cheat sheet

12
Heat and Mass Transfer CHEE330 – Formula Sheet Version 05/12/2014 Page 8 Fourier’s law " οΏ½ οΏ½ οΏ½ = = βˆ’ Heat transfer rate through area A [W] " οΏ½ οΏ½ οΏ½ = Heat flux or heat transfer rate per unit area perpendicular to the transport direction [W/m 2 =J/(s m 2 ] Area perpendicular to heat flux [m 2 ] k Thermal conductivity [W/(m K)] βˆ‡ Temperature gradient (driving force) [K/m] 1-Dimensional Fourier’s law for different coordinate systems Fourier’s law expressions and solutions for heat fluxes, heat rates and thermal resistances for steady-state, 1D heat transfer, constant k in various coordinate systems Plane Wall (Cartesian) Cylindrical Wall Spherical Wall Fourier’s law " = βˆ’ " = βˆ’ " = βˆ’ Heat flux " βˆ† βˆ† οΏ½ 2 1 οΏ½ βˆ† 2 οΏ½ 1 1 βˆ’ 1 2 οΏ½ Heat transfer rate βˆ† 2βˆ† οΏ½ 2 1 οΏ½ 4βˆ† οΏ½ 1 1 βˆ’ 1 2 οΏ½ Thermal resistance R cond # οΏ½ 2 1 οΏ½ 2 οΏ½ 1 1 βˆ’ 1 2 οΏ½ 4 # A r =2Ο€rL for cylindrical, A r =4Ο€r 2 for spherical coordinates, r 1 =r in , r 2 =r out Radiation Stefan-Boltzmann law for an ideal radiator (black body) " = = 4 " = radiation/heat flux emitted from the surface T s = absolute temperature of the surface [K] Οƒ = Stefan-Boltzmann constant For a real (non-ideal) surface " = = 4 Ξ΅= emissivity [-] -> black bodies: =1, real surface: 0<<1 Irradiation " = = 4 G = rate of incident radiation per unit area (W/m 2 ) of the surface (radiation/heat flux absorbed by the surface) originating from its surroundings T sur = absolute temperature of the surroundings [K] Ξ± = absorptivity of the surface [0< Ξ± <1], for a β€œgrey” surface Ξ±=Ξ΅ Net radiation exchange " = βˆ’ = 4 βˆ’ 4 = β„Ž ( βˆ’ ) Radiative heat transfer coefficient for grey surface β„Ž = ( + )( 2 βˆ’ 2 ) [W/m 2 K] Thermal circuits = = βˆ† R = thermal resistance [K/W] Conductive resistance R cond = depends on geometry, see table left Convective resistance = 1 β„Ž Radiative resistance = 1 β„Ž Thermal contact resistance " , = βˆ’ " T A,B = temperature contact surface A,B [K]

description

for everything

Transcript of cheat sheet

Page 1: cheat sheet

Heat and Mass Transfer CHEE330 – Formula Sheet

Version 05/12/2014 Page 8

Fourier’s law

π‘ž"οΏ½οΏ½οΏ½ =π‘žπ΄

= βˆ’π‘˜π‘˜π‘˜ π‘ž Heat transfer rate through area A [W] π‘ž"οΏ½οΏ½οΏ½ = π‘ž

𝐴 Heat flux or heat transfer rate per unit area perpendicular to the

transport direction [W/m2=J/(s m2] 𝐴 Area perpendicular to heat flux [m2] k Thermal conductivity [W/(m K)] βˆ‡π‘˜ Temperature gradient (driving force) [K/m] 1-Dimensional Fourier’s law for different coordinate systems Fourier’s law expressions and solutions for heat fluxes, heat rates and thermal resistances for steady-state, 1D heat transfer, constant k in various coordinate systems

Plane Wall (Cartesian) Cylindrical Wall Spherical Wall

Fourier’s law π‘ž"π‘₯ = βˆ’π‘˜π‘‘π‘˜π‘‘π‘‘

π‘ž"π‘Ÿ = βˆ’π‘˜π‘‘π‘˜π‘‘π‘‘

π‘ž"π‘Ÿ = βˆ’π‘˜π‘‘π‘˜π‘‘π‘‘

Heat flux 𝒒" π‘˜βˆ†π‘˜πΏ

π‘˜βˆ†π‘˜

π‘‘π‘Ÿπ‘Ÿ �𝑑2𝑑1οΏ½

π‘˜βˆ†π‘˜

𝑑2 οΏ½1𝑑1βˆ’ 1𝑑2οΏ½

Heat transfer rate 𝒒 π‘˜π΄

βˆ†π‘˜πΏ

2πœ‹πΏπ‘˜βˆ†π‘˜

π‘Ÿπ‘Ÿ �𝑑2𝑑1οΏ½

4πœ‹π‘˜βˆ†π‘˜

οΏ½1𝑑1βˆ’ 1𝑑2οΏ½

Thermal resistance

Rcond #

πΏπ‘˜π΄

π‘Ÿπ‘Ÿ �𝑑2𝑑1

οΏ½

2πœ‹πΏπ‘˜

οΏ½1𝑑1βˆ’ 1𝑑2οΏ½

4πœ‹π‘˜

#Ar=2Ο€rL for cylindrical, Ar=4Ο€r2 for spherical coordinates, r1=rin, r2=rout Radiation Stefan-Boltzmann law for an ideal radiator (black body)

π‘žπ‘’π‘’" = 𝐸 = πœŽπ‘˜π‘ 4 π‘žπ‘’π‘’" = radiation/heat flux emitted from the surface Ts = absolute temperature of the surface [K] Οƒ = Stefan-Boltzmann constant

For a real (non-ideal) surface π‘žπ‘’π‘’" = 𝐸 = πœ€πœŽπ‘˜π‘ 4

Ξ΅= emissivity [-] -> black bodies: πœ€=1, real surface: 0<πœ€<1 Irradiation

π‘žπ‘–π‘–π‘–" = 𝐺 = 𝛼 𝜎 π‘˜π‘ π‘ π‘Ÿ4 G = rate of incident radiation per unit area (W/m2) of the surface (radiation/heat flux absorbed by the surface) originating from its surroundings Tsur = absolute temperature of the surroundings [K]

Ξ± = absorptivity of the surface [0< Ξ± <1], for a β€œgrey” surface Ξ±=Ξ΅

Net radiation exchange π‘žπ‘Ÿπ‘Ÿπ‘Ÿ" = 𝐸 βˆ’ 𝐺 = πœ€πœŽπ‘˜π‘ 4 βˆ’ 𝛼 𝜎 π‘˜π‘ π‘ π‘Ÿ4 = β„Žπ‘Ÿ(π‘˜π‘  βˆ’ π‘˜π‘ π‘ π‘Ÿ)

Radiative heat transfer coefficient for grey surface β„Žπ‘Ÿ = πœŽπœ€(π‘˜π‘  + π‘˜π‘ π‘ π‘Ÿ)(π‘˜π‘ 2 βˆ’ π‘˜π‘ π‘ π‘Ÿ2 ) [W/m2K]

Thermal circuits

π‘ž =π‘‚π‘‚π‘‚π‘‘π‘‚π‘Ÿπ‘Ÿ π‘‘π‘‘π‘‘π‘‚π‘‘π‘Ÿπ‘‘ 𝑓𝑓𝑑𝑓𝑂

π‘…π‘‚π‘…π‘‘π‘…π‘…π‘‚π‘Ÿπ‘“π‘‚=βˆ†π‘˜π‘…

R = thermal resistance [K/W] Conductive resistance

Rcond = depends on geometry, see table left Convective resistance

𝑅𝑖𝑐𝑖𝑐 =1β„Ž 𝐴

Radiative resistance

π‘…π‘Ÿπ‘Ÿπ‘Ÿ =1

β„Žπ‘Ÿ 𝐴

Thermal contact resistance

𝑅"𝑑,𝑖 =π‘˜π΄ βˆ’ π‘˜π΅π‘žπ‘₯"

TA,B = temperature contact surface A,B [K]

Page 2: cheat sheet

Heat and Mass Transfer CHEE330 – Formula Sheet

Version 05/12/2014 Page 9

Resistance in series (q=const):

𝑅𝑑𝑐𝑑 = 𝑅1 + 𝑅2+. . +𝑅𝑖 = �𝑅𝑖𝑖

Resistances in parallel (Ξ”T =const): 1𝑅𝑑𝑐𝑑

=1𝑅1

+1𝑅2

+. . +1𝑅𝑖

= οΏ½1/𝑅𝑖𝑖

Ideal gas law

𝑝 𝑉 = π‘Ÿ 𝑅 π‘˜ =π‘šπ‘€π‘… π‘˜

𝑝 = pressure [Pa] V = volume [m3] n = molar amount of substance [mol] m = mass of substance [kg] M = Molar mass of substance [mol/g] T = Temperature in K [K] R = universal gas constant = 8.3143 J/(mol K)

Buckingham method: Step 1: List all independent variables involved in the problem Q0 = F(Q1, Q2, ... , Qn) Step 2: Express each of the variables in terms of basic dimensions Step 3: Apply Buckingham 𝛱 theorem / Determine number of 𝛱 groups: Number of dimensionless groups required to describe the problem is k=(n+1)-j. n = number of independent variables identified for the problem j = number of primary dimensions which have been used to express the variables. Step 4: Selection of a dimensionally independent subset of (repeating) j variables Q1...Qj (j ≀ n). Step 5: Build 𝛱 groups by multiply one of the nonrepeating variables by the product of the repeating variables, each raised to an exponent that will make the combination dimensionless. Step 6: Assume dimensional homogeneity and solve set of equations to obtain 𝛱 groups Step 7: Express result in form 𝛱1 = 𝐹(𝛱2,𝛱3. .π›±π‘˜)

Concentrations in a binary system of A and B

Assumptions: ideal Gas

Diffusive molar and mass fluxes for binary system A in B Diffusive Flux Vector notation 1D planar (Cartesian) Molar flux (Fick’s Law)

𝑓 𝑓𝑑 𝜌 = π‘“π‘“π‘Ÿπ‘…π‘… 𝐽𝐴��� = βˆ’π·π΄π΅π‘˜π‘“π΄ 𝐽𝐴,𝑧 = βˆ’π·π΄π΅π‘‘π‘“π΄π‘‘π‘‘

Mass flux (Fick’s Law) 𝑓 𝑓𝑑 𝜌 = π‘“π‘“π‘Ÿπ‘…π‘… πš₯𝐴��� = βˆ’π·π΄π΅π‘˜πœŒπ΄ 𝑗𝐴,𝑧 = βˆ’π·π΄π΅

π‘‘πœŒπ΄π‘‘π‘‘

Molar flux (de Groot) 𝐽𝐴��� = βˆ’π‘“π·π΄π΅π‘˜π‘¦π΄ 𝐽𝐴,𝑧 = βˆ’π‘“π·π΄π΅π‘‘π‘¦π΄π‘‘π‘‘

Mass flux (de Groot) πš₯𝐴��� = βˆ’πœŒπ·π΄π΅π‘˜πœ”π΄ 𝑗𝐴,𝑧 = βˆ’πœŒπ·π΄π΅π‘‘πœ”π΄π‘‘π‘‘

molar flux [mol/(m2s)] mass flux [ kg/(m2s)]

Page 3: cheat sheet

Heat and Mass Transfer CHEE330 – Formula Sheet

Version 05/12/2014 Page 10

Absolute molar and mass fluxes for binary system A in B Absolute Flux Vector notation 1D planar (Cartesian)

Molar flux 𝑁𝐴���� = βˆ’π·π΄π΅π‘“π‘˜π‘¦π΄ +𝑦𝐴(𝑁𝐴���� + 𝑁𝐡����� )

𝑁𝐴,𝑧 = βˆ’π·π΄π΅π‘“π‘‘π‘¦π΄π‘‘π‘‘

+𝑦𝐴(𝑁𝐴,𝑧 + 𝑁𝐡,𝑧)

Mass flux π‘Ÿπ΄οΏ½οΏ½οΏ½οΏ½ = βˆ’πœŒπ·π΄π΅π‘˜πœ”π΄ +πœ”π΄(π‘Ÿπ΄οΏ½οΏ½οΏ½οΏ½ + π‘Ÿπ΅οΏ½οΏ½οΏ½οΏ½ )

π‘Ÿπ΄,𝑧 = βˆ’πœŒπ·π΄π΅π‘‘πœ”π΄π‘‘π‘‘

+πœ”π΄(π‘Ÿπ΄,𝑧 + π‘Ÿπ΅,𝑧) Molar flux for

equimolar counter diffusion

(𝑁𝐴���� = βˆ’π‘π΅οΏ½οΏ½οΏ½οΏ½οΏ½ )

𝑁𝐴���� = βˆ’ DABπ‘“π‘˜π‘¦π΄ 𝑁𝐴,𝑧 = DAB𝑓�yA,1 βˆ’ yA,2οΏ½

𝑑2 βˆ’ 𝑑1

Molar flux for unimolecular

diffusion stagnant film (𝑁𝐡����� = 0)

𝑁𝐴���� = βˆ’π·π΄π΅π‘“

1 βˆ’ π‘¦π΄π‘˜π‘¦π΄

𝑁𝐴,𝑧 = 𝐷𝐴𝐡𝑓

(𝑑2 βˆ’ 𝑑1) βˆ™

lnοΏ½1 βˆ’ 𝑦𝐴,2

1 βˆ’ 𝑦𝐴,1οΏ½

Control volume balance on rate basis In a defined control volume, there is

ACCUMULATION = INPUT - OUTPUT + GENERATION Energy:

π‘ŸπΈπ‘ π‘Ÿπ‘‘

= ��𝑖𝑖- ��𝑐𝑠𝑑 + ��𝑔 𝐸𝑠= stored energy [J] ��𝑖𝑖= ingoing energy rate [W] ��𝑐𝑠𝑑= outgoing energy rate [W] ��𝑔= generated energy rate [W]

Mass Species A 𝑑𝑀𝐴

𝑑𝑅= ��𝐴,𝑖𝑖 βˆ’ ��𝐴,𝑐𝑠𝑑 + ��𝐴,𝑔

𝑀𝐴 = stored mass of A [kg] ��𝐴,𝑖𝑖 = ingoing mass rate of A [kg/s] ��𝐴,𝑐𝑠𝑑 = outgoing mass rate of A [kg/s] ��𝐴,𝑔 = generated mass rate of A [kg/s]

Continious flow system

���𝑖𝑒𝑑 + ��𝑖𝑒𝑑� = οΏ½οΏ½ οΏ½(β„Ž2 βˆ’ β„Ž1) +12

(𝑂22 βˆ’ 𝑂12) + 𝑑(𝑑2 βˆ’ 𝑑1)οΏ½ ��𝑖𝑒𝑑 = net heat rate added to CV [W] ��𝑖𝑒𝑑= net rate of work done in CV [W] οΏ½οΏ½ = mass flow rate [kg/s] 𝑑𝑖 = height [m] 𝑂𝑖= velocity [m/s] β„Žπ‘– = 𝑓𝑝 π‘˜π‘– = specific enthalpy [J/(kg K)] 1 = inlet, 2=outlet

Differential Equations of Heat Transfer for k = 𝒇(𝒙�� )

πœŒπ‘“π‘πœ•π‘˜πœ•π‘…

= π‘˜ βˆ™ (π‘˜π‘˜π‘˜ ) + ��𝑔

for k = constant

πœ•π‘˜πœ•π‘…

= π›Όβˆ†π‘˜ +οΏ½οΏ½π‘”πœŒπ‘“π‘

��𝑔= volumetric generation term [W/m3] 𝜌 = density [kg/m3] Ξ± = k

ρ cp = thermal diffusivity [m2/s] 𝑓𝑝= specific heat capacity [kJ/(kg K)]

Boundary condition of first kind - Dirichlet condition Constant Temperature

π‘˜(𝑑 = 𝑑0, 𝑅) = π‘“π‘“π‘Ÿπ‘…π‘…. Boundary condition of second kind - Neumann condition Constant gradient at a boundary (=constant flux)

π‘‘π‘˜π‘‘π‘‘οΏ½π‘₯=π‘₯0

= π‘“π‘“π‘Ÿπ‘…π‘….

Boundary condition of third kind - Robin boundary condition The gradient at a boundary is described with a function (e.g. Newton’s Law of cooling)

π‘‘π‘˜π‘‘π‘‘οΏ½π‘₯=π‘₯0

= 𝑓(π‘˜)

Page 4: cheat sheet

Heat and Mass Transfer CHEE330 – Formula Sheet

Version 05/12/2014 Page 11

Differential Equations of Mass Transfer πœ•π‘“π΄πœ•π‘…

= βˆ’π‘˜ βˆ™ 𝑁��𝐴 + 𝑅𝐴

𝑁��𝐴 can be either the purely diffusive flux 𝐽𝐴��� or absolute flux 𝑁��𝐴 of A 𝑅𝐴 = volumetric rate of mass generation [mol/(s m3)]

πœ•π‘“π΄πœ•π‘…

= π‘˜ βˆ™ (π·π΄π΅π‘“π‘˜π‘¦π΄) βˆ’ π‘˜ βˆ™ �𝑓𝐴𝑉� οΏ½ + 𝑅𝐴

𝑉� =molar-average velocity [m/s] Boundary condition of first kind - Dirichlet condition Constant Temperature

𝑓𝐴(𝑑 = 𝑑0, 𝑅) = π‘“π‘“π‘Ÿπ‘…π‘…. Boundary condition of second kind - Neumann condition Constant gradient at a boundary (=constant flux)

𝑑𝑓𝐴𝑑𝑑

οΏ½π‘₯=π‘₯0

= π‘“π‘“π‘Ÿπ‘…π‘….

Boundary condition of third kind - Robin boundary condition The gradient at a boundary is described with a function

𝑑𝑓𝐴𝑑𝑑

οΏ½π‘₯=π‘₯0

= 𝑓(𝑓𝐴)

Other Boundary conditions for mass transfer Evaporation and sublimation (Raoult’s Law)

𝑝𝐴,𝑠 = 𝑑𝐴 𝑃𝐴,π‘ π‘Ÿπ‘‘ 𝑝𝐴,𝑠 = 𝑦𝐴,𝑠 𝑃= partial pressure of A in gas at the surface [bar]

𝑃𝐴,π‘ π‘Ÿπ‘‘ = saturation (vapor) pressure at the surface Solubility of gases in liquids (Henry’s Law)

𝑝𝐴 = 𝐻𝑑𝐴 𝐻= Henry constant [Pa] Solubility of gases in solids

𝑓𝐴,π‘ π‘π‘ π‘–π‘Ÿ = 𝑆 𝑝𝐴 𝑆= solubility [Pa m3/mol]

Vector operators for different coordinate systems (f = scalar function, e.g. Temperature T or concentration c):

Vector operators

Cartesian (x,y,z)

Cylindrical (𝒓,𝜽, 𝒛)

Spherical (𝒓,𝜽,𝝓)

Gradient πœ΅π’‡

⎝

βŽœβŽœβŽœβŽ›

πœ•π‘“πœ•π‘‘πœ•π‘“πœ•π‘¦πœ•π‘“πœ•π‘‘βŽ 

⎟⎟⎟⎞

⎝

βŽœβŽœβŽ›

πœ•π‘“πœ•π‘‘

1π‘‘πœ•π‘“πœ•ΞΈπœ•π‘“πœ•π‘‘ ⎠

⎟⎟⎞

⎝

βŽœβŽœβŽœβŽ›

πœ•π‘“πœ•π‘‘

1π‘‘πœ•π‘“πœ•πœ•

1𝑑 π‘…π‘‘π‘Ÿ (πœ•)

πœ•π‘“πœ•πœ•βŽ 

⎟⎟⎟⎞

Laplace πœ΅πŸπ’‡ = πš«π’‡

οΏ½πœ•2π‘“πœ•π‘‘2

+πœ•2π‘“πœ•π‘¦2

+πœ•2π‘“πœ•π‘‘2

οΏ½

οΏ½1𝑑

πœ•πœ•π‘‘οΏ½π‘‘πœ•π‘“πœ•π‘‘οΏ½

+1𝑑2πœ•2π‘“πœ•πœ•2

+πœ•2π‘“πœ•π‘‘2

οΏ½

οΏ½1𝑑2

πœ•πœ•π‘‘οΏ½π‘‘2

πœ•π‘“πœ•π‘‘οΏ½

+1

𝑑2π‘…π‘‘π‘Ÿ (πœ•)πœ•πœ•πœ•

οΏ½π‘…π‘‘π‘Ÿ (πœ•)πœ•π‘“πœ•πœ•οΏ½

+1

𝑑2 π‘…π‘‘π‘Ÿ2(πœ•) πœ•2π‘“πœ•πœ•2οΏ½

Divergence 𝜡 βˆ™ 𝑭��

οΏ½πœ•πΉπ‘₯πœ•π‘‘

+πœ•πΉπ‘¦πœ•π‘‘

+πœ•πΉπ‘§πœ•π‘‘

οΏ½

οΏ½1π‘‘πœ•(𝑑 πΉπ‘Ÿ)πœ•π‘‘

+1π‘‘πœ•πΉΞΈπœ•πœ•

+πœ•πΉπ‘§πœ•π‘‘

οΏ½

οΏ½1𝑑2πœ•(𝑑2πΉπ‘Ÿ)πœ•π‘‘

+1

𝑑 π‘…π‘‘π‘Ÿ (πœ•)πœ•(πΉπœƒ π‘…π‘‘π‘Ÿ (πœ•))

πœ•πœ•

+1

𝑑 π‘…π‘‘π‘Ÿ (πœ•) πœ•πΉπœ™πœ•πœ•

οΏ½

Page 5: cheat sheet

Heat and Mass Transfer CHEE330 – Formula Sheet

Version 05/12/2014 Page 12

Convective heat transfer Newton’s law of Cooling

π‘žπ΄

= π‘ž" = β„Žβˆ†π‘˜ h = convective HT coefficient [W/(m2K)] βˆ†π‘˜ = temperature difference [K] Internal Flow

π‘žπ‘–π‘π‘–π‘ = οΏ½οΏ½π‘“π‘οΏ½π‘˜π‘’,𝑐 βˆ’ π‘˜π‘’,𝑖� = β„Ž 𝐴 βˆ†π‘˜π‘ π‘’ Logarithmic temperature difference

βˆ†π‘˜π‘ π‘’ =βˆ†π‘˜π‘ βˆ’ βˆ†π‘˜π‘–

π‘Ÿπ‘Ÿ οΏ½βˆ†π‘˜π‘βˆ†π‘˜π‘–οΏ½

Constant surface temperature βˆ†π‘˜π‘ = π‘˜π‘  βˆ’ π‘˜π‘π‘ π‘‘ βˆ†π‘˜π‘– = π‘˜π‘  βˆ’ π‘˜π‘–π‘–

Energy balance results in

π‘Ÿπ‘Ÿ οΏ½π‘˜π‘’,𝑐𝑠𝑑 βˆ’ π‘˜π‘ π‘˜π‘’,𝑖𝑖 βˆ’ π‘˜π‘ 

οΏ½ +β„Ž

π‘‚π‘Ÿπ‘π‘”πœŒπ‘“π‘4𝐿𝐷

= 0

Constant external temperature use modified Newton’s Law

q =βˆ†π‘˜π‘ π‘’π‘…π‘‘π‘π‘‘

𝑅𝑑𝑐𝑑 = total resistance of convective and conductive HT βˆ†π‘˜π‘ π‘’ built with

βˆ†π‘˜π‘ = π‘˜βˆž βˆ’ π‘˜π‘π‘ π‘‘ βˆ†π‘˜π‘– = π‘˜βˆž βˆ’ π‘˜π‘–π‘–

Constant heat flux: Local mean temperature of the fluid:

π‘˜π‘’(𝑑) = π‘˜π‘’,𝑖 +π‘žπ‘ "𝑃��𝑓𝑃

𝑑

Tm,i= mean temperature inlet [K] P=cross section perimeter [m]

m= mass flow rate [kg/s] cp = specific heat capacity [kJ/(kg K)] qsβ€œ= heat flux at the surface [W/m2] Average heat coefficient

β„ŽπΏ =1𝐿� β„Žπ‘₯𝑑𝑑𝐿

0

β„ŽπΏ= average heat transfer coefficient over a spatial dimension L β„Žπ‘₯= local heat transfer coefficient at a certain position x Convective mass transfer

𝑁𝐴 = π‘˜π‘–βˆ†π‘“π΄ NA = molar convective mass transfer flux [mol/(m2s] π‘˜π‘–= concective mass transfer coefficient [m/s] βˆ†π‘“π΄= concentration difference [mol/m3] Internal Flow Use an analogy to HT

Analogy between Heat, Mass and Momentum Transport Skin friction Use local skin friction for analogy of local coefficients

𝐢𝑓,π‘₯ =2πœπ‘†,π‘₯

πœŒπ‘‚βˆž2

πœπ‘†,π‘₯ = Local shear stress at position x [N/m2] Use average skin friction for analogy of average coefficients

𝐢𝑓,𝐿 =2πœπ‘†,𝐿

πœŒπ‘‚βˆž2

πœπ‘†,𝐿 = 𝐹𝐴

= Average shear stress = Drag force per surface area over spatial dimension L [N/m2] Reynolds analogy

𝑆𝑅 =β„Ž

πœŒπ‘‚βˆžπ‘“π‘=𝐢𝑓2

= 𝑆𝑅𝑒 =π‘˜π‘–π‘‚βˆž

valid for Blasius solution (laminar flow) of the horizontal plate and Pr=1 and Sc=1

Page 6: cheat sheet

Heat and Mass Transfer CHEE330 – Formula Sheet

Version 05/12/2014 Page 13

local skin friction

𝐢𝑓,π‘₯ =0.664

�𝑅𝑂π‘₯

average skin friction for averaged coefficients

𝐢𝑓,𝐿 =1.328

�𝑅𝑂𝐿

Chilton-Colburn analogy For laminar and turbulent flow where is no form drag such as flow over flat plate and internal flows

𝑗𝐻 = 𝑗𝐷 =𝐢𝑓2

𝑗𝐻 = 𝑆𝑅 𝑃𝑑2/3

valid for 0.5<Pr<50

𝑗𝐷 =π‘˜π‘–π‘‚βˆž

𝑆𝑓2/3

valid for 0.6<Sc<2500 Prandtl analogy For turbulent flows where is no form drag such as flow over flat plate and internal flows

𝑆𝑅 =𝐢𝑓/2

1 + 5�𝐢𝑓 2⁄ (𝑃𝑑 βˆ’ 1)

for mass transfer Stanton number use Sc instead of Pr. Constants g = Gravitational acceleration =9.81 m2/s kB= Boltzmann constant =1.38 Γ— 10-23J/K R = Universal gas constant = 8.3143 J/(mol K)

Οƒ = Stefan-Boltzmann constant Οƒ = 5.67x10-8 W/(m2K4) NA = Avogadro number 6.022 Γ— 1023 molβˆ’1

Units of selected physical quantities: [Pressure] ≑ atm (standard) = 101325 Pa bar = 105 Pa Pa = N/m2 [Force] ≑ N = kg m/s2 [Work] ≑ J = N m [Power] ≑ W = J/s [Charge] ≑ C [Current] ≑ A = C/s [Voltage] ≑ V = J/C [Electrical resistance] ≑ Ξ© = V/A [Dynamic viscosity] ≑ Pa s [Kinematic viscosity] ≑ m2/s Laminar-Turbulent transition criterion: Forced convection cylindrical pipe flow 𝑅𝑂 ≲ 2300 Forced convection along vertical/horizontal plate 𝑅𝑂 ≲ 5𝑑105 Forced convection over cylinder/sphere 𝑅𝑂 ≲ 2𝑑105 Natural convection along vertical plate 𝑅𝑂 ≲ 109

Page 7: cheat sheet

Heat and Mass Transfer CHEE330 – Formula Sheet

Version 5/12/2014 Page 14

Correlations for natural Convection Use analogy for mass transfer. Arithmetic mean temperature for properties

Geometry Charact. length

Range of Raleigh No. Nu = f (Ra)

L

RaL < 109

RaL = 104-109

RaL = 1010-1013

entire range

𝑁𝑒𝐿 = 0.68 +0.670π‘…π‘ŽπΏ

14

οΏ½1 + οΏ½0.492𝑃𝑃 οΏ½

916οΏ½

49

𝑁𝑒𝐿 = 0.59 π‘…π‘ŽπΏ

1/4 𝑁𝑒𝐿 = 0.1 π‘…π‘ŽπΏ

1/3

𝑁𝑒𝐿 =

⎝

βŽœβŽœβŽœβŽ›

0.825 +0.387π‘…π‘ŽπΏ

16

οΏ½1 + οΏ½0.492𝑃𝑃 οΏ½

916οΏ½

827

⎠

⎟⎟⎟⎞

2

L

Use vertical plate equations for the upper surface of the cold plate and the lower surface for the hot plate Replace g by g cos(ΞΈ) for 0 < ΞΈ < 60o

𝐴𝑠/𝑃

RaL = 104-107

RaL = 107-1011

RaL = 105-1011

𝑁𝑒𝐿 = 0.54 π‘…π‘ŽπΏ1/4

𝑁𝑒𝐿 = 0.15 π‘…π‘ŽπΏ

1/3

𝑁𝑒𝐿 = 0.27 π‘…π‘ŽπΏ1/4

L

A vertical cylinder can be treated as a vertical plate when

𝐷 β‰₯35𝐿𝐺𝑃𝐿

1/4

D π‘…π‘Žπ· ≀ 1012 𝑁𝑒𝐷 =

⎝

βŽœβŽœβŽœβŽ›

0.6 +0.387π‘…π‘Žπ·

16

οΏ½1 + οΏ½0.559𝑃𝑃 οΏ½

916οΏ½

827

⎠

⎟⎟⎟⎞

2

Page 8: cheat sheet

Heat and Mass Transfer CHEE330 – Formula Sheet

Version 5/12/2014 Page 15

𝑁𝑒𝐷 = πΆπ‘…π‘Žπ·π‘›

with

D

π‘…π‘Žπ· β‰₯ 1011 𝑃𝑃 β‰₯ 0.7

𝑃𝑃 β‰ˆ 1 1 < π‘…π‘Žπ· < 105

𝑁𝑒𝐷 = 2 +0.589π‘…π‘Žπ·

14

οΏ½1 + οΏ½0.469𝑃𝑃 οΏ½

916οΏ½

49

𝑁𝑒𝐷 = 2 + 0.43π‘…π‘Žπ·

1/4

Correlations for forced convection in internal flow For mass transfer, use appropriate analogy.

Geometry Flow regime Restrictions Nu = f (Re,Pr)

Cylindrical pipe of

diameter D or

Non-cylindrical duct with Dh=4Ac/P

Laminar & fully developed

(Graetz solution for long pipes)

Properties are evaluated at arithmetic mean

Page 9: cheat sheet

Heat and Mass Transfer CHEE330 – Formula Sheet

Version 5/12/2014 Page 16

Cylindrical pipe of

diameter D

Laminar within velocity & thermal

entrance length (short pipes)

0.0044 ≀ οΏ½πœ‡π‘πœ‡π‘€οΏ½ ≀ 9.75

0.6 ≀ 𝑃𝑃 ≀ 5

2≀L/D≀20

20<L/D<60

𝑁𝑒𝐷 = 1.86 �𝑃𝑃 𝐷𝐿�1/3

οΏ½πœ‡π‘πœ‡π‘€οΏ½0.14

πœ‡π‘=viscosity bulk temperature πœ‡π‘€=viscosity wall temperature Al other properties are evaluated at bulk temperature

β„ŽπΏβ„Žβˆž

= 1 + (𝐷 𝐿⁄ )0.7

β„ŽπΏβ„Žβˆž

= 1 + 6(𝐷 𝐿⁄ )

β„Žβˆž= value for fully-developed regime

Cylindrical pipe of

diameter D

Turbulent & fully developed

0.7 ≀ 𝑃𝑃 ≀ 100 𝑅𝑃 > 104

L/D>60

0.7 ≀ 𝑃𝑃 ≀ 17000 𝑅𝑃 > 104

L/D>60

𝑁𝑒𝐷 = 0.023𝑅𝑃𝐷45𝑃𝑃𝑛

n=0.4 for heating (Ts>Tm) n=0.3 for cooling (Ts<Tm) properties at arithmetic mean

𝑆𝑆𝐷 = 0.023π‘…π‘ƒπ·βˆ’15 π‘ƒπ‘ƒβˆ’

23 οΏ½πœ‡π‘πœ‡π‘€οΏ½0.14

All properties, except ΞΌw evaluated at bulk temperature

Correlations for forced convection for external flow Plates: For mass transfer, use appropriate analogies. Spheres, Cylinders: Analogies break down, use appropriate correlation

Geometry Flow regime Restrictions Nu = f (Re,Pr)

Flat plate of length L

Laminar (Blasius solution)

𝑃𝑃 β‰₯ 0.6 or

0.6 ≀ 𝑆𝑆 ≀ 2500 𝑅𝑃 < 2 β‹… 105

𝑁𝑒π‘₯ = 0.332Rex12 𝑃𝑃

13

𝑁𝑒𝐿 = 0.664ReL1/2 𝑃𝑃1/3

Properties are evaluated at arithmetic mean

Flat plate of length L Turbulent 𝑅𝑃 > 3 β‹… 106

𝑁𝑒π‘₯ = 0.0288𝑅𝑃π‘₯4/5𝑃𝑃1/3 𝑁𝑒𝐿 = 0.036𝑅𝑃𝐿4/5𝑃𝑃1/3

Properties are evaluated at arithmetic mean

Cylinder of diameter D in crossflow

Laminar Pr = 1

𝑁𝑒𝐷 = 𝐡 𝑅𝑃𝐷𝑛 𝑃𝑃1/3

Page 10: cheat sheet

Heat and Mass Transfer CHEE330 – Formula Sheet

Version 5/12/2014 Page 17

Cylinder of diameter D in crossflow

Laminar & turbulent Pr > 0.2

𝑁𝑒𝐷 = 0.3 +0.62𝑅𝑃𝐷

12 𝑃𝑃

13

οΏ½1 + (0.4/𝑃𝑃)23 οΏ½

14

οΏ½1 + �𝑅𝑃𝐷

282,000οΏ½58οΏ½

4/5

Properties are evaluated at arithmetic mean

Sphere of diameter D Laminar

20 ≲ 𝑅𝑃𝐷 ≲ 105

0.71 ≀ 𝑃𝑃 ≀ 380 3.5 < 𝑅𝑃𝐷 < 7.6 β‹… 104

𝑁𝑒𝐷 β‰ˆ 0.31 (𝑅𝑃𝐷)0.6

𝑁𝑒𝐷 = 2 + 𝑃𝑃0.4 οΏ½πœ‡βˆžπœ‡π‘ οΏ½1/4

οΏ½0.4𝑅𝑃𝐷12 + 0.06𝑅𝑃𝐷

23 οΏ½

Properties are evaluated at T∞, except μs which is evaluated at Ts

Falling spherical droplet of diameter D

𝑁𝑒𝐷 = 2 + 0.6𝑅𝑃𝐷

1/2𝑃𝑃1/3

Sphere of diameter D

For flux of species A from a sphere

into an infinite sink of stagnant fluid B

π‘†β„Žπ· = 2

For mass transfer into liquid streams

𝑃𝑃𝐴𝐴 < 10,000 𝑃𝑃𝐴𝐴 > 10,000

π‘†β„Ž = οΏ½4 + 1.21𝑃𝑃𝐴𝐴23 οΏ½

12

π‘†β„Ž = 1.01 𝑃𝑃𝐴𝐴1/3

For mass transfer into gas streams

2 < 𝑅𝑃 < 800 0.6 < 𝑆𝑆 < 2.7

or 1500 < 𝑅𝑃 < 12000

0.6 < 𝑆𝑆 < 1.85

π‘†β„Ž = 2 + 0.552𝑅𝑃1/2𝑆𝑆1/3

Page 11: cheat sheet

Heat and Mass Transfer CHEE330 – Formula Sheet

Version 5/12/2014 Page 18

List of dimensionless groups L= characteristic length scale external flow; R = characteristic length scale internal flow/particle u= characteristic velocity; HT = heat transfer; MT = mass transfer, D = diffusivity Dimensionless Groups Definition Interpretation Archimedes number

𝐴𝑃 =𝑔𝑔𝐿3βˆ†π‘”πœ‡2

=𝑔𝐿3

𝜈2

gravitational force / viscous force

Arrhenius number 𝛼 =πΈπ‘Žπ‘…π‘…

activation energy / thermal energy

Biot number (heat) 𝐡𝐡 =β„ŽπΏπ‘˜

convective HT / conductive HT

Biot number (mass) π΅π΅π‘š =β„Žπ‘šπΏπ‘˜

convective MT / diffusive MT

Bodenstein number 𝐡𝐡 =𝑒 πΏπ·π‘Žπ‘₯

convective MT / axial diffusive MT (Peclet number for chemical reactors, π·π‘Žπ‘₯ =axial diffusion coefficient)

Bond Number 𝐡𝐡 =

𝑔�𝑔𝑙 βˆ’ 𝑔𝑔�𝐿2

𝜎

gravitational force / capillary force

Brinkmann number 𝐡𝑃 =

πœ‡π‘’2

π‘˜(𝑅𝑀 βˆ’ 𝑅0) viscous dissipation / thermal conduction

Capillary number πΆπ‘Ž =πœ‡ π‘’πœŽ

viscous force / capillary (surface tension) force

Dean number 𝐷𝑃 =

𝑒 πΏπœˆοΏ½πΏπ‘…

= 𝑅𝑃�𝐿𝑅

centrifugal force / viscous force

Eckert number 𝐸𝑆 =

𝑒2

𝑆𝑝(𝑅𝑀 βˆ’ 𝑅0) kinetic energy flow / boundary layer enthalpy

Euler number 𝐸𝑒 =Δ𝑝𝑔𝑒2

pressure force / inertial force

Fourier number HT 𝐹𝐡 =

𝛼𝑆𝐿2

=π‘˜ 𝑆

𝑔 𝑆𝑝 𝐿2

heat conduction / enthalpy change; also dimensionless time

Fourier number MT πΉπ΅π‘š =𝐷 𝑆𝐿2

diffusion rate / species accumulation; dimensionless time

Inertial friction factor 𝑓𝑖𝑛 =Δ𝑝𝐿

𝑅𝑔𝑒2

specific pressure drop / inertial force

Viscous friction factor 𝑓𝑣𝑖𝑠 =

Δ𝑝𝐿𝑅2

πœ‡ 𝑒

specific pressure drop / viscous force

Froude number 𝐹𝑃 =

𝑒2

𝑔 𝐿

inertial force / gravitational force

Galileo number πΊπ‘Ž =

𝑔𝑔𝐿3 πœ‡2

= 𝑅𝑃𝐿2π‘”πœ‡ 𝑒

Reynolds x gravity force / viscous force

Page 12: cheat sheet

Heat and Mass Transfer CHEE330 – Formula Sheet

Version 5/12/2014 Page 19

Graetz number HT 𝐺𝑧 =

𝑅2 𝑔 𝑒 𝑆𝑝 𝐿 π‘˜

=𝑅𝐿𝑅𝑃 𝑃𝑃

thermal capacity flow / conductive HT

Graetz number MT πΊπ‘§π‘š =

𝑅2 𝑒 𝐿 𝐷

=𝑅𝐿𝑅𝑃 𝑆𝑆

mass capacity (flow) / diffusive MT

Grashof number 𝐺𝑃 =

𝑔 𝛽 (𝑅𝑀 βˆ’ 𝑅0)𝐿3 𝜈2

buoyant force / viscous force

Knudsen number 𝐾𝐾 =πœ† 𝐿

length of free mean path / characteristic length

Lewis number 𝐿𝑃 =𝛼 𝐷

thermal diffusivity / mass diffusivity

Mach number π‘€π‘Ž =𝑒

𝑒𝑠𝑠𝑛𝑖𝑠 velocity / speed of sound

Nusselt number 𝑁𝑒 =β„Ž πΏπ‘˜

convective HT / conductive HT (at boundaries)

Ohnesorge number π‘‚β„Ž =

πœ‡οΏ½π‘”πΏ 𝜎

=βˆšπ‘Šπ‘ƒπ‘…π‘ƒ

viscous force / SQRT(inertial force x capillary force)

Peclet number HT 𝑃𝑃 =𝑣 𝐿𝛼

=𝑒 𝑔 𝑆𝑝 𝐿

π‘˜= 𝑅𝑃 𝑃𝑃

convective HT / diffusive HT (in bulk liquid)

Peclet number MT π‘ƒπ‘ƒπ‘š =𝑒 𝐿𝐷

= 𝑅𝑃 𝑆𝑆 convective MT / diffusive MT in bulk liquid

Prandtl number 𝑃𝑃 =πœˆπ›Ό

=πœ‡ π‘†π‘π‘˜

viscous diffusivity / thermal diffusivity

Raleigh number π‘…π‘Ž = 𝐺𝑃 𝑃𝑃 natural convection HT / conductive HT

Reynolds number 𝑅𝑃 =𝑒 𝐿𝜈

=𝑒 πΏπœ‡/𝑔

inertial force / viscous force

Schmidt number 𝑆𝑆 =𝜈𝐷

=πœ‡/𝑔𝐷

momentum diffusivity / mass diffusivity

Sherwood number π‘†β„Ž =π‘˜π‘ πΏ 𝐷

convective MT / diffusive MT (at boundaries)

Stanton number HT 𝑆𝑆 =𝑁𝑒 𝑅𝑃 𝑃𝑃

=𝑁𝑒𝑃𝑃

convective HT / heat capacity (at boundaries)

Stanton number MT π‘†π‘†π‘š =π‘†β„Ž 𝑅𝑃 𝑆𝑆

=π‘†β„Žπ‘ƒπ‘ƒπ‘š

convective MT / mass capacity (at boundaries)

Stokes number π‘†π‘†π‘˜ =𝑆𝑝𝑒𝑅

particle relaxation time / convective time scale

Strouhal number 𝑆𝑃 =𝑓 𝐿 𝑒

characteristic frequency / characteristic timescale-1

Weber number π‘Šπ‘ƒ =

𝑔𝑒2𝜎𝐿

inertial force / capillary force