Chemical Kinetics1

38
Chemical Kinetics Chapter I eter Atkins, Physical Chemistry, 7 th edition rey I. Steinfeld et al, Chemical Kinetics and Dynamics, 2 nd edition

Transcript of Chemical Kinetics1

Page 1: Chemical Kinetics1

ChemicalKinetics

Chapter I

Peter Atkins, Physical Chemistry, 7th editionJeffrey I. Steinfeld et al, Chemical Kinetics and Dynamics, 2nd edition

Page 2: Chemical Kinetics1

Basic concepts of kinetics

Thermodynamics• First law• Second law• Third law

Kinetics

Deal with changes of the system properties in time.

(Physical-Chemical)

Feasibility of any process or reacction to take place

(DSUniv. > 0, DG < 0)

a) Rate of a chemical reaction:

Chemical kinetics: Study chemical systems whose composition changes with time

!Gas, liquids, solid• Homogeneous: Single-phase

• Heterogeneous: Multi-phase

Page 3: Chemical Kinetics1

Stoichiometric representation

aA + bB + … cC + dD …

a and b: # of moles of A and B, i.e. the reactants

c and d: # of moles of C and D, i.e. the products

IrreversibleChemical reaction

ReversibleChemical reaction

2H2 +O2 2H2O H2 + I2 2HI

Type of reactions:• Elementary: One step

• Complexes: Multi-steps

Rate of reaction: Change in composition of the reaction mixtures

dtDd

ddtCd

cdtBd

bdtAd

aR 1111

Reac. [i] (-) Prod. [j] (+)

I2 + hn I2*I2* 2I

2I + M I2 + MH2 + 2I 2HI

Page 4: Chemical Kinetics1

b) Order and Molecularity of a chemical reaction:

• One or more reactants[i]’s

• One or more intermadiates[E]’s

• One or more species that do not appear in the reaction

[C]

Reaction rate

R = f([A], [B])

R a [A]m [B]n

• m and n: Integer, fractional or negative

R = k [A]m [B]n

Rate equation!

Rate constant(Proportionality constant)

• m: Order of reaction with respect to A.

• n: Order of reaction with respect to B

• p = m + n : Overall order of reaction

http://www.chem.uci.edu/education/undergrad_pgm/applets/sim/simulation.htm

Page 5: Chemical Kinetics1

General expression

k

i

ni

ickR1

• ni: Reaction order with respect to i’s component.

*Units of K : [i]-(p-1)t-1

k

iinp

1

Elementary reactions are described by their molecularity

Molecularity: # of reactants involved in the reaction step! (always an integer)

Spontaneousdecomposition

A and B reactwith each other

Three reactantsthat comes together

A Products Unimolecular

A + B Products Bimolecular

A + B + C Products Termolecular

http://www.chm.davidson.edu/ChemistryApplets/kinetics/ReactionRates.html

Page 6: Chemical Kinetics1

Elementary reaction rate lawsTime behavior Integrating the rate law

a) Zero-Order reaction:

ktAAktAA

t

dtkAdkdtAd

Aa

AkdtAd

aR

tt

t

t

A

A

t

00

0

][

][

0

0

][][][][

0

][][

1][,1

][][1

00

t

[A]t

[A]0

m = -K

a) A productsHeterogeneous reactions

Page 7: Chemical Kinetics1

b) First-Order reaction:

ktt

t

eAA

ktAA

0

0

][][

][][ln

303.2]log[]log[

]ln[]ln[][][

][][][][1

0

00

][

][

1

0

ktAA

ktAAdtkAAd

kdtAAdAk

dtAd

aR

t

t

tA

A

t

a = 1

t0=0

t

log[A]t

log[A]0

m = -k/2.303

t

[A]t

[A]0

t

e-1[A]0

k-1 = t (Decay time)[A]t = [A]0/ee=2.7183

b) A productsCH3NC CH3CN

Page 8: Chemical Kinetics1

(CH3)3CBr + H2O (CH3)3COH + HBr[90% acetone & 10% water]T (min) [C] (mol/L)

0 0.1056

9 0.0961

18 0.0856

24 0.0767

40 0.0645

54 0.0536

72 0.0432

105 0.0270

0 20 40 60 80 100 120

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

[C] (

mol

/L)

t (min)

KtAA t 0][][

0 20 40 60 80 100 120

0.1

log[

C] (

mol

/L)

t (min)

303.2]log[]log[ 0

KtAA t

Page 9: Chemical Kinetics1

c) Second-Order reaction:

c1) A + A products

ktAA

dtkA

AdktAA

xxdx

kdtA

AdAkdtAdR

t

tA

At

t

2][

1][

1

2][

][2][

1][

1

1

2][

][][][21

0

0

][

][2

0

2

22

0

t

[A]t-1

[A]0-1

m = 2k

2CH3 C2H6b

a

b

a

Page 10: Chemical Kinetics1

c2) A + B products

kt

BABA

BA

baxabax

dx

xABAdx

xBBAdx

xBxAdx

xBxAkdtdx

BBAAx

BAkdtAdR

t

t

tt

][][][][ln

][][1

)ln(1

][][][][][][][][

][][

][][][][

][][][

0

0

00

00000000

00

00

11

H2 + O OH + H

b

a

b

a

Page 11: Chemical Kinetics1

d) Third-Order reaction:

d1) A + A + A products

ktAA

dtkA

AdktAA

xnxdx

kdtA

AdAkdtAdR

t

tA

At

n

b

an

t

6][1

][1

3][

][3][1

][1

21

1)1(

1

3][

][][][31

20

2

0

][

][32

02

1

33

0

t

[A]t-2

[A]0-2

m = 6k

b

a

I + I + M I2 + M

Page 12: Chemical Kinetics1

d2) A + A + B products

kt

BABA

BAAABA

kdtyByA

dy

yByAkdtdy

BAyBB

yAA

BAkdtAdR

t

t

t

t

t

][][][][ln

][2][1

][1

][1

][2][1

][2][

][2][

][,][][][

2][][

][][][21

0

02

00000

02

0

02

0

00

0

0

2

Partial fractions!

tkAA

orderpseudoBkk

AkdtAdR

t

nd

'2][

1][

1

2],['

]['][21

0

2

[B]>>[A][B] = const.

O + O2 + M O3 + M

Page 13: Chemical Kinetics1
Page 14: Chemical Kinetics1

d3) A + B + C products

]][][[][ CBAkdtAdR

Reaction rate for n order respect with only one reactant

ktnnAA

nktAAn

dtnkA

Ad

AkdtAd

nR

nnt

nnt

A

A

t

n

n

t

)1(][1

][1

][1

][1

)1(1

][][

][)(

1

)1(0

)1()1(0

)1(

][

][ 00

Page 15: Chemical Kinetics1

e) Reaction half-lives: Alternative method to determine the reaction order

2][

][ 0

21

21

AAt

2ln1

][2/][ln

2/][][

][][ln

2/1

2/1

0

0

0

0

kt

ktA

A

AA

ktAA

t

t

First-order reaction

For a reaction of order n>1 in a single reactant

Independent of [A]0

1

0

1

21 ])[1(

12

n

n

Ankt

This is function of [A]0

Page 16: Chemical Kinetics1

1st order reaction half-lives:

0 10 20 30 40 500

0.2

0.4

0.6

0.8

11

6.738 10 3

A t( )

500 t

Page 17: Chemical Kinetics1

T dependence of the rate constant, kThe Arhenius equation:

k(T):

• [i]• t• pH (only in solution) T! (Strongly)

TkE

TB

Act

Aek )(

1/T

ln[k(T)]lnA

m = -EAct/kB

Chemical coordinates

E

EAct(F)EAct(R)

Reac

Prod.

DH0Rxn

A :Frequency factor

0Re

0Pr

0

0 )()(

acodRxn

ActActRxn

HHH

FEREH

DDD

D

Page 18: Chemical Kinetics1
Page 19: Chemical Kinetics1
Page 20: Chemical Kinetics1

Ineffective Effective

Determinant Parameters

Page 21: Chemical Kinetics1

Catalysis

Page 22: Chemical Kinetics1

Complex reactionsa) Reversible reactions:

A1 A2kf

kr

12

2

211

AkAkdtAd

AkAkdtAd

fr

rf

If @ t=0[A1] = [A1]0

[A2] = [A2]0

[A1] + [A2] = [A1]0 + [A2]0[A2] = [A1]0 + [A2]0 - [A1]

020111

1020111

AAkkkAdtAd

AkAAkAkdtAd

rrf

rrf

(Mass conservation law)

ClCl

Cl

Cl

Page 23: Chemical Kinetics1

102011 A

kkAAk

kkdtAd

rf

rrf

Introducing the variable m

tkk

AkAkAkAk

dtkkAm

AdAmkk

dtAd

kkAAk

m

rfrf

rf

t

trf

A

Arf

rf

r

0201

21

1

11

1

0201

ln

0

1

01

tkkAk

AkAkrf

f

rf

01

21ln

If @ t=0[A2]0=0

Page 24: Chemical Kinetics1

tkk

rf

f

tkkfr

rf

rf

rf

ekk

AkA

AAA

ekkkk

AA

1012

1012

011

When the equilibrium is reached

eq

eq

eq

r

f

eqreqf

eqreqf

KA

A

kk

AkAk

AkAk

dtAd

dtAd

1

2

21

21

21

0

0

Page 25: Chemical Kinetics1

b) Consecutive reactions:

A1 A2 A3k1 k2

223

22112

111

AkdtAd

AkAkdtAd

AkdtAd

b1) First:

tkeAA 1011

b2) Second:

For [A2] Linear differential equation of first order

Page 26: Chemical Kinetics1

tktk

tktktktk

eekk

AkA

eekk

AkeAAeAkAk

dtAd

AkAkdtAd

21

2121

12

0112

12

01102201122

2

11222

Standardmethods

b3) Third:

If @ t=0[A2]0=0

[A1]0 = [A1] + [A2] + [A3] [A3] = [A1]0 - [A1] - [A2]

tktktktktk e

kkk

ekk

kAAee

kkk

eAA 21211

12

1

12

2013

12

1013 11

Page 27: Chemical Kinetics1

0 2 4 6 8 100

0.2

0.4

0.6

0.8

11

0

A t( )

A 0( )

B t( )

A 0( )

C t( )

A 0( )

100 t0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

11

0

A t( )

A 0( )

B t( )

A 0( )

C t( )

A 0( )

100 t

K1 = 1K2 = 100

K1 = 1K2 = 0.1

A B C CBA

Page 28: Chemical Kinetics1

0 2 4 6 8 100

0.2

0.4

0.6

0.8

11

0

A t( )

A 0( )

B t( )

A 0( )

C t( )

A 0( )

100 t

K1 = 1K2 = 0.01

0 2 4 6 8 100

0.2

0.4

0.6

0.8

11

0

A t( )

A 0( )

B t( )

A 0( )

C t( )

A 0( )

100 t

K1 = 1K2 = 0.1

0 2 4 6 8 100

0.2

0.4

0.6

0.8

11

0

A t( )

A 0( )

B t( )

A 0( )

C t( )

A 0( )

100 t

K1 = 1K2 = 10

0 2 4 6 8 100

0.2

0.4

0.6

0.8

11

0

A t( )

A 0( )

B t( )

A 0( )

C t( )

A 0( )

100 t

K1 = 1K2 = 100

Page 29: Chemical Kinetics1

c) Parallel reactions:(First order decay to different products)

A1 A2

A3

k2

k3

133

122

13121

AkdtAd

AkdtAd

AkAkdtAd

c1) First:

tkk

t

t

A

A

eAAdtkkAAd

AkkdtAd

32

0

1

01

011321

1

1321

32' kkk

Page 30: Chemical Kinetics1

c2) Second:

tkk

atat

ttkk

A

tkk

ekk

AkA

ea

dte

dteAkAd

eAkdtAd

32

32

2

32

1

1

32

0122

0012

02

0122

[A2]0 = 0

c3) Third:

tkk

atat

ttkk

A

tkk

ekk

AkA

ea

dte

dteAkAd

eAkdtAd

32

32

3

32

1

1

32

0133

0013

03

0133

[A3]0 = 0

b

a

b

a

b

a

b

a

Page 31: Chemical Kinetics1

0 0.5 1 1.5 20

0.5

11

0

A1 t( )

A2 t( )

A3 t( )

20 t

k2= 1, k3=10

0 0.5 1 1.5 20

0.5

11

0

A1 t( )

A2 t( )

A3 t( )

20 t

k2= 1, k3=1

0 0.5 1 1.5 20

0.5

11

0

A1 t( )

A2 t( )

A3 t( )

20 t

k2= 1, k3=0.1

A1 A2

A3

k2

k3

Page 32: Chemical Kinetics1

d) Parallel reactions:

A1 A2

A3

k1

k3

333

33112

111

AkdtAd

AkAkdtAd

AkdtAd

0

0

2

033

011

A

AAAA

t

tktk

tk

tk

eAkeAkdtAd

eAA

eAA

31

3

1

0330112

033

011

tktk

ttk

ttk

A

eAAeAAA

dteAkdteAkAd

31

31

2

030301012

0033

0011

02

Page 33: Chemical Kinetics1

0 1 2 3 40

0.5

1

1.51.311

0

A1 t( )

A2 t( )

A3 t( )

40 t0 1 2 3 4

0

0.5

1

1.5

21.963

0

A1 t( )

A2 t( )

A3 t( )

40 t0 1 2 3 4

0

0.5

1

1.5

21.982

0

A1 t( )

A2 t( )

A3 t( )

40 t

k1= 1, k3=10k1= 1, k3=1k1= 1, k3=0.1

A1 A2

A3

k1

k3

Page 34: Chemical Kinetics1

Steady-State approximation

This method is very usefulwhen intermediates are presentin small amount [Ai]

0

dtAd i

If we take the case b2) of Consecutive reactions(k1 << k2)

12

12

11222 0

Akk

A

AkAkdtAd

SS

tkSS eA

kk

A 101

2

12

tkSS eAA 11013

A1 A2 A3

k1 k2

A1 A2 A3

k1

K-1

k2

Home work!0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

11

0

A t( )

A 0( )

B t( )

A 0( )

C t( )

A 0( )

100 t

0

0

0302

011

AAAA

t

)1( 1013

tkSS eAA

Page 35: Chemical Kinetics1

The Michaelis-Menten mechanism(Enzyme action)

+ +

S (Substrate)E (Enzyme) X(Enzyme-Substrate

complex)

E (Enzyme)

P1 & P2

(Products)

True chemical Intermediate

[ES] << 1K2 > k1

0dtESd

Another Initial condition is:

[E]0 = [E] + [ES][S]0 = [S] + [P] SEES

E + S ES E + Pk1

K-1 K-2

K2

Page 36: Chemical Kinetics1

12

2

12

1

2112

11

0

kkPEk

kkSEk

ES

PEkSEkESkkdtESd

ESkSEkdtPd

dtSd

SS

SS

2121

02121

kkPkSkEPkkSkk

dtSd

E + S ES E + Pk1

K-1 K-2

K2

Considering[S] >> [P] @ t = 0

SEES

Page 37: Chemical Kinetics1

SK

vvEkv

kkk

K

Skkk

EkdtSdv

Sk

kkSkESkk

dtSd

M

SS

M

1

1

02

1

21

1

21

02

1

211

021

Michaelis-Mentenconstant

KM

vS

[S]

v

vS

2

t 0

t 0