 kg expressed as BOD5/day Hydraulic capacity: 850 m3/d Average entry volume: 570 m3/d Discharge into the river La Drouette

9.1.1.1.3. Releases

The local releases to the environment are reported in the following table:

Table 7 - Local release rate of EDC in the different environmental compartments following its industrial use at EXPANSCIENCE facility

Release Release factor estimation method

Explanation / Justification

Water ERC based plus release factor estimated by measurements

Initial release factor: 100% (ERC 4) Initial local release rate: 116.28 kg/day (based on 40 tons consumed/344 operating days) Final release factor (by measurement): 1.77 10-3 (on-site STP biological treatment discharged into a municipal STP) Explanation/justification: Local release rate based on the comparison of the measurements of the concentration of EDC in the effluents of the on-site STP with the quantity of EDC. This will represent the quantity released before entering the municipal STP.

Air ERC based plus release factor estimated by measurements

Initial release factor: 100% (ERC 4) Initial local release rate: 116.28 kg/day (based on 40 tons consumed/344 operating days) Final release factor: 1.58 10-3 (Incineration removal efficiency: 99.8%). Final local release rate (after RMM): 0.1837 kg/day Explanation/justification: local release based on measurement of emitted air in agreement with removal efficiency of a thermal oxidizer.

Soil ERC based Initial release factor: 5% (ERC4) Final release factor: 0 % Local release rate: 0 kg/day Explanation/justification: no application onto agricultural soils of the on-site industrial STP sludges.

Page 26: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 26

9.1.1.1.4 Exposure and risks for man via the environment

For the indirect impact of man through environment during industrial production where EDC is involved, one of the main contributors to the total exposure is the emission in air due to the emission of EDC through the on-site STP (loss by evaporation) and following the thermal oxidation of gaseous EDC.

The indirect exposure of the general population is assessed on two spatial scales:

- locally near a point source of the substance - regionally using averaged concentrations over a larger area.

In the local assessment, all food products are derived from the vicinity of one point source. In the regional assessment, all food products are taken from the regional model environment and certainly represent a worst case situation. These two scenarios (local and regional scale) are considered appropriate and conservative enough for a first approach to indicate possible concern for further evaluation if necessary.

Exposure via the environmental compartments

The exposure concentrations of EDC related to the potential exposure of the general population through environment is calculated with EU TGD Spreadsheet software. It has to be noted that under the present conditions of use at Expanscience, the EUSES software is predicting an important degradation in the on-site STP (more than 90%) what is not realistic, and therefore another software has been chosen to perform the risk assessment i.e. EU TGD Spreadsheet software.

The input values related to EDC and its physicochemical properties are extracted from the registration dossier and from literature. These are summarized below:

Table 8 - EDC-Physicochemical data, environmental properties and environmental partition coefficients used as input values in EU TGD Spreadsheet software data and related environmental partition coefficients

End points (1/2) Values Reference Molecular weight 98.96 g.mol-1 ECHA website Melting point -35.35 °C ECHA website Boiling point 83.6 °C ECHA website Vapour pressure at 25°C 1.02 104 Pa ECHA website Octanol-water partition coefficient 1.45 (log10) ECHA website Water solubility at 25°C 7.9 g/L ECHA website Organic carbon-water partition coefficient

33 L/kg Chiou, C.T., L.J. Peters, and V.H. Freed. 1979. A physical concept of soil-water equilibria for nonionic organic compounds. Science. 206:831-832

Henry's law constant at 25°C 128 Pa.m3.mol-1 Calculation

Page 27: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 27

Table 8- Continued

End points (2/2) Values Reference Bioconcentration factor for fish 2 Veith, G.D., K.J. Macek, S.R. Petrocelli, and J. Caroll

1980. An Evaluation of Using Partition Coefficients and Water Solubility to Estimate Bioconcentration Factors for Organic Chemicals in Fish, in Aquatic Toxicology, ASTM STP 707, J. G. Eaton,

Rate constant for abiotic degradation in STP

0 Default value (EDC is not classified as biodegradable)

Rate constant for hydrolysis in surface water (DT50; 25°C)

1000 days (default value)

Default

Rate constant for photolysis in surface water (DT50)

540 days Dilling, W.L., N.B. Tefertiller and G.J. Kallos, 1975. Evaporation Rates and Reactivities of Methylene Chloride, Chloroform, 1,1,1-Trichloroethane, Trichloroethylene, Tetrachloroethylene, and Other Chlorinated Compounds in Dilute Aqueous Solutions. Environ. Sci. Technol. 9(9):833-838

Rate constant for degradation in air (DT50)

41.9 days Simulated by AOP Program v.1.92

Rate constant for biodegradation in soil (DT50)

110 days Evaluated by the report „Intermedia Transfer Factors for Contaminants found at Hazardous Waste Sites DCA from Risk Science Program, Univ. California, Dec 1994

The detailed calculation outcome is indicated in Appendix 6 and a summary is given hereafter.

Exposure in air and surface water

The exposure concentrations calculated with EU TGD Spreadsheet software are reported in the following tables with the main results.

The calculated concentration in air and in surface water is indicated below:

Table 9 - Predicted environmental concentration of EDC (PECs) in air and surface waters

Regional PEC in air (total): 1.09 10-14 kg/m3

Annual average local concentration in air, 100 m from point source: 4.81 10-11 kg/m3

Regional PEC in surface water (Total): 1.78 10-10 kg/m3

Local PEC in surface water during emission period: 1.27 10-06 kg/m3

Local PEC annual average in surface water (dissolved): 1.20 10-06 kg/m3

Exposure via drinking water

Following emission in air of EDC, the redeposition in soil in the form of aerosol bound or gaseous form may occur. The deposition is calculated using the software OPS and subsequently in the pore water (calculated by dividing the concentration in soil by the soil adsorption coefficient). In EUSES, the concentration of the tested substance in drinking water is estimated by the maximum of the concentration in the soil pore water following redeposition and the concentration in surface waters divided by a purification factor (i.e. 0.5 for EDC). A refinement would be possible using concentration in the leached water throughout soils i.e. in shallow ground-waters if this represents the highest concentration. In the present case, it is to note no soil application of activated sludge from the on-site STP is foreseen. The calculated concentrations in soil and in waters are indicated below:

Page 28: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 28

Table 10 - Predicted environmental concentration of EDC (PECs) in soils, groundwater and drinking water

Regional PEC in agricultural soil (Total): 2.67 10-15 kg/kgwwt

Local concentration in agricultural soil over 180 days: 1.22 10-11 kg/kgwwt

Regional PEC in pore water (agricultural soils): 3.80 10-12 kg/m3

Local PEC in pore water of agricultural soil: 1.74 10-8 kg/m3

Local PEC in pore water of grassland: 1.97 10-8 kg/m3

Local PEC in groundwater under agricultural soil: 1.74 10-8 kg/m3

Local concentration in drinking water: 5.98 10-7 kg/m3 calculation based on the concentration in surface waters (1.20 10-6 kg/m3) multiplied by the purification factor of 0.5.

Exposure via food consumption

Assessing concentrations in food products (in this context fish, leaf crops, root crops, meat and dairy products) is based on the estimate biotransfer from soil and air to plants. The major physicochemical parameter impacting the concentration into the different media is the bioconcentration value (BCF). EDC is typically a compound with low bioaccumulation potential and secondary poisoning is excluded. Plant products form a major part of the food products for humans and cattle. Contamination of plants will therefore have significant influence on the exposure of humans.

Total daily intake for the general population

The total daily intake of humans can be estimated from the daily intake rate of each medium by summing the contribution of each medium (drinking water, milk, meat, crops etc..) and using daily human doses for each item.

The following results are then obtained:

Table 11 - Human daily intake of food commodities containing EDC residues (local assessment)

Daily dose through intake of drinking water 1.71 10-05 [mg.kg-1.d-1] Daily dose through intake of fish 6.70 10-06 [mg.kg-1.d-1] Daily dose through intake of leaf crops 4.10 10-08 [mg.kg-1.d-1] Daily dose through intake of root crops 1.21 10-07 [mg.kg-1.d-1] Daily dose through intake of meat 1.33 10-10 [mg.kg-1.d-1] Daily dose through intake of milk 2.48 10-09 [mg.kg-1.d-1] Daily dose through intake of air 1.38 10-05 [mg.kg-1.d-1] Local total daily intake for humans 3.77 10-05 [mg.kg-1.d-1]

Table 12. Human daily intake of food commodities containing EDC residues (regional assessment)

Daily dose through intake of drinking water 2.54 10-09 [mg.kg-1.d-1] Daily dose through intake of fish 9.97 10-10 [mg.kg-1.d-1] Daily dose through intake of leaf crops 9.30 10-12 [mg.kg-1.d-1] Daily dose through intake of root crops 2.64 10-11 [mg.kg-1.d-1] Daily dose through intake of meat 2.14 10-14 [mg.kg-1.d-1] Daily dose through intake of milk 3.99 10-13 [mg.kg-1.d-1] Daily dose through intake of air 3.12 10-09 [mg.kg-1.d-1] Regional total daily intake for humans 6.70 10-09 [mg.kg-1.d-1]

Page 29: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 29

Based on the above values, the risk assessment can then be finalized using the toxicological end points of EDC. The following risk assessment outcome is then obtained.

The outputs of the calculations are regional and local human doses inhaled or ingested via the environment. These values have to be compared with the hazard data for inhalation and oral end points.

Exposure to the general population via the environment is considered to be of low concern, for the local and regional assessment when all Cancer Life Risk (CLRs) < 10-6

The excess of risk calculated for both local and regional assessment is indicated hereafter.

Table 13 - Risk assessment of man from the environment (CLRs)

Protection target Exposure Risk characterization

Local Regional

Man via Environment CLR from various exposures

via air 1.67 E-07 3.76 E-11

via ingestion 2.85 E-07 6.66 E-09

total 4.52 E-07 6.70 E-09

Cf. Table 4 for the explanation of the end point used for risk assessment

Conclusion

The indirect exposure of the general population through environment has been assessed according to the ECHA general guidance and adapted to the local conditions of use of EDC at the industrial site of Expanscience.

The present assessment used measured data in order to calculate the different release factors (air, water, soil) for 2 main reasons:

The default values are extremely conservative for the release category ERC4 (“industrial use of processing aids (solvent) in process and products, not becoming part of articles”)

The Expanscience facility has set up RMM to reduce as much as possible the presence of EDC in the emitted air phase and in the wastewater effluents of the plant.

From these data, the indirect exposure is then estimated using EU TGD Spreadsheet software and compared with the toxicological end points.

Since the local and regional assessments are below the 10-6 threshold, the general population exposure is considered “low concern”. Thus, there is no need for further characterization for EDC under the present conditions of industrial production involving EDC at Expanscience facility.

Page 30: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 30

9.1.2. Worker contributing scenario 1: Production process including storage, transfers, sampling, recycling, waste transfers (PROC 2)

As described in the introduction of chapter 9.0, the processes using EDC are closed systems without direct handling of EDC by operators except during EDC sampling for QC.

The contributing scenario 1 covers all phases where EDC is used or transferred in those closed system equipment: transfers from storage tank to first liquid/liquid extraction column, washing solvent column, falling film evaporator, transfers to recovery solvent unit, transfers from recovery solvent unit to recovered EDC storage tanks.

The sampling point for EDC quality control is done on the transfer lines from storage to unit B2. This sampling point is outside. Around 250 mL of EDC is sampled. The duration sampling is less than 5 minutes and frequency is one per 24h (sampling operation described in detailed in CS2, chapter 9.1.3 below).

9.1.2.1. Conditions of use

Table 14 – Conditions of use for CS1

Product characteristics

1,2-dichloroethane – liquid

Amount used, frequency and duration of use/exposure

The industrial site is producing in closed batch process continuously, 24/24, all year (only 3 weeks /year annual maintenance break). As described below the processes using EDC are closed systems without direct handling except during QC sampling (see technical description in chapter 9.1.2.2).

Technical and organisational conditions and measures

All equipment and processes from production units involving EDC are under closed systems. All of the tanks and reactors are with control vacuum secure equipment. All seals (static, dynamic) are under assurance of leak-proof sealing by means of monitoring and repair. Most of the dynamic seals are double-axial face seal with barrier fluid and secure alarm. All transfers (from storage tank to extraction reactors, from extraction to washing solvent column, from washing column to falling film evaporator) are automated and under panel control and alarms (solvent alarm). In case of emergency, the whole unit is connected to a secure unit tank storage. The continuous unit process is slightly under-pressure to minimize accidental release and equipment is under nitrogen-blanket. All reactors are equipped with safety equipment measures for protection of over pressure with safety release valves, safety rupture discs or safety instrumental systems (SIL).

Local exhaust ventilation: none (all equipment is venting through a thermal oxidiser)

Conditions and measures related to personal protection, hygiene and health evaluation

Dermal Protection: yes during sampling for QC (chemically resistant gloves conforming to EN374 with specific activity training characterized by a 95% efficiency – see material and justification in chapter 9.0.2.2)

Respiratory Protection: yes during sampling for QC – [Effectiveness Inhal: 95%]

Other conditions affecting workers exposure

Place of use: Indoor – good general ventilation

Trained person: General training on risks for chemical is provided regularly for all operators involved in chemical handling. Specific trainings on chemical risk handling are given regularly to all plant operators handling EDC. All tasks involving EDC handling are done by competent operators.

9.1.2.2. Exposure and risks for workers

The CS1 (PROC2) covers a full shift operation (8 hours). The operator functions are described below:

Total employees of the site = 280. Employees working in the unit B2 using EDC = 21 Description of the shifts working in the unit using EDC :

o There are 5 teams (3 to 5 employees per team)

Page 31: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 31

o Frequency of CS1 = all year. o The tasks done by production operators are

facility supervision and control from the room panel control (most of the activity = 70%)

visual control routine on unit (1 or 2 per shift) EDC sampling for QC (1 per day) final product packaging (EDC < 5ppm).

Operators from this CS1 are different from those working in CS2 (unloading road tank), CS3 (non-routine maintenance and cleaning) and CS4 (general maintenance and cleaning).

Inhalation exposure assessment

As described in chapter 9.0.2.2, a specific sampling strategy has been developed to produce reliable data. During the 2014 monitoring campaign, 6 measurements have been done on full shift production operators (for 3 of them, short-term QC sampling also was measured separately, see details in appendix 2). The Geometric Standard Deviation (GSD) is 1.84 (low variation in the data). Due to small number of measured data, the maximum value will be taken for exposure result instead of 90th percentile: maximum value = 1,565 µg/m3 (recalculated on TWA 8h).

Due to technical improvements of production equipment in plant since 2012, previous exposure results are no more representative of actual situation. Thus, those earlier measures are not taken into account in this report.

Dermal exposure assessment

The dermal exposure could occur during the QC sampling task. As laboratory QC activities including sampling are exempted (cf. 9.0.0.6), no dermal exposure is assessed in the CS1.

Table 15. Exposure concentrations and risks for workers

Route of exposure and type of effects

Exposure concentration (Time Weighted Average 8 hour exposure)

Correction factor for frequency

Risk characterisation

Inhalation, systemic long term

1,565 µg/m3

(measured data max value, see appendix 2)

Frequency: 1*

Excess cancer risk:

9.39 E-04

Dermal, systemic, long-term

- - -

Combined routes, systemic, long-term

Excess cancer risk:

9.39 E-04

* Frequency: activity takes place on daily basis; correction factor = 1

Conclusion on risk characterisation

When following the operational conditions and risk management measures described in this contributing scenario, the derived excess cancer risks for systemic, long term effects due to inhalation and dermal contact are considered to be the lowest achievable risks.

Page 32: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 32

9.1.3. Worker contributing scenario 2: Receipt of EDC from road tank (PROC 8b)

9.1.3.1. Conditions of use

Table 16 – Conditions of use for CS2

Product characteristics

1,2-dichloroethane – liquid Quantitative measures

Amount used, frequency and duration of use/exposure

Once a year, about 10 tons of EDC are unloaded from a road tank to a storage tank. This operation lasts for less than 1 hour. Only one operator is involved for this work which consists of:

- connecting the flexible hose from the road tank to the storage tank (previously purged with nitrogen gas) – duration 2 min

- Visual control during unloading (far-off road tank, >5m), duration <55min - Disconnecting the flexible (previously purged with nitrogen gas – no

residual EDC expected) – duration 2 min.

Technical and organisational conditions and measures

Containment: fixed connection and hose steel connections. Bottom unloading with direct atmospheric exchange from road tank to storage tank – no direct emission to atmosphere.

Assurance of leak-proof sealing by leak test after establishing the connection and complete capture of the residual quantities by inert gas (nitrogen) into the flexiblehoses

Local exhaust ventilation: none

Conditions and measures related to personal protection, hygiene and health evaluation

Dermal Protection: Yes (chemically resistant gloves conforming to EN374 with specific activity training, Dermal: 95%) – see material and justification in chapter 9.0.2.2

Respiratory Protection: Yes [Effectiveness Inhal: 95%]

Other conditions affecting workers exposure

Place of use: Outdoor

Process temperature (for liquid): ≤ 40 °C

Trained person: Connection and transfer is done by employees competent and trained for EDC unloading road tank operations.

Page 33: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 33

9.1.3.2. Exposure and risks for workers

The CS2 is covering a specific operation of road tank EDC unloading. CS2 is done by the unloading team (frequency: once per year). The task covering CS2 is done less than 1 hour and after an EDC unloading road tank operation, the operator will no more be exposed to EDC for the remaining 7 hours of the working day (in general in charge of other chemical unloading operations).

Operators from this CS2 are different from those working in CS1 (general production), CS3 (non-routine maintenance and cleaning) and CS4 (general maintenance and cleaning).

Inhalation exposure assessment

As there is no measurement data regarding unloading operation, a tier 2 ART model has been used (see all details of ART inputs in appendix 3). In ART, 2 activities (equivalent to operation phases during the task) were used to cover the complete task of road tank unloading:

Activity 1: connection/disconnection of flexible hoses – duration 5 min (total duration connecting and disconnecting)

Activity 2: road tank unloading – duration 55 min. (No exposure period = 420 min – the other tasks performed during the day do not involve EDC).

Justification of inputs used in ART model: Activity 1. Emission source located in the breathing zone of the worker. During this phase the

operator connects/disconnects flexible hoses, thus “handling of contaminated objects” is the most appropriate activity class. The complete surface of connection of the flexible hoses is between 0.1 and 0.3 m2. As the flexible hoses are purged with nitrogen gas, the ART input “contamination <10% of surface” is relevant. No localised controls and no containment chosen in ART (worst case).

Activity 2. During this phase, the operator is far away from road tank (>5 m). The ART activity class is bottom loading with a 100-1000 L/min (14 tons in 55 minutes). The general control measures “vapour recovery systems” has been chosen as there is a direct atmospheric exchange from truck tank to storage tank.

The predicted 90th percentile full shift (8h) exposure result from ART is 0.48 mg/m3 (results without PPE protection). The exposure result considering PPE efficiency 95% is 24 µg/m3.

Dermal exposure assessment

As described above, there are 2 main phases during the unloading operation: connecting/disconnecting the flexible hoses and unloading. During the unloading phase, there is no dermal exposure as the operator is only doing visual control. Regarding the phase involving the connection/disconnection of flexible hoses, the tier 2 model RISKOFDERM has been used for dermal exposure assessment.

Justification of RISKOFDERM inputs (see details in appendix 4): in RISKOFDERM model there is no specific activity covering connection/disconnection of flexibles. From the 6 existing activities (filling-mixing-loading, wiping, dispersion with hand tool, spraying, immersion, mechanical treatment), “filling-mixing-loading” is the most relevant. As the flexible hoses are purged with nitrogen gas before connecting or disconnecting operation, a use rate (“product handled per min”) of 0.05 L/min was considered as worst case (covering the potential but not expected residual EDC). “Light contact” has been chosen as the operator is handling purged flexible. “More than rare contact” has been chosen as worst case situation. The input “no significant amounts of aerosols or splashes” has also been chosen as no splashes or aerosol expected due to nitrogen purge. Based on ECHA guidance recommendations, the evaporation rate has been used to estimate the dermal exposure duration: 0.22 min (see details calculation in appendix 5). The 90th percentile (see justification in chapter 9.0) result is 0.36 µg/kg/d (using PPE 95% efficiency).

Page 34: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 34

Table 17 - Exposure concentrations and risks for workers

Route of exposure and type of effects

Exposure concentration (Time Weighted Average 8 hour

exposure)

Correction factor for frequency

Risk characterisation

Inhalation, systemic, long-term

24 µg/m3 **

(tier 2 ART model, 90th percentile)

Frequency: 0.0042*

Excess cancer risk:

6.05 E-08

Dermal, systemic, long-term

0.36 µg/kg/d**

(RISKOFDERM, 90th percentile)

Frequency: 0.0042*

Excess cancer risk:

3.18 E-09

Combined routes, systemic, long-term

Excess cancer risk:

6.37 E-08

* Frequency: activity takes place once per year, i.e. 1/(240d); correction factor = 0.0042

** PPE used during the full task then 95% efficiency for inhalation and dermal have been used to recalculate exposure (see justification chapter 9.0.2.2)

Input data and results used in RISKOFDERM for dermal exposure calculation are presented in appendix 4.

Conclusion on risk characterisation

When following the operational conditions and risk management measures described in this contributing scenario, the derived excess cancer risks for systemic, long term effects due to inhalation and dermal contact are considered to be the lowest achievable risks.

Page 35: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 35

9.1.4. Worker contributing scenario 3: Non-routine maintenance and cleaning (PROC 8b)

This contributing scenario addresses non-routine equipment maintenance (e.g. small repairs, pump dismantlement, filter change). These activities in general last no more than 30 minutes. They are typically undertaken with a frequency of 10 times per year as maximum.

9.1.4.1. Conditions of use

Table 18 – Conditions of use for CS3

Product characteristics

1,2-dichloroethane – liquid

Amount used, frequency and duration of use/exposure

The non-routine maintenance is around 10 times per year.

Technical and organisational conditions and measures

Non-routine maintenance, such as maintenance conducted only in case of dysfunction of an equipment (e.g. pump), happens on an average of less than once a month. In case of equipment dysfunction or equipment change, operators from the plant unit are in charge of connecting secondary equipment (e.g. pump) when relevant. These actions are on/off valve actions. The unit operators are not authorized to dismantle equipment. This task will be done by maintenance operators, with the same precautions applied for annual maintenance: the equipment is flushed with water and purged with nitrogen gas. The maintenance work to do and the specific risk management measures are described in a permit procedure. Personal Protective Equipment is mandatory (inhalation full mask ABEK and fluorinated rubber chemical gloves - see section 9.0.2.2). Outside annual maintenance, cleaning or maintenance is performed on equipment only if equipment failure is detected.

Local exhaust ventilation: none

Conditions and measures related to personal protection, hygiene and health evaluation

Dermal Protection: Yes (chemically resistant gloves conforming to EN374 with specific activity training characterized by a 95% efficiency – see material and justification in chapter 9.0.2.2).

Respiratory Protection: Yes [Effectiveness Inhal: 95%]

Other conditions affecting workers exposure

Place of use: Indoor – good general ventilation

Process temperature (for liquid): ≤ 45 °C

Trained person: General training on risks for chemical is provided regularly for all operators involved in chemical handling. Specific trainings on chemical risk handling are given regularly to all plant operators handling EDC. All tasks involving EDC handling are done by competent operators.

Page 36: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 36

9.1.4.2. Exposure and risks for workers

The CS3 is covering a specific operation of non-routine maintenance. CS3 is done by maintenance operators. The maintenance duration is around 30 minutes per day when occurring. The frequency is on average of 10 per year. Maintenance operators from CS3 are not the same operators working in CS1 and CS2, but they can be the same operators as in CS4 (combined exposure results in chapter 10). 2 maintenance operators work together for a non-routine maintenance operation.

Inhalation exposure assessment

As there is no existing measurement data regarding non-routine maintenance operations, a tier 2 ART model has been used (see all details of ART inputs in appendix 3): in ART 1 activity (equivalent to operation phases during the task) was used to cover the complete task of maintenance:

o Activity 1: maintenance – duration 30 min (No exposure period = 450 minutes) Justification of inputs used in ART model: the ART input “main component” (50 to 90% EDC in the residual liquid) will be used to cover situations where the equipment cannot be fully flushed. For maintenance operation it has to be considered that emission source is located in the breathing zone of the worker (ART input). The relevant activity description from ART for maintenance is handling of contaminated objects with surface 1 to 3 m2 with a contamination of 10 to 90 % of surface (e.g. dismantlement of pump equipment). No localised control and no containment are relevant ART inputs for maintenance operations. The small repair tasks of CS3 take place in the production unit which corresponds to large workroom.

The predicted 90th percentile full shift (8h) exposure result from ART is 66 mg/m3 (results without PPE protection). The exposure result considering PPE efficiency of 95% is 3,300 µg/m3.

Dermal exposure assessment

The tier 2 model RISKOFDERM has been used for dermal exposure assessment.

Justification of RISKOFDERM inputs (see details in appendix 4): in RISKOFDERM model there is no specific activity covering maintenance operations. From the 6 existing activities (filling-mixing-loading, wiping, dispersion with hand tool, spraying, immersion, mechanical treatment), “filling-mixing-loading” is the more relevant for maintenance purpose. Also “More than rare contact” and “more than light contact” have been chosen because the operator is in direct contact with the inside part of the equipment. The input “significant amounts of aerosols or splashes” has also been chosen. As the CS is covering small equipment maintenance the potential residual EDC handled rate will be less than 0,1 L/min (less than 3L of residual EDC handled during the 30 min task). Based on ECHA guidance recommendations, evaporation rate has been used to estimate the dermal exposure duration: 0.22 min (see details calculation in appendix 5). The 75th percentile (see justification in chapter 9.0) result is 2.15 µg/kg/d (using PPE 95% efficiency).

Page 37: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 37

Table 19 - Exposure concentrations and risks for workers

Route of exposure and type of effects

Exposure concentration (Time Weighted Average 8 hour

exposure)

Correction factor for frequency

Risk characterisation

Inhalation, systemic, long-term

3,300 µg/m3 **

(tier 2 ART model, 90th percentile)

Frequency: 0.042*

Excess cancer risk:

8.32 E-05

Dermal, systemic, long-term

2.15 µg/kg/d **

(RISKOFDERM, 75th percentile)

Frequency: 0.042*

Excess cancer risk:

1.90 E-07

Combined routes, systemic, long-term

Excess cancer risk: 8.34 E-05

* Frequency: activity takes place 10 times per year, i.e. 10/(240d); correction factor = 0.042

** PPE used during the full task then 95% efficiency for inhalation and dermal have been used to recalculate exposure (see justification chapter 9.0.2.2)

Inputs data and results used in RISKOFDERM for dermal exposure calculation are presented in appendix 4.

Conclusion on risk characterisation

When following the operational conditions and risk management measures described in this contributing scenario, the derived excess cancer risks for systemic, long term effects due to inhalation and dermal contact are considered to be the lowest achievable risks.

Page 38: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 38

9.1.5. Worker contributing scenario 4: General maintenance and cleaning (PROC 8b)

This contributing scenario addresses annual large maintenance activities with full plant equipment shut down.

9.1.5.1. Conditions of use

Table 20 – Conditions of use for CS4

Product characteristics

1,2-dichloroethane – liquid

Amount used, frequency and duration of use/exposure

The annual maintenance duration is 3 weeks each year (2 in the summer, 1 at the end of year), but only 5 working days are dedicated to operations involving EDC

Technical and organisational conditions and measures

Before any equipment dismantlement, the equipment is flushed with water under pressure and purged with nitrogen gas. The maintenance work to do and the specific risk management measures are described in a permit procedure. Personal Protective Equipment is mandatory (inhalation full mask ABEK and fluorinated rubber chemical gloves - see section 9.0.2.2)

Local exhaust ventilation: none

Conditions and measures related to personal protection, hygiene and health evaluation

Dermal Protection: Yes (chemically resistant gloves conforming to EN374 with specific activity training, Dermal: 95%) – see material and justification in chapter 9.0.2.2

Respiratory Protection: Yes [Effectiveness Inhal: 95%]

Other conditions affecting workers exposure

Place of use: Indoor – good general ventilation

Process temperature (for liquid): ≤ 45 °C

Trained person: General training on risks for chemical is provided regularly for all operators involved in chemical handling. Specific trainings on chemical risk handling are given regularly to all plant operators handling EDC. All tasks involving EDC handling are done by competent operators.

Page 39: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 39

9.1.5.2. Exposure and risks for workers

The CS4 is covering a specific operation of general annual maintenance. CS4 is done by maintenance operators. The maintenance duration is 1 to 6 hours maximum per day (the maximum duration of 6 h will be used in exposure assessment as worst case). The general annual maintenance of equipment is done 3 weeks every year. During the 3 weeks maintenance, only 5 working days are dedicated to the maintenance of EDC process equipment.

Maintenance operators from CS4 are not the same operators as those working in CS1and CS2, but they can be the same operators as CS3 (combined exposure results in chapter 10).

Inhalation exposure assessment

As there is no existing measurement data regarding maintenance operations, a tier 2 ART model has been used (see all details of ART inputs in appendix 3): in ART 1 activity (equivalent to operation phases during the task) was used to cover the complete task of maintenance:

o Activity 1 : maintenance – duration 360 min (No exposure period = 120 mins) Justification of inputs used in ART model: since before any dismantlement, the equipment is fully flushed and purged, the potential residual EDC will be extremely small (0.1 to 0.5 % - in the equipment, residual % of EDC in the waste resulting from flushed and purged operation). For maintenance operation it has to be considered that emission source is located in the breathing zone of the worker (ART input). The relevant activity description from ART for maintenance is handling of contaminated objects with surface > 3 m2 with a contamination of 10 to 90 % of surface (e.g. opening equipment for vessel inspection). No localised control and no containment are relevant ART inputs for maintenance operations. Any size workrooms ART input has been chosen to cover all workroom size cases.

The predicted 90th percentile full shift (8h) exposure result from ART is 22 mg/m3 (results without PPE protection). The exposure result considering PPE efficiency of 95% is 1,100 µg/m3.

Dermal exposure assessment

The tier 2 model RISKOFDERM has been used for dermal exposure assessment.

Justification of RISKOFDERM inputs (see details in appendix 4): in RISKOFDERM model there is no specific activity covering maintenance operations. From the 6 existing activities (filling-mixing-loading, wiping, dispersion with hand tool, spraying, immersion, mechanical treatment), “filling-mixing-loading” is the more relevant for maintenance purpose. Also “More than rare contact” and “more than light contact” have been chosen because the operator is in direct contact with the inside part of the equipment. The input “significant amounts of aerosols or splashes” also was chosen. As the equipment is flushed before any dismantlement or handling, a use rate (“product handled per min”) of 0.05 L/min of EDC can be considered as relevant (covering the potential but not expected residual EDC). Based on ECHA guidance recommendation, evaporation rate has been used to estimate the dermal exposure duration: 1.05 min (see details calculation in appendix 5). The 75th percentile (see justification in chapter 9.0) result is 5.38 µg/kg/d (using a PPE 95% of efficiency).

Page 40: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 40

Table 21 - Exposure concentrations and risks for workers

Route of exposure and type of effects

Exposure concentration (Time Weighted Average 8 hour exposure)

Correction factor for frequency

Risk characterisation

Inhalation, systemic, long-term

1,100 µg/m3 **

(tier 2 ART model, 90th percentile)

Frequency: 0.021*

Excess cancer risk:

1.39 E-05

Dermal, systemic, long-term

5.38 µg/kg/d **

(RISKOFDERM, 90th percentile)

Frequency: 0.021*

Excess cancer risk:

2.37 E-07

Combined routes, systemic, long-term

Excess cancer risk:

1.41 E-05

* Frequency: activity takes place 5 days per year, i.e. 5/(240d); correction factor = 0.021

** PPE used during the full task then 95% efficiency for inhalation and dermal have been used to recalculate exposure (see justification chapter 9.0.2.2)

Inputs data and results used in RISKOFDERM for dermal exposure calculation are presented in appendix 4.

Conclusion on risk characterisation

When following the operational conditions and risk management measures described in this contributing scenario, the derived excess cancer risks for systemic, long term effects due to inhalation and dermal contact are considered to be the lowest achievable risks.

Page 41: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 41

10. RISK CHARACTERISATION RELATED TO COMBINED EXPOSURE

10.1. Human health

10.1.1. Workers

As described in chapter 9, there is combined exposure resulting from worker activities from CS3 “non-routine maintenance and cleaning” and CS4 “general annual maintenance and cleaning” (same maintenance operators).

Table 22 – Combined exposure for S3 and CS4

Route of exposure and type of effects Risk characterisation

Inhalation, systemic, long-term for CS3 Excess cancer risk for CS3:

8.32 E-05

Dermal, systemic, long-term for CS3 Excess cancer risk for CS3:

1.90 E-07

Combined routes, systemic, long-term for CS3 Excess cancer risk for CS3:

8.34 E-05

Inhalation, systemic, long-term for CS4

Excess cancer risk for CS4:

1.39 E-05

Dermal, systemic, long-term for CS4 Excess cancer risk for CS4:

2.37 E-07

Combined routes, systemic, long-term for CS4 Excess cancer risk for CS4:

1.41 E-05

Combined routes, systemic, long-term for CS3 and CS4

Excess cancer risk for CS3 and CS4:

9.75 E-05

Page 42: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 42

10.1.2. Consumer

Not applicable, as there is no consumer related use for the substance (in the final product, the concentration of EDC, if present at all, is below 5ppm as per the Marketing Authorization).

10.2. Environment (combined for all emission sources)

Environment

Not relevant.

Man via environment

There is no local exposure due to wide dispersive use and therefore only regional exposure and risk characterisation is calculated (see table below).

Table 23 Regional exposure to man via environment

Route Regional exposure Risk characterisation

Inhalation 1.09 10-5 µg/m3 Excess of risk 3.76 E-11

Combined routes 6.70 10-6 µg/kg bw/d Excess of risk 8.04 E-11

Page 43: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 43

APPENDIX 1: Description of technical methodology used by laboratories for EDC monitoring data

1 – INTRODUCTION

This document gives the description of the technical methodology used by laboratories for the measurement campaign mentioned in this report (personal sampling and analysis of 1,2-dichloroethane).

This document is mainly based on the reference ISO 16200 (NIOSH 1003) “Workplace air quality - Sampling and analysis of volatile organic compounds by thermic desorption/gas chromatography” for sampling and analytical requirements and,

2 - SAMPLING AND ANALYSIS

The most appropriate analytical technique for 1,2-dichloroethane analysis is gas chromatography (GC) with flame ionization detector (FID). With this technique a limit of quantification of 5µg / sampler can be achieved. In option, gas chromatography with mass spectrometer (MS) can be used. The limit of quantification with GC MS is 1 to 2µg / sampler. This additional technique is not mandatory. In the case of Expanscience, the external laboratory (SGS) has used gas chromatography with mass spectrometer with a limit of quantification of 2 µg/sampler. Note.: When divided by the volume of air from which the substance is collected, the analytical quantification limit gives a limit of quantification (LoQ) of concentration of the substance in the air. The analytical method and the volume sampled should be chosen to ensure that the LoQ is less than one-tenth the OEL (LoQ < 0.1 OEL). The ISO 16200 covers both GC FID and GC MS analytical techniques.

2.1 – SAMPLING REQUIREMENTS

EQUIPMENT

Sampler: glass tube, 7 cm long, 6mm OD, 4mm ID, flame-sealed ends with plastic caps, containing two sections of 20/40 mesh activated (600 °C) coconut shell charcoal (front = 100 mg; back = 50 mg) separated by a 2 mm urethane foam plug. A silylated glass wool plug precedes the front section and a 3 mm urethane foam plug follows the back section. Pressure drop across the tube at 1 L/min airflow must be less than 3.4 kPa. Personal sampling pump, 0.01 to 0.2 L/min, with flexible connecting tubing. Volume max. : 48L

1. Calibrate each personal sampling pump with a representative sampler in line. 2. Break the ends of the sampler immediately before sampling. Attach sampler to personal sampling pump with flexible tubing. 3. Sample at an accurately known flow rate between 0.01 and 0.2 L/min. 4. Cap the samplers. Pack securely for shipment. Shipment: Submit the samples to the laboratory as soon as possible after sampling (max. 1 week after sampling) at T°C < 5°C

Individual sampling sheet for collecting relevant information for analysis and interpretation is required.

2.2 – ANALYSIS REQUIREMENTS

EQUIPMENT:

Gas chromatograph, FID (or MS), integrator and columns. Vials, 2mL, glass, PTFE-lined septum crimp caps.

Page 44: CHEMICAL SAFETY REPORT (CSR) - ECHA

Chemica

VolumetSyringesPipet, 1m

REAGE

Carbon dAnalytesNitrogenHydrogeAir, filte

SAMPL

Place theshould bplugs. Add 1.0 Allow to

CALIBR

Calibrate10x the La. Add kand dilutb. Analyc. Prepar

MEASU

Set gas manuallyNOTE: Iapply theMeasure

CALCU

Determinsorbent sNOTE: ICalculat

EVALU

The currcapillarystudy ranstorage s[4]. Howanalytes compounstability marginal

al Safety Rep

tric flasks, 10s, 10μL to 1mmL, with pip

ENTS:

disulfide, chrs, reagent gran or helium, pen, prepurifieered.

LE PREPAR

e front and bbe included i

mL CS2 to eo stand 30 mi

RATION AN

e daily with LOQ or grea

known amounte to the mar

yze with sampre calibration

UREMENT:

chromatogray using solveIf peak area e appropriate

e peak area.

ULATIONS:

ne the mass,sections and If W b > W fte concentrat

UATION OF

rent laboratoy column chnging from stability studwever four

included bnds the LOQstudy were

lly stable at 3

port

0mL. mL, readablepet bulb.

romatographade quality. purified. ed.

RATION:

back sorbentin the vial co

each vial. Cain with occas

ND QUALI

at least six water if requirents of neat anrk.

mples and blann graph (peak

:

aph accordinent flush techis above the e dilution fac

:

μg (correctein the averag

f/10, report bion, C, of an

F METHOD

ory evaluatiohromatographapproximate

dy. Most of tanalytes hadenzyl chloriQ was adjudetermined

30 days [4].

U

e to 0.1 μL.

hic quality.

t sections ofontaining the

ap each vial.sional agitati

TY CONTR

working staned. nalyte or cal

nks (steps 11k area vs:g a

ng to manufhnique or witlinear range

ctor in calcul

ed for DE), oge media blabreakthroughnalyte in the a

D:

on of the anahy, the imprely 3-5 x LOthe analytes d unacceptabide, chlorofosted accordito be stable

Use number:

f the samplee front sorbe

ion.

ROL:

ndards over t

libration stoc

1 and 12). analyte).

facturer's recth auto samp

e of the worklations.

of analyte foank front (Bfh and possiblair volume sa

alytes listed rovement of

OQ to 0.1x tevaluated ovble recoveriorm, carbon ingly. All oe after 7, 14

1

r tube in sepent section. D

the appropria

ck solution to

commendatiopler. king standard

und in the saf) and back (Ble sample losampled, V (L

in this methf LOD/LOQthe REL/PELver this ranges at the lotetrachlorid

of the analyt4, and 30 da

CHEMI

parate vials. Discard the

ate range fro

o CS2 in 10-m

ons. Inject s

ds, dilute with

ample front (Bb) sorbent sss. L):

hod includedQ values, a d

L, and the inge exhibited aowest level ede and chlortes evaluatedays storage

ICAL SAFET

The glass wglass wool a

om below the

mL volumet

sample aliqu

th CS2, reana

(W f) and basections.

d the incorpodesorption enclusion of acceptable reevaluated [4robenzene. Fd during the[4]. Bromof

TY REPORT

44

wool plug and foam

e LOD to

tric flasks

uot either

alyze and

ack (W b)

oration of efficiency a 30 day ecoveries 4]. These For these e storage form was

Page 45: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 45

APPENDIX 2: Inhalation monitoring data

Table 2.I: Results from the personal measurements for the general exposure of CS1 Production process including storage, transfers, recycling, waste treatment (Expanscience, Épernon, unit B2).

Activity Date Duration (min)

Concentration (mg/m3)

Concentration corrected with PPE (95%)

Exposure (on the basis of 8h) (mg/m3)

Exposure (on the basis of 8h) (mg/m3)

Operator 1

Complete shift of production operator except sampling QC

Mar. 2014

470  0.312  ‐  0.306 

0.307 

sampling QC Mar. 2014 10  0.516  0.026  0.0006 

Operator 2

Complete shift of production operator except sampling QC

Mar. 2014 465  0.983  ‐  0.952 

1.013 

sampling QC Mar. 2014 15  38.68  1.934  0.061 

Operator 3

Complete shift of production operator except sampling QC

Mar. 2014 465  1.597  ‐  1.547 

1.565 

sampling QC Mar. 2014 15  11.55  0.578  0.018 

Activity Date Duration (min)

Concentration (mg/m3) Exposure (on the basis of 8h) (mg/m3)

Operator 4

Complete shift of production operator

Mar. 2014 480  0.401  0.401* 

Operator 5

Complete shift of production operator

Mar. 2014 480  0.911  0.911* 

Operator 6

Complete shift of production operator

Mar. 2014 475  0.829  0.820* 

Operator 1, 2 and 3 = 2 measures per operator = complete shift except sampling QC + task sampling QC. Operator 4, 5 and 6 = 1 measure by operator on complete shift (including sampling QC). * PPE efficiency not taken into consideration in exposure calculation, worst case exposure result.

Number of samples (full shift) 6 Arithmetic mean

(mg/m3) 0.84

Limit of quantification (µg) 2 Geometric standard

deviation 1.84

90th percentile (mg/m3) 1.29

Page 46: CHEMICAL SAFETY REPORT (CSR) - ECHA

Chemica

APPE

Table 3-

al Safety Rep

ENDIX 3

-I: ART inp

port

: Advanc

uts details f

U

ced Reac

for CS2 – un

Use number:

ch Tool (

nloading roa

1

(ART) in

ad tanks

CHEMI

puts deta

ICAL SAFET

ails – tier

TY REPORT

46

r 2

Page 47: CHEMICAL SAFETY REPORT (CSR) - ECHA

Chemica

Result for

Mechanis

Predic

ART predi(RPE). Th

The predic

al Safety Rep

r CS2:

stic model res

cted expos

icts air concente use of RPE m

cted 90th perce

port

sults

sure levels

trations in a womust be conside

entile full-shift e

U

s

rker's personalred separately.

exposure is 0.4

Use number:

l breathing zone.

48 mg/m³.

1

e outside of any

CHEMI

y Respiratory P

ICAL SAFET

Protection Equip

TY REPORT

47

pment

Page 48: CHEMICAL SAFETY REPORT (CSR) - ECHA

Chemica

Table 3-

Result fo

Mechanis

Predic

ART predi(RPE). Th

The predic

al Safety Rep

-II: ART inp

for CS3:

stic model res

cted expos

icts air concente use of RPE m

cted 90th perce

port

puts details

sults

sure levels

trations in a womust be conside

entile full-shift e

U

for CS3 – n

s

rker's personalred separately.

exposure is 66

Use number:

non routine m

l breathing zone.

mg/m³.

1

maintenanc

e outside of any

CHEMI

e

y Respiratory P

ICAL SAFET

Protection Equip

TY REPORT

48

pment

Page 49: CHEMICAL SAFETY REPORT (CSR) - ECHA

Chemica

Table 3-

Result fo

Mechanis

Predic

ART predi(RPE). Th

The predic

al Safety Rep

-III: ART in

for CS4:

stic model res

cted expos

icts air concente use of RPE m

cted 90th perce

port

nputs details

sults

sure levels

trations in a womust be conside

entile full-shift e

U

s for CS4 – g

s

rker's personalred separately.

exposure is 22

Use number:

general ann

l breathing zone.

mg/m³.

1

nual mainten

e outside of any

CHEMI

nance

y Respiratory P

ICAL SAFET

Protection Equip

TY REPORT

49

pment

Page 50: CHEMICAL SAFETY REPORT (CSR) - ECHA

Chemica

APPE

Descripti Table 4.

Table 4.

default p

ventilatio

frequency

kind of sk

aerosol o

level of a

use rate

duration

skin surfa

RESULTS (without PPE

RESULTS (7with PPE glo

RISK

al Safety Rep

ENDIX 4

ons and justif

.I: RISKOF

.II: RISKOF

rocess from Ro

on

y of skin conta

kin contact

r splashes

utomation

ace exposed

(75th percentile

E gloves

75th percentile) oves ‐ 95% eff

KOF DERM inpu

port

4: RISKO

fications of inp

DERM resu

FDERM res

oD Filling

norma

ct more 

more 

yes

manu

0.1 l/m

0,23 m(evapor

TGD ECH

hands

)   4.30E

 2.15E

uts

U

OFDERM

puts used for d

ults for CS2

sults for CS3

CS3 ‐ non rout

PR

g, mixing or loa

al or good vent

than rare cont

than light cont

al

min 

minration time for inte

HA R14 )

s (820 cm2)

E‐2 mg/kg/d

E‐3 mg/kg/d

Use number:

M data an

dermal assess

– road tank

3 – non rout

tine maintenan

ROC8b

ading

tilation

act

tact

rmittent contact, b

1

nd results

ment are give

k unloading

tine mainten

nce

based on 

CHEMI

n in chapter 9

– PROC8b.

nance – PRO

ICAL SAFET

9.1.3.2 and 9.1

.

OC8b.

TY REPORT

50

1.4.2.

Page 51: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 51

Table 4.III: RISKOFDERM results for CS4 – general annual maintenance – PROC8b.

CS4 ‐ general annual maintenance

PROC8b

default process from RoD Filling, mixing or loading

ventilation normal or good ventilation

frequency of skin contact more than rare contact

kind of skin contact more than light contact

aerosol or splashes yes

level of automation manual

use rate0.05 l/min 

duration1.05 min(evaporation time for intermittent contact, based on 

TGD ECHA R14 )

skin surface exposed hands (820 cm2)

RESULTS (75th percentile) without PPE gloves

 1.08E‐1 mg/kg/d

RESULTS (75th percentile) with PPE gloves ‐ 95% eff

 5.38E‐3 mg/kg/d

RISKOF DERM inputs

Page 52: CHEMICAL SAFETY REPORT (CSR) - ECHA

Chemica

APPEassess

As menti

The equa

For EDC substanc

EDC

(1) (2) (3) C

al Safety Rep

ENDIX 5sment.

ioned in App

ation used is

C, the values

ce Molar

99 g/m

Upper value of Upper value of Calculated evap

port

5: Evap

pendix R14.1

:

s used are pr

mass Te(°C

mol 20

f EASE estimatef EASE estimateporation times f

U

oration

from ECHA

esented in th

mperature C)

(3)

e: non dispersive: non dispersivfor 20°C (glove

Use number:

rate cal

A guidance R

he table below

Vapour pre(Pa) 8130

ve use, contact lve use, contact les).

1

culation

14:

w:

essure Tim(m=13 (

level intermittenlevel extensive.

CHEMI

for der

e (s) =1mg)(1) (=0,22 min)

nt.

ICAL SAFET

rmal exp

Time (s)(m=5m63 (=1,

TY REPORT

52

posure

s) mg)(2)

,05 min)

Page 53: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 53

APPENDIX 6: Detailed EU TGD Spreadsheet software calculation

STUDY REPORT RISK CALCULATION EU TGD 2003 SPREADSHEET 

parameter as in EUSES  variable EU TGD sheet  value  unit  status 

DEFAULTS 

DEFAULT IDENTIFICATION 

General name  EDC Expanscience 

Description 

CHARACTERISTICS OF COMPARTMENTS 

GENERAL 

Density of solid phase  RHOsolid  2.50E+03   kg.m‐3  d 

Density of water phase  RHOwater  1.00E+03   kg.m‐3  d 

Density of air phase  RHOair  1.30E+00   kg.m‐3  d 

Environmental temperature  TEMPenv  2.85E+02   K  d 

Standard temperature for Vp and Sol  not used 

Constant of Junge equation  CONjunge  1.00E‐02   Pa.m  d 

Surface area of aerosol particles  SURF.aer  1.00E‐02   m2.m‐3  d 

Gas constant (8.314)  GasConst  8.31E+00   Pa.m3.mol‐1.K‐1  d 

SUSPENDED MATTER 

Volume fraction solids in suspended matter  Fsolid.susp  1.00E‐01   m3.m‐3  d 

Volume fraction water in suspended matter  Fwater.susp  9.00E‐01   m3.m‐3  d Weight  fraction  of  organic  carbon  in  suspended matter  Foc.susp  1.00E‐01   kg.kg‐1  d 

Wet bulk density of suspended matter  RHO.susp  1.15E+03   kgwwt.m‐3  o 

Conversion factor wet‐dry sediment  not used 

SEDIMENT 

Volume fraction solids in sediment  Fsolid.sed  2.00E‐01   m3.m‐3  d 

Volume fraction water in sediment  Fwater.sed  8.00E‐01   m3.m‐3  d 

Weight fraction of organic carbon in sediment  Foc.sed  5.00E‐02   kg.kg‐1  d 

SOIL 

Volume fraction solids in soil  Fsolid.soil  6.00E‐01   m3.m‐3  d 

Volume fraction water in soil  Fwater.soil  2.00E‐01   m3.m‐3  d 

Volume fraction air in soil  Fair.soil  2.00E‐01   m3.m‐3  d 

Weight fraction of organic carbon in soil  Foc.soil  2.00E‐02   kgwwt.m‐3  o 

Weight fraction of organic matter in soil  not used 

Bulk density of soil  RHO.soil  1.70E+03   kgwwt.m‐3  o 

Conversion factor wet‐dry soil  CONV.soil  1.13E+00   kgwwt.kgdwt  o 

STP SLUDGE 

Fraction of organic carbon in raw sewage sludge  Foc.RS  3.00E‐01   kg.kg‐1  d Fraction  of  organic  carbon  in  settled  sewage sludge  Foc.PS  3.00E‐01   kg.kg‐1  d Fraction  of  organic  carbon  in  activated  sewage sludge  Foc.A  3.70E‐01   kg.kg‐1  d 

Page 54: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 54

Fraction  of  organic  carbon  in  effluent  sewage sludge  Foc.SLS  3.70E‐01   kg.kg‐1  d 

DEGRADATION AND TRANSFORMATION RATES 

Rate constant for abiotic degradation in STP  kabio.stp  0.00E+00   d‐1  d Rate  constant  for  abiotic  degradation  in  bulk sediment  kabio.sed  0.00E+00   d‐1  d Rate  constant  for  anaerobic  biodegradation  in sediment  kbio.anaersed  0.00E+00   d‐1  d 

Fraction of sediment compartment that is aerated  Faer.sed  1.00E‐01   m3.m‐3  d 

Concentration of OH‐radicals in atmosphere  OHCONC.air  5.00E+05   molec.cm‐3  d 

Rate constant for abiotic degradation in bulk soil  kabio.soil  0.00E+00   d‐1  d 

RELEASE ESTIMATION 

Fraction of EU production volume for region  Fprodvol.reg  1.00E‐01   ‐  s 

Fraction of EU tonnage for region (private use)  not used 

Fraction connected to sewer systems  Fconnect.STP  8.00E‐01   ‐  d 

SEWAGE TREATMENT 

GENERAL 

Number of inhabitants feeding one STP  Nlocal  7.71E+02   eq  s 

Sewage flow  Qstp  2.00E‐01   m3.eq‐1.d‐1  d 

Effluent discharge rate of local STP  TEMPstp.air  1.54E+05   L.d‐1  d 

Temperature dependency correction  TEMPcorrect  y  y/n  d 

Temperature of air above aeration tank  TEMPstp.air  2.88E+02   K  d 

Temperature of water in aeration tank  TEMPstp.water  2.88E+02   K  d 

Height of air column above STP  Hair.stp  1.00E+01   m  d 

Number of inhabitants of region  Nregion  2.00E+07   eq  d 

Number of inhabitants of continental system  Ncont  3.50E+08   eq  o 

Windspeed in the system  WINDspeed.reg  2.59E+05   m.d‐1  d 

RAW SEWAGE 

Mass of O2 binding material per person per day  BODstp  5.40E‐02   kgO2.eq‐1.d‐1  d 

Dry weight solids produced per person per day  SOLIDSstp  9.00E‐02   kgdwt.eq‐1.d‐1  d 

Density solids in raw sewage  RHO.RS  1.50E+03   kgdwt.m‐3  d 

Fraction of organic carbon in raw sewage sludge  Foc.RS  3.00E‐01   kg.kg‐1  d 

PRIMARY SETTLER 

Depth of primary settler  DEPTH.PS  4.00E+00   m  d 

Hydraulic retention time of primary settler  HRT.PS  8.33E‐02   d  d Density  suspended  and  settled  solids  in  primary settler  RHO.PS  1.50E+03   kg.m‐3  d Fraction  of  organic  carbon  in  settled  sewage sludge  Foc.PS  3.00E‐01   kg.kg‐1  d 

ACTIVATED SLUDGE TANK 

Depth of aeration tank  DEPTH.A  3.00E+00   m  d 

Density solids of activated sludge  RHO.A  1.30E+03   kg.m‐3  d 

Concentration solids of activated sludge  CONCsolids.A  4.00E+00   kg.m‐3  d 

Steady state O2 concentration in activated sludge  O2.A  2.00E‐03   kg.m‐3  d 

Page 55: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 55

Mode of aeration  Aerationmode.A  s  s/b  d 

Aeration rate of bubble aeration  G  1.31E‐05   m3.s‐1.eq‐1  d Fraction  of  organic  carbon  in  activated  sewage sludge  Foc.A  3.70E‐01   kg.kg‐1  d 

Sludge loading rate  k.SLR  1.50E‐01   kg.kg‐1.d‐1  d 

Hydraulic retention time in aerator (9‐box STP)  HRT.A9  2.88E‐01   d  o 

Hydraulic retention time in aerator (6‐box STP)  HRT.A6  4.50E‐01   d  o 

Sludge retention time of aeration tank  SRT.A  3.83E‐01   d  o 

SOLIDS‐LIQUIDS SEPARATOR 

Depth of solids‐liquid separator  DEPTH.SLS  3.00E+00   m  d Density  suspended  and  settled  solids  in  solids‐liquid separator  RHO.SLS  1.30E+03   kg.m‐3  d 

Concentration solids in effluent  CONCsolids.SLS  3.00E‐02   kg.m‐3  d 

Hydraulic retention time of solids‐liquid separator  HRT.SLS  2.50E‐01   d  d Fraction  of  organic  carbon  in  effluent  sewage sludge  Foc.SLS  3.70E‐01   kg.kg‐1  d 

LOCAL DISTRIBUTION 

AIR AND SURFACE WATER 

Concentration in air at source strength 1 [kg.d‐1]  Cstd.air  2.78E‐10   kgc.m‐3  d Standard  deposition  flux  of  aerosol‐bound compounds  DEPstd.aer  1.00E‐08   kgc.m‐2.d‐1  d 

Standard deposition flux of gaseous compounds  DEPstd.gas  4.00E‐10   kgc.m‐2.d‐1  o Suspended  solids  concentration  in  STP  effluent water  SUSPlocal.water  1.50E‐02   kg.m‐3  d 

Dilution factor (rivers)  DILUTION  5.06E+02   ‐  o 

Flow rate of the river  FLOWriver.local  7.78E+04   m3.d‐1  s 

Calculate dilution from river flow rate  y  y  y/n  s 

Dilution factor (coastal areas)  DILUTIONriver?  1.00E+02   ‐  s 

SOIL 

Mixing depth of grassland soil  DEPTHlocal.grass  1.00E‐01   m  d 

Dry sludge application rate on agricultural soil  APPLsludgelocal.agri  0.00E+00   kgdwt.m‐2.yr‐1  s 

Dry sludge application rate on grassland  APPLsludgelocal.grass  0.00E+00   kgdwt.m‐2.yr‐1  s 

Averaging time soil (for terrestrial ecosystem)  Tav.soil  3.00E+01   d  d 

Averaging time agricultural soil  Tav.agric  1.80E+02   d  d 

Averaging time grassland  Tav.grass  1.80E+02   d  d 

PMTC, air side of air‐soil interface  kasl.air  9.07E+01   m.d‐1  d 

Soil‐air PMTC (air‐soil interface)  kasl.soilair  4.80E‐01   m.d‐1  d 

Soil‐water film PMTC (air‐soil interface)  kasl.soilwater  4.80E‐05   m.d‐1  d 

Mixing depth agricultural soil  DEPTH.agric  2.00E‐01   m  d 

Fraction of rain water infiltrating soil  Finf.soil  2.50E‐01   ‐  d 

Average annual precipitation  Rain.reg  1.92E‐03   m.d‐1  d 

REGIONAL AND CONTINENTAL DISTRIBUTION 

CONFIGURATION 

Fraction of direct regional emissions to sea water  Fdirectreg.marine  1.00E‐02   ‐  d Fraction  of  direct  continental  emissions  to  sea water  Fdirectcont.marine  0.00E+00   ‐  d 

Fraction of regional STP effluent to sea water  FregSTP.marine  0.00E+00   ‐  d 

Page 56: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 56

Fraction of continental STP effluent to sea water  FcontSTP.marine  0.00E+00   ‐  d Fraction  of  flow  from  continental  rivers  to regional rivers  Fflow.out.regriver  3.40E‐02   ‐  d Fraction  of  flow  from  continental  rivers  to regional sea  not used Fraction  of  flow  from  continental  rivers  to continental sea  not used 

Number of inhabitants of region  Nregion  2.00E+07   eq  d 

Number of inhabitants in the EU  Neu  3.70E+08   eq  d 

Number of inhabitants of continental system  Ncont  3.50E+08   eq  o 

AREAS 

REGIONAL 

Area (land+rivers) of regional system  AREAregland  4.00E+10   m2  d 

Area fraction of fresh water, region (excl. sea)  Fregland.water  3.00E‐02   ‐  d 

Area fraction of natural soil, region (excl. sea)  Fregland.natural  2.70E‐01   ‐  d 

Area fraction of agricultural soil, region (excl. sea)  Fregland.agric  6.00E‐01   ‐  d Area fraction of industrial/urban soil, region (excl. sea)  Fregland.ind  1.00E‐01   ‐  d 

Length of regional sea water  LENGTHsea  4.00E+04   m  d 

Width of regional sea water  WIDTHsea  1.00E+04   m  d 

Area of regional sea water  AREAregsea  4.00E+08   m2  o 

Area (land+rivers+sea) of regional system  AREAreg  4.04E+10   m2  o 

Area fraction of fresh water, region (total)  Freg.fresh  2.97E‐02   ‐  o 

Area fraction of sea water, region (total)  Freg.sea  9.90E‐03   ‐  o 

Area fraction of natural soil, region (total)  Freg.natural  2.67E‐01   ‐  o 

Area fraction of agricultural soil, region (total)  Freg.agric  5.94E‐01   ‐  o Area  fraction  of  industrial/urban  soil,  region (total)  Freg.ind  9.90E‐02   ‐  o 

TEMPERATURE 

Environmental temperature, regional scale  TEMPreg  2.85E+02   K  d 

Environmental temperature, continental scale  TEMPcont  2.85E+02   K  d 

Enthalpy of vaporisation  H.0_vp  5.00E+04   J.mol‐1  d 

Enthalpy of solution  H.0_sol  1.00E+04   J.mol‐1  d 

MASS TRANSFER 

Air‐film PMTC (air‐water interface)  kaw.air  4.39E+02   m.d‐1  o 

Water‐film PMTC (air‐water interface)  kaw.water  4.95E‐01   m.d‐1  o 

PMTC, air side of air‐soil interface  kasl.air  9.07E+01   m.d‐1  d 

PMTC, soil side of air‐soil interface  kasl.soil  3.61E‐03   m.d‐1  o 

Soil‐air PMTC (air‐soil interface)  not used! 

Soil‐water film PMTC (air‐soil interface)  not used! 

Water‐film PMTC (sediment‐water interface)  kws.water  2.40E‐01   m.d‐1  d 

Pore water PMTC (sediment‐water interface)  kws.sed  2.40E‐03   m.d‐1  d 

AIR 

GENERAL 

Atmospheric mixing height  HEIGHT.air  1.00E+03   m  d 

Windspeed in the system  WINDspeed.reg  2.59E+05   m.d‐1  d 

Page 57: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 57

Aerosol deposition velocity  DEPRATE.aer  8.64E+01   m.d‐1  d 

Aerosol collection efficiency  COLLECTEFF.aer  2.00E+05   ‐  d 

RAIN 

Average precipitation, regional system  Rain.reg  1.92E‐03   m.d‐1  d 

RESIDENCE TIMES 

Residence time of air, regional  calculated in SimpleBox  6.86E‐01   d  o 

WATER 

DEPTH 

Water depth of fresh water, regional system  DEPTHreg.water  3.00E+00   m  d 

Water depth of sea water, regional system  DEPTHreg.water,marine  1.00E+01   m  d 

SUSPENDED SOLIDS 

Suspended solids conc. fresh water, regional  SUSPreg.water  1.50E‐02   kgdwt.m‐3  d 

Suspended solids conc. sea water, regional  SUSPreg.water,marine  5.00E‐03   kgdwt.m‐3  d 

Concentration solids in effluent, regional  used CONCsolids.SLS 

Concentration biota  BIOTA.water  1.00E‐03   kgdwt.m‐3  d 

RESIDENCE TIMES 

Residence time of fresh water, regional  calculated in SimpleBox  4.32E+00   d  o 

Residence time of sea water, regional  calculated in SimpleBox  4.80E+00   d  o 

SEDIMENT 

DEPTH 

Sediment mixing depth  DEPTH.sed  3.00E‐02   m  d 

SUSPENDED SOLIDS 

(Biogenic) prod. susp. solids in fresh water, reg  SUSPPRODreg.water  1.00E+01   g.m‐2.yr‐1  d 

(Biogenic) prod. susp. solids in sea water, reg  SUSPPRODreg.water,marine  1.00E+01   g.m‐2.yr‐1  d 

(Biogenic) prod. susp. solids in fresh water, cont  SUSPPRODcont.water  1.00E+01   g.m‐2.yr‐1  d 

(Biogenic) prod. susp. solids in sea water, cont  SUSPPRODcont.water,marine 5.00E+00   g.m‐2.yr‐1  d 

(Biogenic) prod. susp. solids in water, moderate  SUSPPRODmoderate.water  1.00E+00   g.m‐2.yr‐1  d 

(Biogenic) prod. susp. solids in water, arctic  SUSPPRODarctic.water  1.00E+00   g.m‐2.yr‐1  d 

(Biogenic) prod. susp. solids in water, tropic  SUSPPRODtropic.water  1.00E+00   g.m‐2.yr‐1  d 

SEDIMENTATION RATES 

Settling velocity of suspended solids  SETTLRATE.susp  2.50E+00   m.d‐1  d 

Net sedimentation rate, fresh water, regional  calculated in SimpleBox  1.10E+01   m.s‐1  u 

Net sedimentation rate, sea water, regional  calculated in SimpleBox  6.75E+00   m.s‐1  u 

SOIL 

GENERAL 

Fraction of rain water infiltrating soil  Finf.soil  2.50E‐01   ‐  d 

Fraction of rain water running off soil  Frunoff.soil  2.50E‐01   ‐  d 

DEPTH 

Page 58: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 58

Chemical‐dependent soil depth  not used 

Mixing depth natural soil  DEPTH.natural  5.00E‐02   m  d 

Mixing depth agricultural soil  DEPTH.agric  2.00E‐01   m  d 

Mixing depth industrial/urban soil  DEPTH.ind  5.00E‐02   m  d 

EROSION 

Soil erosion rate, regional system  EROSIONreg  8.22E‐08   m.d‐1  d 

CHARACTERISTICS  OF  PLANTS,  WORMS  AND CATTLE 

PLANTS 

Volume fraction of water in plant tissue  Fwater.plant   6.50E‐01   m3.m‐3   d 

Volume fraction of lipids in plant tissue  Flipid.plant   1.00E‐02   m3.m‐3   d 

Volume fraction of air in plant tissue  Fair.plant  3.00E‐01   m3.m‐3   d Correction  for  differences  between  plant  lipids and octanol  B  9.50E‐01   ‐  d 

Bulk density of plant tissue (wet weight)  RHO.plant   7.00E+02   kgwwt.m ‐3   d 

Rate constant for metabolism in plants  kmetab.plant  0.00E+00   d‐1  o 

Rate constant for photolysis in plants  kphoto.plant  0.00E+00   d‐1  d 

Leaf surface area  AREA.plant  5.00E+00   m2  d 

Conductance  g.plant  8.64E+01   m.d‐1  d 

Shoot volume  V.leaf  2.00E‐03   m3  d 

Rate constant for dilution by growth  kgrowth.plant  3.50E‐02   d‐1  d 

Transpiration stream  Qtransp   1.00E‐03   m3.d ‐1   d 

WORMS 

Volume fraction of water inside a worm  Fwater.worm   8.40E‐01   m3.m‐3   d 

Volume fraction of lipids inside a worm  Flipid.worm   1.20E‐02   m3.m‐3   d 

Density of earthworms  RHO.worm   1.00E+03   kgwwt.m‐3   d 

Fraction of gut loading in worm  Fgut.worm   1.00E‐01   kgdwt.kgwwt‐1  d 

CATTLE 

Daily intake for cattle of grass (dryweight)  ICdwt.grass  1.69E+01   kgdwt.kgwwt‐1  o Conversion  factor  grass  from  dryweight  to wetweight  CONV.grass  4.00E+00   kgdwt.kgwwt‐1  o 

Daily intake of soil (dryweight)  ICdwt.soil  4.10E‐01   kgdwt.kgwwt‐1  o 

Daily inhalation rate for cattle  IC.air  1.22E+02   kgdwt.kgwwt‐1  o 

Daily intake of drinking water for cattle  IC.drw  5.50E‐02   m3.d‐1   o 

CHARACTERISTICS OF HUMANS 

Daily intake of drinking water  IH.drw  2.00E‐03   m3.d ‐1   o 

Daily intake of fish  IH.fish  1.15E‐01   kg.d‐1  o 

Daily intake of leaf crops (incl. fruit and cereals)  IH.leaf  1.20E+00   kg.d‐1  o 

Daily intake of root crops  IH.root  3.84E‐01   kg.d‐1  o 

Daily intake of meat  IH.meat  3.01E‐01   kg.d‐1  o 

Daily intake of dairy products  IH.milk  5.61E‐01   kg.d‐1  o Inhalation  rate  for  humans  (consumers, environment)  IH.air  2.00E+01   m3.d ‐1   o 

Inhalation rate for humans (worker exposure)  not used 

Bodyweight of the human considered  BW  7.00E+01   kg  o 

Page 59: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 59

Correction  factor  for  duration  and  frequency  of exposure  not used 

SUBSTANCE 

SUBSTANCE IDENTIFICATION 

General name  SUBSTANCE  EDC  s 

CAS‐No  CAS  107‐106‐1  s 

PHYSICO‐CHEMICAL PROPERTIES 

Molecular weight  MOLW  9.90E‐02   kgc.mol‐1  s 

Melting point  TEMPmelt  2.38E+02   K  s 

Vapour pressure at test temperature  VPtemp.test  1.02E+04   Pa  s Temperature  at  which  vapour  pressure  was measured  TEMPvaptest  2.98E+02   K  o 

Vapour pressure at 25 [oC]  VP25  1.02E+04   Pa  s 

Octanol‐water partition coefficient  Kow  2.82E+01   ‐  s 

Water solubility at test temperature  SOLtemp.test  7.90E+00   kgc.m‐3  s 

Temperature at which solubility was measured  TEMPsoltest  2.98E+02   K  o 

Water solubility at 25 [oC]  SOL25  7.90E+00   kgc.m‐3  d 

PARTITION COEFFICIENTS AND BIOCONCENTRATION FACTORS 

SOLIDS‐WATER 

Chemical class for Koc‐QSAR  QSARclass Non hydrophobics  ‐  s 

Organic carbon‐water partition coefficient  Koc  3.30E‐02   m3.kg‐1  s 

Solids‐water partition coefficient in soil  Kp.soil  6.60E‐04   m3.kg‐1  o 

Solids‐water partition coefficient in sediment  Kp.sed  1.65E‐03   m3.kg‐1  o Solids‐water  partition  coefficient  suspended matter  Kp.susp  3.30E‐03   m3.kg‐1  o Solids‐water  partition  coefficient  in  raw  sewage sludge  Kp.RS  9.90E‐03   m3.kg‐1  o Solids‐water  partition  coefficient  in  settled sewage sludge  Kp.PS  9.90E‐03   m3.kg‐1  o Solids‐water  partition  coefficient  in  activated sewage sludge  Kp.A  1.22E‐02   m3.kg‐1  o Solids‐water  partition  coefficient  in  effluent sewage sludge  Kp.SLS  1.22E‐02   m3.kg‐1  o 

Soil‐water partition coefficient  K.soil.water  1.20E+00   m3.m‐3  o 

Suspended matter‐water partition coefficient  K.susp.water  1.73E+00   m3.m‐3  o 

Sediment‐water partition coefficient  K.sed.water  1.63E+00   m3.m‐3  o 

AIR‐WATER 

Sub‐cooled liquid vapour pressure  VP.L  4.06E+03   Pa  o Fraction  of  chemical  associated  with  aerosol particles  Fass.aer  2.46E‐08   ‐  o 

Henry's law constant  HENRY  6.12E+01   Pa.m3.mol‐1  o 

Air‐water partitioning coefficient  K.air.water  2.58E‐02   m3.m‐3  o 

BIOCONCENTRATION FACTORS 

PREDATOR EXPOSURE 

Bioconcentration factor for earthworms  BCF.worm  1.18E‐03   m3.kgwwt‐1  o 

Page 60: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 60

HUMAN AND PREDATOR EXPOSURE 

Bioconcentration factor for fish  BCF.fish  3.41E‐03   m3.kgwwt‐1  o 

QSAR valid for calculation of BCF‐Fish  QSARBCF?  y  y/n  o 

Biomagnification factor in fish  BMF.1  1.00E+00   ‐  o 

Biomagnification factor in predator  BMF.2  1.00E+00   ‐  o 

HUMAN EXPOSURE 

Partition coefficient between leaves and air  K.leafair  3.47E+01   m3.m‐3   o Partition  coefficient  between  plant  tissue  and water  K.plantwater   8.89E‐01   m3.m‐3   o 

Transpiration‐stream concentration factor  TSCF  7.50E‐01   ‐  o 

Bioaccumulation factor for meat  BAF.meat  7.94E‐07   d.kgmeat‐1  o 

Bioaccumulation factor for milk  BAF.milk  7.94E‐06   d.kgmilk‐1  o 

Purification factor for surface water  F.pur  5.00E‐01   ‐  s 

BIOTA‐WATER 

FOR REGIONAL/CONTINENTAL DISTRIBUTION 

Bioconcentration factor for aquatic biota  BCF.fish.estimated  3.41E‐03   m3.kgwwt‐1  o 

DEGRADATION AND TRANSFORMATION RATES 

CHARACTARIZATION 

Characterization of biodegradability  Biodeg  6.00E+00   ‐  s 

STP 

Degradation calculation method in STP  not used 

Rate constant for biodegradation in STP  kbio.STP  0.00E+00   d‐1  o 

Total rate constant for degradation in STP  kdeg.STP  0.00E+00   d‐1  s 

Maximum growth rate of specific microorganisms  not used 

Half saturation concentration  not used 

WATER/SEDIMENT 

WATER 

Rate constant for hydrolysis in surface water  khydr.water  6.93E‐07   d‐1  o 

Rate constant for photolysis in surface water  kphoto.water  6.93E‐07   d‐1  d 

Rate constant for biodegradation in surface water  kbio.fresh  0.00E+00   d‐1  o Total rate constant for degradation in bulk surface water  kdeg.fresh  1.65E‐03   d‐1  s 

SEDIMENT Rate  constant  for  biodegradation  in  aerated sediment  kbio.aersed  6.93E‐07   d‐1  o Total  rate  constant  for  degradation  in  bulk sediment  kdeg.sed  0.00E+00   d‐1  s 

AIR Specific  degradation  rate  constant  with  OH‐radicals  k.OH  0.00E+00   cm3.molec‐1.s‐1  d 

Rate constant for degradation in air  kdeg.air  1.65E‐02   d‐1  s 

SOIL 

Page 61: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 61

Rate constant for biodegradation in bulk soil  kbio.soil  6.93E‐07   d‐1  o 

Total rate constant for degradation in bulk soil  kdeg.soil  6.30E‐03   d‐1  s 

REMOVAL RATE CONSTANTS SOIL 

Total rate constant for degradation in bulk soil  kdeg.soil  6.30E‐03   d‐1  s Rate  constant  for  volatilisation  from  agricultural soil  k.volat.agric  1.80E‐02   d‐1  o 

Rate constant for volatilisation from grassland soil  k.volat.grass  3.60E‐02   d‐1  o 

Rate constant for leaching from agricultural soil  k.leach.agric  2.01E‐03   d‐1  o 

Rate constant for leaching from grassland soil  k.leach.grass  4.01E‐03   d‐1  o Total  rate  constant  for  removal  from agricultural top soil  k.agric  2.63E‐02   d‐1  o Total  rate  constant  for  removal  from  grassland top soil  k.grass  4.63E‐02   d‐1  o 

RELEASE ESTIMATION 

CHARACTERIZATION AND TONNAGE 

High Production Volume Chemical  not used 

Production volume of chemical in EU  not used 

Fraction of EU production volume for region  Fprodvol.reg  1.00E‐01   ‐  s 

Regional production volume of substance  not used 

Continental production volume of substance  not used 

Volume of chemical imported to EU  not used 

Volume of chemical exported from EU  not used 

Tonnage of substance in Europe  TONNAGE  4.00E+02   tonnes.yr‐1  s 

RELEASE FRACTIONS 

Fraction of tonnage released to air  Femis.air  1.58E‐03   ‐  s 

Fraction of tonnage released to waste water  Femis.water  1.77E‐03   ‐  s 

Fraction of tonnage released to surfacewater  Femis.directwater  0.00E+00   ‐  s 

Fraction of tonnage released to industrial soil  Femis.ind  0.00E+00   ‐  s 

Fraction of tonnage released to agricultural soil  Femis.agric  0.00E+00   ‐  s 

Emission fractions determined by special scenario  not used 

EMISSION DAYS 

Fraction of the main local source  Fmainsource  1.00E+00   ‐  s 

Number of emission days per year  Temission  3.44E+02   ‐  s 

Emission day determined by special scenario  not used 

REGIONAL AND CONTINENTAL RELEASES 

PRODUCTION 

REGIONAL AND CONTINENTAL TOTAL EMISSIONS 

Total regional emission to air  Ereg.air  1.73E‐01   kg.d‐1  o 

Total regional emission to wastewater  Ereg.water  1.55E‐01   kg.d‐1  o 

Total regional emission to surface water  Ereg.directwater  3.84E‐02   kg.d‐1  o 

Total regional emission to industrial soil  Ereg.ind  0.00E+00   kg.d‐1  o 

Total regional emission to agricultural soil  Ereg.agric  0.00E+00   kg.d‐1  o 

LOCAL 

[PRODUCTION] 

Page 62: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 62

Local emission to air during episode  Elocal.air  1.84E‐01   kg.d‐1  s 

Emission to air calculated by special scenario  not used 

Local emission to wastewater during episode  Elocal.water  2.06E‐01   kg.d‐1  s 

Emission to water calculated by special scenario  not used 

Show this step in further calculations  not used 

Intermittent release  not used 

DISTRIBUTION 

SEWAGE TREATMENT 

CONTINENTAL 

Fraction of emission directed to air  Fstpcont.air  4.57E‐01   ‐  o 

Fraction of emission directed to water  Fstpcont.water  5.40E‐01   ‐  o 

Fraction of emission directed to sludge  Fstpcont.sludge  3.56E‐03   ‐  o 

Fraction of the emission degraded  Fstpcont.degr  0.00E+00   ‐  o 

Total of fractions  not used 

Indirect emission to air  Estpcont.air  6.38E‐01   kg.d‐1  o 

Indirect emission to surface water  Estpcont.water  7.54E‐01   kg.d‐1  o 

Indirect emission to agricultural soil  Estpcont.agric  4.98E‐03   kg.d‐1  o 

REGIONAL 

Fraction of emission directed to air  Fstpreg.air  5.01E‐01   ‐  o 

Fraction of emission directed to water  Fstpreg.water  4.96E‐01   ‐  o 

Fraction of emission directed to sludge  Fstpreg.sludge  3.56E‐03   ‐  o 

Fraction of the emission degraded  Fstpreg.degr  0.00E+00   ‐  o 

Total of fractions  not used 

Indirect emission to air  Estpreg.air  7.77E‐02   kg.d‐1  o 

Indirect emission to surface water  Estpreg.water  7.69E‐02   kg.d‐1  o 

Indirect emission to agricultural soil  Estpreg.agric  5.52E‐04   kg.d‐1  o 

LOCAL 

[PRODUCTION] 

INPUT AND CONFIGURATION [PRODUCTION] 

INPUT 

Use or bypass STP  useSTPfresh?  y  y/n  d 

Use or bypass STP (local marine assessment) 

Local emission to wastewater during episode  Elocal.water  2.06E‐01   kg.d‐1  s 

Concentration in untreated wastewater  Clocal.inf  1.34E‐03   kgc.m‐3  o 

Local emission entering the STP  Elocal.water  2.06E‐01   kg.d‐1  s 

CONFIGURATION 

Type of local STP  STPtype  9  9/6‐box  s  

Number of inhabitants feeding this STP  Nlocal  7.71E+02   eq  s 

Effluent discharge rate of this STP  EFFLUENTlocal.stp  1.54E+05   L.d‐1  o 

Calculate dilution from river flow rate  DILUTIONriver?  y  y/n  s 

Flow rate of the river  FLOWriver.local  7.78E+04   m3.d‐1  s 

Dilution factor (rivers)  DILUTION  5.06E+02   ‐  o 

Dilution factor (coastal areas)  DILUTIONmarine  1.00E+02   ‐  d 

Page 63: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 63

OUTPUT [PRODUCTION] 

Fraction of emission directed to air by STP  Fstp.air  5.16E‐01   ‐  o 

Fraction of emission directed to water by STP  Fstp.water  4.80E‐01   ‐  o 

Fraction of emission directed to sludge by STP  Fstp.sludge  3.56E‐03   ‐  o 

Fraction of the emission degraded in STP  Fstp.degr  0.00E+00   ‐  o 

Total of fractions  not used Local  indirect  emission  to  air  from  STP  during episode  ElocalSTP.air  1.06E‐01   kg.d‐1  o 

Concentration in untreated wastewater  Clocal.inf  1.34E‐03   kgc.m‐3  o Concentration  of  chemical  (total)  in  the  STP‐effluent  Clocal.eff  6.41E‐04   kgc.m‐3  o 

Concentration in effluent exceeds solubility  not used 

Concentration in dry sewage sludge  Clocal.sludge   1.20E‐05   kgc.kgdwt‐1  o 

PEC for micro‐organisms in the STP  PEC.stp  6.41E‐04   kgc.m‐3  o 

REGIONAL,  CONTINENTAL  AND  GLOBAL DISTRIBUTION 

PECS 

REGIONAL 

Regional PEC in surface water (total)  PECreg.water,tot  1.78E‐10   kgc.m‐3  o 

Regional PEC in sea water (total)  PECreg.seawater,tot  1.49E‐11   kgc.m‐3  o 

Regional PEC in surface water (dissolved)  PECreg.water  1.78E‐10   kgc.m‐3  o Qualitative  assessment  might  be  needed  (TGD Part II, 5.6) 

Regional PEC in sea water (dissolved)  PECreg.seawater  1.49E‐11   kgc.m‐3  o Qualitative  assessment  might  be  needed  (TGD Part II, 5.6) 

Regional PEC in air (total)  PECreg.air  1.09E‐14   kgc.m‐3  o 

Regional PEC in agricultural soil (total)  PECreg.agric  2.67E‐15   kgc.kgwwt‐1  o 

Regional PEC in pore water of agricultural soils  PECreg.agric,porew  3.80E‐12   kgc.m‐3  o 

Regional PEC in natural soil (total)  PECreg.natural  3.28E‐16   kgc.kgwwt‐1  o 

Regional PEC in industrial soil (total)  PECreg.ind  3.28E‐16   kgc.kgwwt‐1  o 

Regional PEC in sediment (total)  PECreg.sed  2.52E‐13   kgc.kgwwt‐1  o 

Regional PEC in sea water sediment (total)  PECreg.seased  2.11E‐14   kgc.kgwwt‐1  o 

LOCAL 

[PRODUCTION] 

LOCAL CONCENTRATIONS AND DEPOSITIONS [PRODUCTION] 

Concentration in air during emission episode  Clocal.air  5.11E‐11   kgc.m‐3  o Annual average concentration  in air, 100 m  from point source  Clocal.air,ann  4.81E‐11   kgc.m‐3  o 

Total deposition flux during emission episode  DEPtotal  1.16E‐10   kg.m‐2.d‐1  o 

Annual average total deposition flux  DEPtotal.ann  1.09E‐10   kg.m‐2.d‐1  o Concentration  in  surface  water  during  emission episode (dissolved)  Clocal.water  1.27E‐06   kgc.m‐3  o Annual  average  concentration  in  surface  water (dissolved)  Clocal.water,ann  1.20E‐06   kgc.m‐3  o Concentration  in  sea  water  during  emission episode (dissolved)  Clocal.water,marine  1.34E‐05   kgc.m‐3  o Annual  average  concentration  in  sea  water (dissolved)  Clocal.water,ann,marine  1.26E‐05   kgc.m‐3  o 

Concentration in agric. soil averaged over 30 days  Clocal.agric,30  1.22E‐11   kgc.kgwwt‐1  o 

Concentration  in  agric.  soil  averaged  over  180  Clocal.agric,180  1.22E‐11   kgc.kgwwt‐1  o 

Page 64: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 64

days 

Concentration  in  grassland  averaged  over  180 days  Clocal.grass,180  1.39E‐11   kgc.kgwwt‐1  o 

Fraction of steady‐state (agricultural soil)  not used 

Fraction of steady‐state (grassland soil)  not used 

LOCAL PECS [PRODUCTION] 

Annual average local PEC in air (total)  PEClocal.air,ann  4.81E‐11   kgc.m‐3  o Local  PEC  in  surface  water  during  emission episode (dissolved)  PEClocal.water  1.27E‐06   kgc.m‐3  o Qualitative  assessment  might  be  needed  (TGD Part II, 5.6)  not used Annual  average  local  PEC  in  surface  water (dissolved)  PEClocal.water,ann  1.20E‐06   kgc.m‐3  o Local  PEC  in  fresh‐water  sediment  during emission episode  PEClocal.sed  1.90E‐09   kgc.kgwwt‐1  o Local  PEC  in  sea water  during  emission  episode (dissolved)  PEClocal.water,marine  1.34E‐05   kgc.m‐3  o Qualitative  assessment  might  be  needed  (TGD Part II, 5.6)  not used 

Annual average local PEC in sea water (dissolved)  PEClocal.water,ann,marine  1.26E‐05   kgc.m‐3  o Local  PEC  in  marine  sediment  during  emission episode  PEClocal.sed,marine  2.00E‐08   kgc.kgwwt‐1  o Local  PEC  in  agric.  soil  (total)  averaged  over  30 days  PEClocal.agric,30  1.22E‐11   kgc.kgwwt‐1  o Local PEC  in agric.  soil  (total) averaged over 180 days  PEClocal.agric,180  1.22E‐11   kgc.kgwwt‐1  o Local  PEC  in  grassland  (total)  averaged over  180 days  PEClocal.grass,180  1.39E‐11   kgc.kgwwt‐1  o 

Local PEC in pore water of agricultural soil  PEClocal.agric,porew  1.74E‐08   kgc.m‐3  o 

Local PEC in pore water of grassland  PEClocal.grass,porew  1.97E‐08   kgc.m‐3  o 

Local PEC in groundwater under agricultural soil  PEClocal.grw  1.74E‐08   kgc.m‐3  o 

EXPOSURE 

SECONDARY POISONING 

SECONDARY POISONING [PRODUCTION] Concentration  in  fish  for  secondary  poisoning (fresh water)  PECoral,fish  2.04E‐09  kgc.kgwwt‐1  o Concentration  in  fish  for  secondary  poisoning (marine)  PEC.oral,fish,marine  2.15E‐08  kgc.kgwwt‐1  o 

Concentration in fish‐eating marine top‐predators  PEC.oral,fishpredator,marine  4.29E‐09  kgc.kgwwt‐1  o Concentration  in  earthworms  from  agricultural soil  PEC.oralworm   9.82E‐12  kgc.kgwwt‐1  o 

HUMANS  EXPOSED  TO  OR  VIA  THE ENVIRONMENT 

REGIONAL CONCENTRATIONS  IN  FISH,  PLANTS  AND DRINKING WATER 

Regional concentration in wet fish  PEC.fishR  6.07E‐13  kgc.kgwwt‐1  o 

Regional concentration in root tissue of plant  PEC.rootR  4.82E‐15  kgc.kgwwt‐1  o 

Regional concentration in leaves of plant  PEC.leafR  5.42E‐16  kgc.kgwwt‐1  o 

Regional concentration in grass (wet weight)  PEC.grassR  5.42E‐16  kgc.kgwwt‐1  o 

Fraction of total uptake by crops from pore water  not used 

Fraction of total uptake by crops from air  not used 

Fraction of total uptake by grass from pore water  not used 

Page 65: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 65

Fraction of total uptake by grass from air  not used 

Regional concentration in drinking water  PEC.drwR  8.90E‐11  kgc.m‐3  o 

CONCENTRATIONS IN MEAT AND MILK 

Regional concentration in meat (wet weight)  PEC.meatR  4.98E‐18  kgc.kgwwt‐1  o 

Regional concentration in milk (wet weight)  PEC.milkR  4.98E‐17  kgc.kgwwt‐1  o 

Fraction of total intake by cattle through grass  not used Fraction of total intake by cattle through drinking water  not used 

Fraction of total intake by cattle through air  not used 

Fraction of total intake by cattle through soil  not used 

DAILY HUMAN DOSES 

Daily dose through intake of drinking water  DOSE.drwR  2.54E‐15  kgc.kgbw‐1.d‐1   o Fraction of  total dose  through  intake of drinking water  not used 

Daily dose through intake of fish  DOSE.fishR  9.97E‐16  kgc.kgbw‐1.d‐1   o 

Fraction of total dose through intake of fish  not used 

Daily dose through intake of leaf crops  DOSE.leafR  9.30E‐18  kgc.kgbw‐1.d‐1   o 

Fraction of total dose through intake of leaf crops  not used 

Daily dose through intake of root crops  DOSE.rootR  2.64E‐17  kgc.kgbw‐1.d‐1   o 

Fraction of total dose through intake of root crops not used 

Daily dose through intake of meat  DOSE.meatR  2.14E‐20  kgc.kgbw‐1.d‐1   o 

Fraction of total dose through intake of meat  not used 

Daily dose through intake of milk  DOSE.milkR  3.99E‐19  kgc.kgbw‐1.d‐1   o 

Fraction of total dose through intake of milk  not used 

Daily dose through intake of air  DOSE.inhR  3.12E‐15  kgc.kgbw‐1.d‐1   o 

Fraction of total dose through intake of air  not used 

Regional total daily intake for humans  DOSE.totalR  6.70E‐15  kgc.kgbw‐1.d‐1   o 

LOCAL 

[PRODUCTION] 

CONCENTRATIONS IN FISH, PLANTS AND DRINKING WATER [PRODUCTION] 

Local concentration in wet fish  PEC.fishL  4.08E‐09  kgc.kgwwt‐1  o 

Local concentration in root tissue of plant  PEC.rootL  2.21E‐11  kgc.kgwwt‐1  o 

Local concentration in leaves of plant  PEC.leafL  2.39E‐12  kgc.kgwwt‐1  o 

Local concentration in grass (wet weight)  PEC.grassL  2.39E‐12  kgc.kgwwt‐1  o 

Fraction of total uptake by crops from pore water  not used 

Fraction of total uptake by crops from air  not used 

Fraction of total uptake by grass from pore water  not used 

Fraction of total uptake by grass from air  not used 

Local concentration in drinking water  PEC.drwL  5.98E‐07  kgc.m‐3  o 

Annual average local PEC in air (total) 

CONCENTRATIONS  IN  MEAT  AND  MILK [PRODUCTION] 

Local concentration in meat (wet weight)  PEC.meatL  3.09E‐14  kgc.kgwwt‐1  o 

Local concentration in milk (wet weight)  PEC.milkL  3.09E‐13  kgc.kgwwt‐1  o 

Fraction of total intake by cattle through grass  not used 

Fraction of total intake by cattle through drinking  not used 

Page 66: CHEMICAL SAFETY REPORT (CSR) - ECHA

CHEMICAL SAFETY REPORT

Chemical Safety Report Use number:1 66

water 

Fraction of total intake by cattle through air  not used 

Fraction of total intake by cattle through soil  not used 

DAILY HUMAN DOSES [PRODUCTION] 

Daily dose through intake of drinking water  DOSE.drwL  1.71E‐11  kgc.kgbw‐1.d‐1   o Fraction of  total dose  through  intake of drinking water  not used 

Daily dose through intake of fish  DOSE.fishL  6.70E‐12  kgc.kgbw‐1.d‐1   o 

Fraction of total dose through intake of fish  not used 

Daily dose through intake of leaf crops  DOSE.leafL  4.10E‐14  kgc.kgbw‐1.d‐1   o 

Fraction of total dose through intake of leaf crops  not used 

Daily dose through intake of root crops  DOSE.rootL  1.21E‐13  kgc.kgbw‐1.d‐1   o 

Fraction of total dose through intake of root crops not used 

Daily dose through intake of meat  DOSE.meatL  1.33E‐16  kgc.kgbw‐1.d‐1   o 

Fraction of total dose through intake of meat  not used 

Daily dose through intake of milk  DOSE.milkL  2.48E‐15  kgc.kgbw‐1.d‐1   o 

Fraction of total dose through intake of milk  not used 

Daily dose through intake of air  DOSE.inhL  1.38E‐11  kgc.kgbw‐1.d‐1   o 

Fraction of total dose through intake of air  not used 

Local total daily intake for humans  DOSE.totalL  3.77E‐11  kgc.kgbw‐1.d‐1   o