CHE-300 & 302 Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

53
CHE-300 & 302 Organic Chemistry I & II Dr. James Lyle; office: NSM D-323 (310) 243-3388 or 243-3376 [email protected] office hours: M-Th, 8:00 am – 10:00 am

description

 CHE-300 & 302 Organic Chemistry I & II Dr. James Lyle; office: NSM D-323 (310) 243-3388 or 243-3376 [email protected]  office hours: M-Th, 8:00 am – 10:00 am. Web page: http://chemistry.csudh.edu/. texts : Organic Chemistry , Morrison & Boyd (6th) Supplement to..., - PowerPoint PPT Presentation

Transcript of  CHE-300 & 302 Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Page 1:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

 CHE-300 & 302

Organic Chemistry I & II

  

Dr. James Lyle; office: NSM D-323

(310) 243-3388 or 243-3376

[email protected]

 

 office hours: M-Th, 8:00 am – 10:00 am

Page 3:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

texts:

  Organic Chemistry, Morrison & Boyd (6th)

 

Supplement to...,

Morrison & Boyd

(optional)

  Supplement...

 

Model kit

 

Page 4:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Grading: traditional, no curve!

A=100%-93%, A-=92%-90%,B+=89%-88%,

B=87%-83%,etc.

 

Daily exams = 75%

Final exam = 25% ***

 

Daily exams

No make ups! Drop two lowest scores. Begin at 10:00! 

Page 5:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Daily Homework: Required!

(hold until called for)

 

Final Exam, July 7, 10-12:00

comprehensive, difficult!

 

Cheating: Don’t do it! The penalties are severe.

 

Turn off all cell phones and pagers!

Page 6:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Organic Chemistry; difficult, challenging! “memorization course” (NOT! well…maybe),

body of knowledge + application of theory!

 

How to succeed?

1. look over the text before lecture.

2. listen carefully to lectures

3. read the text (take notes)

4. do the homework (twice...?)

5. review

Page 7:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Organic Chemistry - the study of the compounds of carbon, their properties and the changes that they undergo.

 

Descriptive approach -

  nomenclature

syntheses

reactions

mechanisms

...

Page 8:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

First: review topics from gen. chem. important to o-chem.

 atomic structure

  subatomic particles:

  mass charge

protons

neutrons

electrons

 

nucleus: protons & neutrons

electron shells & subshells: electrons

1 amu +1

1 amu 0

~0 amu - 1

Page 9:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

atomic number = number of protons in the nucleus of the atom (different for each element); Hydrogen = 1, Helium = 2, Lithium = 3,...

 

[also the number of electrons in a neutral atom]

 

Iron = 26 26 protons = +26

26 electrons=-26

net charge= 0

Page 10:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

atomic mass = mass of an atom; sum of the weights of the protons & neutrons.

 

But, not all atoms of a given element are identical.

isotopes - atoms of the same element with different numbers of neutrons.

 

 

Page 11:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

examples of isotopes 

prot. neut. %

H1 1 0 99.985

H2 1 1 0.015

 

C12 6 6 98.89

C13 6 7 1.11

C14 6 8 ...

Cl35 17 18 75.53

Cl37 17 20 24.47

 

F19 9 10 100

Page 12:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

atomic weight: weighted average mass of the atoms; combining weight...

 

electrons => energy shells & subshells about the nucleus.

 

shells = 1, 2, 3, 4, ...

subshells = s, p, d, f

 

orbitals = region in space where an electron of given energy is likely to be found; no more than two electrons of opposite spin per orbital (Pauli exclusion principle).

Page 13:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

maximum number of electrons per subshell:

s 2

p 6

d 10

f 14

Page 14:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

order of filling 

1s

2s 2p

3s 3p 3d

4s 4p 4d 4f

5s 5p 5d 5f

6s 6p 6d 6f

spectral notation: 1s2,2s2,2p6…

Page 15:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Fluorine (at.# 9) 9p/9e 

1s2,2s2,2p5

 Chlorine (at.# 17) 17p/17e

  1s2,2s2,2p6,3s2,3p5

 Bromine (at.# 35) 35p/35e

1s2,2s2,2p6,3s2,3p6,4s2,3d10,4p5

 Iodine (at.# 53) 53p/53e

  1s2,2s2,2p6,3s2,3p6,4s2,3d10,4p6,5s2,4d10,5p5

Page 16:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

valence electrons = electrons in the outermost shell

 

Fluorine has 7 valence elect.

 Chlorine has 7 valence elect.

 Bromine has 7 valence elect.

 Iodine has 7 valence elect.

Page 17:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

 

PERIODIC CHART OF THE ELEMENTS  I VIII┌────┐ ┌────┐│ H │ │ He ││ 1 │ II III IV V VI VII │ 2 │├────┼────┐ ┌────┬────┬────┬────┬────┼────┤│ Li │ Be │ │ B │ C │ N │ O │ F │ Ne ││ 3 │ 4 │ │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │├────┼────┤ ├────┼────┼────┼────┼────┼────┤│ Na │ Mg │ │ Al │ Si │ P │ S │ Cl │ Ar ││ 11 │ 12 │ │ 13 │ 14 │ 15 │ 16 │ 17 │ 18 │├────┼────┼────┬────┬────┬────┬────┬────┬────┬────┬────┬────┼────┼────┼────┼────┼────┼────┤│ K │ Ca │ Sc │ Ti │ V │ Cr │ Mn │ Fe │ Co │ Ni │ Cu │ Zn │ Ga │ Ge │ As │ Se │ Br │ Kr ││ 19 │ 20 │ 21 │ 22 │ 23 │ 24 │ 25 │ 26 │ 27 │ 28 │ 29 │ 30 │ 31 │ 32 │ 33 │ 34 │ 35 │ 36 │├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤│ Rb │ Sr │ Y │ Zr │ Nb │ Mo │ Tc │ Ru │ Rh │ Pd │ Ag │ Cd │ In │ Sn │ Sb │ Te │ I │ Xe ││ 37 │ 38 │ 39 │ 40 │ 41 │ 42 │ 43 │ 44 │ 45 │ 46 │ 47 │ 48 │ 49 │ 50 │ 51 │ 52 │ 53 │ 54 │├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤│ Cs │ Ba │ La │ Hf │ Ta │ W │ Re │ Os │ Ir │ Pt │ Au │ Hg │ Tl │ Pb │ Bi │ Po │ At │ Rn ││ 55 │ 56 │ 57 │ 72 │ 73 │ 74 │ 75 │ 76 │ 77 │ 78 │ 79 │ 80 │ 81 │ 82 │ 83 │ 84 │ 85 │ 86 │├────┼────┼────┼────┼────┼────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘│ Fr │ Ra │ Ac │ │ │ │ 87 │ 88 │ 89 │104 │105 │ └────┴────┴────┴────┴────┘ ┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐ │ Ce │ Pr │ Nd │ Pm │ Sm │ Eu │ Gd │ Tb │ Dy │ Ho │ Er │ Tm │ Yb │ Lu │ │ 58 │ 59 │ 60 │ 61 │ 62 │ 63 │ 64 │ 65 │ 66 │ 67 │ 68 │ 69 │ 70 │ 71 │ ├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤ │ Th │ Pa │ U │ Np │ Pu │ Am │ Cm │ Bk │ Cf │ Es │ Fm │ Md │ No │ Lr │ │ 90 │ 91 │ 92 │ 93 │ 94 │ 95 │ 96 │ 97 │ 98 │ 99 │100 │101 │102 │103 │ └────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘

Page 18:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

periodic chart of the elements

metals & nonmetals

families (groups) of elements 

alkali metals (group I)

Li,Na,K,...

alkaline earths (group II)

Be,Mg,Ca,...

halogens (group VII)

F,Cl,Br,I,...

noble gases (group VIII or 0)

He,Ne,Ar,... 

group number = valence elec.

Page 19:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Chemical bonding (classical)

 

chemical bond: force that holds atoms together in compounds.

 

ionic bond ~ between

metals & non-metals

 

covalent bond ~ between

non-metals & non-metals

 

 

 

Page 20:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

definitions:

 

ionic bond: a chemical bond formed by the transfer of valence electrons to achieve noble gas electron config-urations, resulting in ions held together by electrostatic attraction.

 

covalent bond: chemical bond formed by the sharing of valence electrons to achieve noble gas electron configurations.

Page 21:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

ionic bond example:

  sodium chloride

 sodium = Na, atomic # 11

1s2,2s2,2p6,3s1

neon = Ne, atomic # 10

1s2,2s2,2p6

if Na loses 1 elect. then it will have a noble gas elect.

config. like Ne but will be charged, +1 ( 11p/10e ).

=> Na+ sodium ion

Page 22:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

chlorine = Cl, atomic # 17

1s2,2s2,2p6,3s2,3p5

argon = Ar, atomic # 18

1s2,2s2,2p6,3s2,3p6

if chlorine can gain an electron it will have a noble gas electron config. like argon but will be charged -1 (17p/18e) Cl-

sodium chloride = NaCl

or Na+Cl-

Page 23:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

covalent bonds

 Lewis Dot representations

  H Be :Cl

 

Ne C O

H2O = H:O:H

see homework! review your gen chem text!

 

. .. .

. ...

. .

..

..

..

..

..

..

Page 24:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

.. .. .. ..CO2 :O::C::O: :O=C=O:

N2 :N:::N: :NN:

HCN H:C:::N: H-CN:

.. ..H2CO H:C::O: H-C=O: .. | H H

Page 25:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

atomic orbitals

s

p

detc.

Page 26:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

hybrid atomic orbitals

 

s + p => 2 sp hybrids

s + p + p => 3 sp2

s + p + p + p => 4 sp3

+ +

Page 27:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Hybrid atomic orbitals:

sp = linear; 180o

sp2 = trigonal; 120o

sp3 = tetrahedral; 109.5o

B ABB

B

AB B

B

B A B

Page 28:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

VSEPR (valence shell electron pair repulsion)

prediction of hybridization

  number of ligands (X)

plus

number of unshared pair of valence electrons (E)

equals

number of orbitals needed

what type of hybrid orbitals are needed

Page 29:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

eg. H2O => H:O:H or H—O—H

2 ligands + 2 lone pair = 4 orbitals

AX2E2

 sp3 tetrahedral, 109.5o

water is a bent molecule with bond angles of 105o

..

..

H

OH

..

..

Page 30:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

VSEPR

AX2 sp 180o linear

AX3 sp2 120o trigonal

AX2E sp2 ~120o or “bent”

AX4 sp3 109.5o tetrahedral

AX3E sp3 ~109.5o or “pyramidal

AX2E2 sp3 ~109.5o or “bent”

Page 31:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

We can use the VSEPR method to predict the shape and bond angles for simple covalent molecules.

 

SHAPE is important!

 

review gen chem text!

 

Do the homework!!!!!

Page 32:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

 

PERIODIC CHART OF THE ELEMENTS  I VIII┌────┐ ┌────┐│ H │ │ He ││ 1 │ II III IV V VI VII │ 2 │├────┼────┐ ┌────┬────┬────┬────┬────┼────┤│ Li │ Be │ │ B │ C │ N │ O │ F │ Ne ││ 3 │ 4 │ │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │├────┼────┤ ├────┼────┼────┼────┼────┼────┤│ Na │ Mg │ │ Al │ Si │ P │ S │ Cl │ Ar ││ 11 │ 12 │ │ 13 │ 14 │ 15 │ 16 │ 17 │ 18 │├────┼────┼────┬────┬────┬────┬────┬────┬────┬────┬────┬────┼────┼────┼────┼────┼────┼────┤│ K │ Ca │ Sc │ Ti │ V │ Cr │ Mn │ Fe │ Co │ Ni │ Cu │ Zn │ Ga │ Ge │ As │ Se │ Br │ Kr ││ 19 │ 20 │ 21 │ 22 │ 23 │ 24 │ 25 │ 26 │ 27 │ 28 │ 29 │ 30 │ 31 │ 32 │ 33 │ 34 │ 35 │ 36 │├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤│ Rb │ Sr │ Y │ Zr │ Nb │ Mo │ Tc │ Ru │ Rh │ Pd │ Ag │ Cd │ In │ Sn │ Sb │ Te │ I │ Xe ││ 37 │ 38 │ 39 │ 40 │ 41 │ 42 │ 43 │ 44 │ 45 │ 46 │ 47 │ 48 │ 49 │ 50 │ 51 │ 52 │ 53 │ 54 │├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤│ Cs │ Ba │ La │ Hf │ Ta │ W │ Re │ Os │ Ir │ Pt │ Au │ Hg │ Tl │ Pb │ Bi │ Po │ At │ Rn ││ 55 │ 56 │ 57 │ 72 │ 73 │ 74 │ 75 │ 76 │ 77 │ 78 │ 79 │ 80 │ 81 │ 82 │ 83 │ 84 │ 85 │ 86 │├────┼────┼────┼────┼────┼────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘│ Fr │ Ra │ Ac │ │ │ │ 87 │ 88 │ 89 │104 │105 │ └────┴────┴────┴────┴────┘ ┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐ │ Ce │ Pr │ Nd │ Pm │ Sm │ Eu │ Gd │ Tb │ Dy │ Ho │ Er │ Tm │ Yb │ Lu │ │ 58 │ 59 │ 60 │ 61 │ 62 │ 63 │ 64 │ 65 │ 66 │ 67 │ 68 │ 69 │ 70 │ 71 │ ├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤ │ Th │ Pa │ U │ Np │ Pu │ Am │ Cm │ Bk │ Cf │ Es │ Fm │ Md │ No │ Lr │ │ 90 │ 91 │ 92 │ 93 │ 94 │ 95 │ 96 │ 97 │ 98 │ 99 │100 │101 │102 │103 │ └────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘

Page 33:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Polarity

Covalent bonds are polar when the two atoms sharing electrons have different electronegativities.

eg. H—Cl δ+ δ-

a charge separation or a dipole gives a polar bond.

.. ..O2 :O=O: has a non-polar bond

Page 34:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Representation of dipoles using vectors

a) magnitude = length

b) direction = positive negative

A molecule will be non-polar if the vector sum of the bond dipoles is zero; eg. they cancel one another.

A molecule with be polar if the vector sum of the bond dipoles is non-zero.

Page 35:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Determining polarity of covalent molecules:

1. Lewis dot structure

2. VSEPR hybridization shape of the molecule

3. dipoles for polar bonds

4. vector sum of the bond dipoles

5. vector sum = 0 non-polar molecule

6. vector sum 0 polar molecule

Page 36:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

CO2 :O=C=O: sp linear

vector sum = 0

non-polar molecule

H2O ..

H—O—H AX2E2 sp3 tetrahedral (bent) ..

H OH

vector sum 0

polar molecule!

Page 37:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

H

CO H

H

H

CH3OH

Both C & O are sp3

hybridized.

The bond dipole vectors do not cancel each other and the molecule is polar.

NB: must know shape to determine polarity!

Page 38:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Intermolecular forces. Attractions between molecules.

ionic attractions Na+Cl-

(very strong) Cl-Na+

dipole-dipole attractions H—Br Br—H

hydrogen bonding ( H attached to N,O,F )

H—O----H—O | | H H

van der Waals (London forces) Br—Br(weak) Br—Br

Page 39:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

intermolecular attractions strongest

ionic attractions

dipole-dipole / hydrogen bonding

van der Waals

weakest

ionic bonds => ionic attractions

polar covalent => dipole-dipole attractions

non-polar covalent => van der Waals

Page 40:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Cl2

CO2

H2O

CH4

KBr

non-polar covalent => van der Waals

non-polar covalent => van der Waals

polar covalent => dipole-dipole &

Hydrogen bonding

non-polar covalent => van der Waals

ionic bonding => ionic attractions

Page 41:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

bonding => shape => polarity => physical properties

physical properties:

melting point

boiling point

solubility

The stronger the intermolecular forces the higher the mp/bp. Ionic substances have significantly higher mp/bp than do covalent substances. [note: mp/bp also increase with increasing size.]

Page 42:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Prediction of mp/bp (relatively high or low?):

Mg(OH)2

CH3OH

CH2O

CH3CH3

ionic => ionic attractions

polar => dipole-dipole + H-bond

polar => dipole-dipole

non-polar => van der Waals

mp bp

350oC --

-94oC 65oC

-920C -21oC

-183oC –89oC

Page 43:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Solubility

“like dissolves like”

~ water soluble? must be ionic or highly polar + H-bond

(hydrophilic)

~ water insoluble? must be non-polar or weakly polar

(hydrophobic)

Most organic compounds are water insoluble!

Page 44:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Acids/Bases

historic:

acids – from L. acidus = “sour”

sour taste

react with metals H2

react with bases water + salts

change litmus red

react with limestone CO2

examples: HCl, H2SO4, HNO3, HClO4

Page 45:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

historic:

bases - bitter taste

soapy feel

react with acids water + salts

change litmus blue

examples: NaOH, Al(OH)3, K2CO3, NaHCO3

Page 46:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Lowry-Brønsted Acid - a substance that donates a proton (H+) in a chemical reaction.

Lowry-Brønsted Base – a substance that accepts a proton (H+) in a chemical reaction.

CH3MgBr + NH3 CH4 + Mg(NH2)Br

NaOH + H2SO4 H2O + NaHSO4

base acid acid base

base acid acid base

Page 47:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Lewis Acid – a substance that accepts an electron pair in a chemical reaction to form a covalent bond.

Lewis Base – a substance that donates an electron pair in a chemical reaction to form a covalent bond.

- + BF3 + :NH3 F3B:NH3

Lewis Lowry-Brønsted

Page 48:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Rule: acid/base reactions must run “down hill.”

stronger acid/base weaker acid/base

H2SO4 + H2O HSO4- + H3O+

stronger stronger weaker weakeracid base base acid

H2O + NH3 NH4+ + OH-

weaker weaker stronger stronger acid base acid base

(note direction of reactions)

Page 49:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Within a period of the periodic chart, acid strength increases with increasing electronegativity:

CH4 < NH3 < H2O < HF

Within a family of elements, acid strength increases with increasing size:

HF < HCl < HBr < HI

Page 50:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

 

PERIODIC CHART OF THE ELEMENTS  I VIII┌────┐ ┌────┐│ H │ │ He ││ 1 │ II III IV V VI VII │ 2 │├────┼────┐ ┌────┬────┬────┬────┬────┼────┤│ Li │ Be │ │ B │ C │ N │ O │ F │ Ne ││ 3 │ 4 │ │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │├────┼────┤ ├────┼────┼────┼────┼────┼────┤│ Na │ Mg │ │ Al │ Si │ P │ S │ Cl │ Ar ││ 11 │ 12 │ │ 13 │ 14 │ 15 │ 16 │ 17 │ 18 │├────┼────┼────┬────┬────┬────┬────┬────┬────┬────┬────┬────┼────┼────┼────┼────┼────┼────┤│ K │ Ca │ Sc │ Ti │ V │ Cr │ Mn │ Fe │ Co │ Ni │ Cu │ Zn │ Ga │ Ge │ As │ Se │ Br │ Kr ││ 19 │ 20 │ 21 │ 22 │ 23 │ 24 │ 25 │ 26 │ 27 │ 28 │ 29 │ 30 │ 31 │ 32 │ 33 │ 34 │ 35 │ 36 │├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤│ Rb │ Sr │ Y │ Zr │ Nb │ Mo │ Tc │ Ru │ Rh │ Pd │ Ag │ Cd │ In │ Sn │ Sb │ Te │ I │ Xe ││ 37 │ 38 │ 39 │ 40 │ 41 │ 42 │ 43 │ 44 │ 45 │ 46 │ 47 │ 48 │ 49 │ 50 │ 51 │ 52 │ 53 │ 54 │├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤│ Cs │ Ba │ La │ Hf │ Ta │ W │ Re │ Os │ Ir │ Pt │ Au │ Hg │ Tl │ Pb │ Bi │ Po │ At │ Rn ││ 55 │ 56 │ 57 │ 72 │ 73 │ 74 │ 75 │ 76 │ 77 │ 78 │ 79 │ 80 │ 81 │ 82 │ 83 │ 84 │ 85 │ 86 │├────┼────┼────┼────┼────┼────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘│ Fr │ Ra │ Ac │ │ │ │ 87 │ 88 │ 89 │104 │105 │ └────┴────┴────┴────┴────┘ ┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐ │ Ce │ Pr │ Nd │ Pm │ Sm │ Eu │ Gd │ Tb │ Dy │ Ho │ Er │ Tm │ Yb │ Lu │ │ 58 │ 59 │ 60 │ 61 │ 62 │ 63 │ 64 │ 65 │ 66 │ 67 │ 68 │ 69 │ 70 │ 71 │ ├────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤ │ Th │ Pa │ U │ Np │ Pu │ Am │ Cm │ Bk │ Cf │ Es │ Fm │ Md │ No │ Lr │ │ 90 │ 91 │ 92 │ 93 │ 94 │ 95 │ 96 │ 97 │ 98 │ 99 │100 │101 │102 │103 │ └────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘

Page 51:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Which is the stronger acid?

H2O or H2S?

What is the order of base strength?

F- Cl- Br- I-

oxygen & sulfur are in the same family and sulfur is bigger: H2S > H2O

in the halogen family base strength decreases with increasing size:

F- > Cl- > Br- > I-

Page 52:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Will H2O react with NaSH as shown below?

H2O + NaSH NaOH + H2S

Will the following reaction proceed as shown?

HI + NaCl HCl + NaI

WA SA

no, H2O < H2S

SA WA

yes, HI > HCl

Page 53:  CHE-300 & 302  Organic Chemistry I & II Dr. James Lyle; office: NSM D-323

Isomers - different compounds with the same molecular formula.

example: C2H6O

CH3CH2OH CH3OCH3

ethyl alcohol dimethyl ether

bp 78oC bp –24oC

H C C O H

H H

H H

H C O C H

H H

H H